用户名: 密码: 验证码:
蚜虫与其内共生菌Buchnera之间的系统进化关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几乎所有的蚜虫体内都含有一种内共生菌Buchnera,这种共生菌在分类上属于和Escherichia coli非常相近的γ-proteobacterium。该共生菌存在于蚜虫腹部的专为内共生菌而特化的细胞含菌细胞(mycetocytes或bacteriocytes)的胞质中,该共生菌随亲代垂直传递给后代。蚜虫与Buchnera互利共生;Buchnera充分供给蚜虫不能从外界获得的各种营养物质,从而满足蚜虫生存和繁殖的需要;同样,Buchnera离开蚜虫也不能存活。国外学者通过分子生物学方法对一些蚜虫体内的Buchnera进行了深入研究,发现共生菌全序列基因组大大缩小,但保留了多数必需氨基酸合成的基因。
     正是由于Buchnera对蚜虫的重要作用,国内外学者对Buchnera开展了相关研究。国外学者对Buchnera的研究,涉及了Uroleucon sp., Acryrthosiphon pisum, Diuraphisnoxia(Kurdj),Schizaphis graminum等有限的蚜虫,这些研究通过分析这些蚜虫Buchnera及其这些蚜虫自身的系统进化,探讨了这些蚜虫Buchnera与其寄主之间的系统进化关系。但是这些研究未曾涉及桃蚜、豆蚜、棉蚜。国内学者对这三种蚜虫Buchnera的研究很少,仅仅涉及了桃蚜的Buchnera groEL基因和16srDNA基因。这三种蚜虫遍及中国乃至世界各地,属于多食性害虫,危害白菜、黄瓜、西红柿、茄子、豆科植物等多种蔬菜和农作物。鉴于Buchnera与蚜虫的特殊关系,对这些蚜虫体内的Buchnera开展研究非常必要。本研究首先分别探讨了这三种蚜虫及其内共生菌Buchnera的系统进化特征,然后综合分析了这三种蚜虫与其内共生菌Buchnera的系统进化关系。
     一、试验材料的采集和饲养
     我们选择典型的危害严重的三种蔬菜蚜虫:桃蚜、豆蚜、棉蚜为研究对象。在实验室内分别用萝卜、菜豆、黄瓜进行饲养;各种群分别置于50×50×50的正方体铁架外罩100目双层沙网内,饲养条件为20±2℃,相对湿度60-70%。
     二、测定三种蚜虫的mtDNA COⅠ/COⅡ、12S/16SrRNA以及核基因EFlalpha的序列,分析三种蚜虫的系统进化
     在这部分工作中,我们通过以前的研究中采用的引物扩增了并测定了桃蚜、豆蚜、棉蚜的线粒体基因COⅠ/COⅡ、12S/16S rRNA以及核基因EFalpha的序列。每个地理种群随机抽取3~5个样本进行序列测定,以它们的一致序列为准。利用“BLAST”工具(NCBI站点)对测定的序列进行分析、DNA序列检索;用GenDoc软件进行序列同源性比较;用BioEdit软件进行序列编辑;用ClustalⅩ软件进行序列比对(alignment);比对结果输入MEGA2.0软件,采用距离法计算各样品间的遗传距离,并基于Kimura-2-Parameter模型,用邻接法(Neighbor-Joining,NJ)构建系统发育树,通过自展1000次检验获得系统树分支的置信度。
     比较测定的这些基因序列,结果发现,四个地理种群的桃蚜的COⅠ/COⅡ、12S/16SrRNA和EFlalpha基因序列差异非常小,相似性高达99%。而桃蚜和棉蚜的COⅠ/COⅡ、EFlalpha的这些基因序列相似性为90%左右;桃蚜和豆蚜的COⅠ/COⅡ、EFlalpha基因序列的相似性分别为近85%、近90%,豆蚜和棉蚜的COⅠ/COⅡ、EFlalpha的相似性分别为过85%、近93%。但是,两种蚜虫的12S/16SrRNA基因序列的相似性则基本达95%。
     分析这些序列构建的系统发育树,我们可以发现,桃蚜与麦双尾蚜的亲缘关系最近。豆蚜和棉蚜的亲缘关系最近,它们又与麦二叉蚜关系最近。
     三、测定并分析Buchnera的trpB、dnaN、trpEG的序列,分析三种蚜虫Buchnera的系统进化
     首先,我们通过Buchnera的基因探讨了这三种蚜虫体内共生菌Buchnera的系统进化。具体来说,我们根据GenBank登录的Uroleucon sp.、Acryrthosiphon pisum、Rhopalosiphum padi以及Schizaphis graminum等已知蚜虫的Buchnera trpB、dnaN、trpEG的基因片段序列,利用Primer Premier 5.0 (http://www.premierbiosoft.com/primerdesign)软件设计引物,扩增了并测定了桃蚜、豆蚜、棉蚜内共生菌Buchnera的trpB、dnaN、trpEG的基因片段序列。每个地理种群随机抽取3~5个样本进行序列测定,以它们的一致序列为准。利用“BLAST”工具(NCBI站点)对测定的序列进行分析、DNA序列检索;用GenDoc软件进行序列同源性比较;用BioEdit软件进行序列编辑;用ClustalⅩ软件进行序列比对(alignment);比对结果输入MEGA2.0软件,采用距离法计算各样品间的遗传距离,并基于Kimura-2Parameter模型,用邻接法(Neighbor-Joining,NJ)构建系统发育树,通过自展1000次检验获得系统树分支的置信度。
     比较获得的这些基因序列,结果发现,四个地理种群的桃蚜的trpB、dnaN、trpEG基因序列差异很小;而桃蚜与豆蚜、桃蚜与棉蚜之间的trpB、dnaN、trpEG基因序列差异非常明显,豆蚜与棉蚜的这三段序列差异相对小一些。
     由trpB,dnaN、trpEG的基因片段序列构建的系统树可以发现,四个地理种群桃蚜的trpB、dnaN基因序列均处于同一支序,它们又与麦双尾蚜的相应基因序列形成一个分支,即桃蚜和麦双尾蚜的Buchnera的亲缘关系最近;并且桃蚜Buchnera的两个染色体基因trpB、dnaN的系统进化与其质粒基因trpEG的进化关系一致,即桃蚜的质粒基因trpEG可能随其Buchnera垂直传递。
     而豆蚜和棉蚜的trpB、dnaN基因序列总是处于一个支序,关系最近,但是豆蚜和棉蚜所在的这一亚支序的在系统树中的所处的分支变化不定,因此,我们只能认为豆蚜和棉蚜的Buchnera的亲缘关系最近,至于两者又与已知的其它何种蚜虫的Buchnera的亲缘关系最近不能确定。豆蚜和棉蚜的trpEG基因序列处于紧紧相邻的分支,并且这两个相邻的分支所处的大分支与trpB、dnaN基因序列所处的分支也不一样,所以它们的Buchnera trpEG基因是否随Buchnera垂直传递,则不能十分确定。
     四、蚜虫与其内共生菌Buchnera之间的系统进化关系分析
     蚜虫与其内共生菌Buchnera之间的系统进化关系研究很少,本研究通过比较桃蚜、豆蚜、棉蚜及其内共生菌Buchnera的系统进化特征,揭示了这三种蚜虫与其内共生菌Buchnera的系统进化关系。我们发现,桃蚜与其Buchnera的进化关系一致均与麦双尾蚜的亲缘关系最近,即桃蚜与其Buchnera是协同进化的。豆蚜、棉蚜与其内共生菌Buchnera可能不是严格协同进化的。所以我们认为不同蚜虫与其内共生菌Buchnera的进化关系可能不同,这一结论与前人的研究也是吻合的。这一工作不仅弥补了这三种蚜虫与其内共生菌Buchnera之间的进化关系空白,同时有助于我们在了解这些蚜虫Buchnera的系统进化特征的基础上,进一步全面地了解了这三种蚜虫的内共生菌Buchnera。
     综上所述,本研究首次对桃蚜、豆蚜、棉蚜内共生菌Buchnera的系统进化进行了报道,并初步探讨和分析了这三种蚜虫与其内共生菌Buchnera的系统进化关系,该工作对于我们进一步研究这些蚜虫Buchnera的其它特性以及这些蚜虫的次生共生菌都有重要的指导意义。
Almost all aphids maintain an endosymbiotic association with Buchnera aphidicola, aγ-proteobacterium closely related to Escherichia coll. The endosymbiont, harbored in host-derived vesicles within specialized cells known as bacteriocytes, is transmitted maternally, from mother aphid to progeny. The relationship between Buchnera and the aphid host is mutualistic because aphid needs B. aphidicola for its normal growth and reproduction whereas B. aphidicola cannot live outside the aphid. Molecular study found that Buchnera's genome is lessen, but the most amino acids synthetic genes are preserving.
     Because of the importance of Buchnera, many authors studied this symbiosis. Previous studies about Buchnera of some aphids by foreign authors only conferred some limited aphids, such as the genus Uroleucon sp., Acryrthosiphon pisum, Diuraphis noxia (Kurdj), Schizaphis graminum etc, but no Myzus persicae, Aphis craccivora and Aphis gossypii. And domestic studies about Buchnera of the three aphids were also few, and this study only conferred the two genes (groEL and 16srDNA) of Buchnera in M. persicae. The three aphids, which are abundant throughout China as well as worldwide, are polyphagous herbivores attacking many vegetables and crops such as cabbages, cucumber, eggplant, tomato, cucurbits, bean and so on. Because of the special relationships between aphids and the Buchnera, the studies on the Buchnera of the three aphids are necessary. Firstly, we explored the phylogenies of the three aphids, M. persieae, A. craccivora and A. gossypii and their endosymbiotic bacterium Buchnera respectively. Then we synthetically analysed phylogenetic relationships between those three aphids and their endosymbiotic bacterium Buchnera.
     1. The collection and rearing of experimental material
     We collected three aphids M. persicae, A. craccivora and A. gossypii, which are important pests. Those three aphids were then reared in the laboratory on radish, bean, cucumber respectively. For each population, at least two double-deck gauze cages (around 50cm×50cm×50cm) were setto rear the three aphids. And they were kept in a laboratory under controlled environmental conditions (20±2℃, 60-70% R.H., 16L-8D).
     2. The sequencing of mtDNA COⅠ/COⅡ, 12S/16SrRNA and nuclear gene EFalpha in the three aphids, and the phylogenetic analysis of the three aphids
     In this part of work, we amplified COⅠ/COⅡ, 12S/16SrRNA and EFalpha genes in four populations of M. persicae, Nanjing population A. craccivora and A. gossypii. Three to five individual specimens per population were cloned and sequenced and the standard sequences were their identical sequences.
     DNA sequences were submitted to the GenBank database and compared online with the published sequences by similarity search engines such as BLAST in NCBI Web, then calculated in GeneDoc and aligned using Clustal X computer program. Analysis of genetic and phylogenetic relationship was performed using MEGA2.0. Genetic relationships among every geographical population were estimated based on the pair-wise matrix of sequence divergences by Kimura-2 Parameter method. Phylogenefic trees were constructed by the Neighbor-Joining (NJ) method. Confidence levels for NJ tree were assessed by bootstrapping from 1000 pseudo-replications.
     Comparing the obtained sequences, we found that the COⅠ/COⅡ, 12S/16SrRNA and EFalpha genes sequences from the four populations M. persicae had very minor differences, and the similarities between the different two populations reached to 99%. And the similarities Of the COⅠ/COⅡ, EFalpha genes between M. persicae and A. gossypii were about 90%, those of the two genes between M. persicae and A. craccivora were near 85%、near 90% respectively, while the similarities of those genes between A. gossypii and A. craccivora were hyper-85%、near 93% respectively. But the similarities of the 12S/16SrRNA genes sequences in different two aphids reached to 95%.
     Through the phylogenetic trees constructed by the COⅠ/COⅡ, 12S/16SrRNA and EFalpha genes in M. persicae, we found that the COⅠ/COⅡand 12S/16SrRNA gene sequences in M. persicae were more closely related to those in D. noxia, while the EFalpha genes of M. persicae and D. noxia located in two neighboring branches, and the these genes sequences in A. gossypii and A. craccivora were all in the same clades. So we concluded that M. persicae and D. noxia were more close, and A. gossypii and A. craccivora were more close.
     3. The sequencing of trpB, dnaN, trpEG in Buchnera, and the phylogenetic analysis of Buchnera in the three aphids
     Firstly, we designed primers based on the nucleotide sequences from the currently known trpB, dnaN and trpEG sequences in Buchnera (isolated from Uroleucon. sp, A. pisum, D. noxia, S. graminum and R. padi), and amplified and sequenced these genes sequences of Buchnera from the three aphids, M. persicae, A. craccivora and A. gossypii. Three to five indiyidual specimens per population were cloned and sequenced and the standard sequences were their identical sequences.
     DNA sequences were submitted to the GenBank database and compared online with the published sequences by similarity search engines such as BLAST in NCBI Web, then calculated in GeneDoc and aligned using Clustal X computer program. Analysis of genetic and phylogenetic relationship, was performed using MEGA2.0. Genetic relationships among every geographical population were estimated based on the pair-wise matrix of sequence divergences by Kimura-2-Parameter method. Phylogenetic trees were constructed by the Neighbor-Joining (NJ) method. Confidence levels for NJ tree were assessed by bootstrapping from 1000 pseudo-replications.
     Comparing the obtained sequences, we found that the trpB, dnaN and trpEG sequences in Buchnera from the four populations M. persicae had very minor differences, but these sequences between M. persicae and A. craccivora, M. persicae and A. gossypii had major differences, and these differences were little minor between A. craccivora and A. gossypii.
     Through the phylogenetic trees constructed by this genes (trpB, dnaN and trpEG) in Buchnera, we found that the trpB, dnaN gene sequences in M. persicae were in the same clade with those in D. noxia, that is to say the Buchnera in M. persicae is more similar to the endosymbionts of D. noxia. Besides, the phylogenies of the trpB, dnaN genes of the Buchnera in M. persicae were accordant with that of the trpEG genes, so the plasmid genes trpEG genes of the Buchnera in M. persicae may be vertical transmission with Buchnera. And these genes sequences in A. gossypii and A. craccivora were all in the same clades, but the near clade to the sub-clade of the two aphids was variational. SO we only confirmed that the Buchnera in A. gossypii and A. craccivora were more close, but the conclusions that the Buchnera in these two aphids was close to that in which aphids and the transmission of the the plasmid genes trpEG of the Buchnera in these aphids could not be affirmed.
     4. Analysis of phylogenetic relationships between the aphids and their endosymbiotic bacterium Buchnera
     Studies about the phylogenetic relationships between aphids and their endosymbiotic bacterium Buchnera are few. In our present study, we explore phylogenetic relationships between the three aphids, M. persicae, A. craccivora and A. gossypii and their endosymbiotic bacterium Buchnera, by comparing the characteristics of the phylogenies of those aphids and their Buchnera. We found that M. persicae and D. noxia were coevolutional, but we cannot conclude the coevolutional relationships between the two aphids, A. gossypii and A. craccivora, and their Buchnera. So we conclude that phylogenetic relationships between different aphids and their endosymbiotic bacterium Buchnera may be different, and this conclusion is accordant with previous study. This work not only fill a gap on phylogenetic relationships between the three aphids, M. persicae, A. craccivora and A. gossypii and their endosymbiotic bacterium Buchnera, but also help us detailedly know the three aphids' Buchnera.
     As described above, these results first exposed the phylogeny of Buchnera in the three aphids, M. persicae, A. craccivora and A. gossypii. And these works also explored phylogenetic relationships between those three aphids and their endosymbiotic bacterium Buchnera. These works will be helpful for exploring other characteristics of those aphids' Buchnera and studying those aphids'secondary endosymbiosis.
引文
1.鲍蕾,牛翠娟,马蕊,等.四种臂尾轮虫线粒体COXI基因部分序列及系统发育关系.动物学研究,2003,24(3):200-204.
    2.卜云,郑哲民.COII基因在昆虫分子系统学研究中的作用和地位.昆虫知识,2005,42(1):18-22.
    3.彩万志.昆虫内共生物的功能及进化,昆虫知识,1990,27:55-58.
    4.蔡继峰,刘敏,应斌武,等.成都地区四种食尸蝇mtDNA中COI基因序列检测.昆虫学报,2005,48(1):101-106.
    5.彩万志,庞雄飞,花保祯,等.普通昆虫学,2001.
    6.崔晓峰,吴云锋,林林,等.桃蚜体内与病毒结合的共生菌Buchnera groEL基因的克隆和序列分析.中国病毒学,2002,17(1):69-72.
    7.单丽娜.线粒体DNA—COI、II基因序列在毛翅目成幼虫联系中的应用研究(南京农业大学博士论文),2001:14..
    8.丁锦华,苏建亚,等.农业昆虫学.北京:中国农业出版社,2001.
    9.冯得培等主编.《简明生物学词典》.上海:上海辞书出版社.1982.
    10.高辉华.昆虫体内的共生菌.昆虫知识,1988,25(6):361-367.
    11.龚鹏,沈佐锐,李志红.Wolbachia属共生细菌及其对节肢动物生殖活动的调控作用.昆虫学报,2002,45(2):241-252.
    12.何利娜.蚜总科内地位存疑姐妹群间的系统发育关系(陕西师范大学硕士论文),2002,1-10.
    13.黄原.分子系统学——原理、方法及应用.北京:中国农业出版社,1998.
    14.贾振宇,朱定良,庚镇成,等.中国大陆若干群体的黑果蝇的线粒体DNA多态性研究.动物学研究,1995,16(1):65-73.
    15.李献辉.黑豆蚜Aphis fabae Scopoli与其体内共生菌胞相互关系的生态学研究(南京农业大学硕士论文),2006..
    16.李正西,李定旭.桃蚜自然种群初级和次级共生菌的分子鉴定.昆虫学报,2005,48(5):810-814.
    17.刘殿锋,蒋国芳.核基因序列在昆虫分子系统学上的应用.动物分类学报,2005,30(3):84-92.
    18.陆剑,吕静,陈慧贤,等.戴灼华金色果蝇复合种(Drosophila auraria species complex)的分子系统学研究.遗传学报,2002,(1):39-49.
    19.吕仲贤,俞晓平,陈建明,等.共生菌在褐飞虱致害性变化中的作用.昆虫学报,2001,44: 197-207.
    20.苗雪霞,丁德诚.蚜虫与其胞内共生细菌的相互作用.生命科学,2003,15(4):242-247.
    21.邵红光,严健,庚镇城,等.新疆荒漠束颈蝗属及其近、远缘种的线粒体DNA RFLP与系统进化,昆虫学报,1999,42(2):132-139.
    22.谭周进,肖启明,谢丙炎,等.昆虫内共生菌研究概况.微生物学通报,2005,32(4):140-143.
    23.王静波,胡长龙,徐宏发.线粒体DNA(mtDNA)多态性在动物保护生物学中的应用.生物多样性,2001,9(2):181-187.
    24.王文,施立明.一种改进的动物线粒体提取方法.动物学研究,1993,14(2):197-198.
    25.王文,施立明.银额果蝇自然群体中的mtDNA多态性研究.科学通报,1993,38(12):1120-1124.
    26.王备新,杨莲芳.线粒体DNA序列特点与昆虫系统学研究.昆虫知识,2002,39(2):88-92.
    27.魏晓棠,权洁霞,张艺兵,陈长法,等.分子生物学技术在昆虫早期鉴定中的应用前景.检验检疫科学,2003,13(2):19-20.
    28.邢连喜,胡萃,程家安.四种白蚁的线粒体DNA限制性片段长度多态性研究.昆虫分类学报,,1999,21(3):181-185.
    29.杨子祥.五倍子蚜虫HomopteraAphididae的系统发育研究(中国林业科学院博士论文),2006,16-18.
    30.张大治,杨贵军,郑哲民.基于线粒体细胞色素b基因序列的蜻亚科部分种类分子系统学研究(蜻蜓目:蜻科).宁夏大学学报,2006,27(3):255-259.
    31.张广学,钟铁森.《中国经济昆虫志》同翅目:蚜虫类(一).科学出版社.1983.
    32.周建峰,王忠卫,吴清江.鲤鱼3个亚种线粒体DNA ND5-6区段的PCR-RFLP分析.科学通报,2003,48(2):167-170.
    33. Adams D, Wilkinson T L, Douglas A E. The aphid-bacterial symbiosis: a comparison between pea aphids and black bean.aphids. Ent ExpAppl, 1996, 80: 275-278.
    34. Arias M C, Sheppard W S. Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondria DNA sequence. Mol Phylo Evol, 1996, 3: 557-566.
    35. Artiss T, Schultz T R, Polhemus DA, et al. Molecular phylogenetic analysis of the dragonfly genera Libellula, Ladona, and Plathemis (Odonata: Libellulidae) based on mitochondrial Cytochrome Oxidase I and 16S rRNA sequence data. Mol Phylo Evol, 2001, 18(3):348--361.
    36. Baumann P, Baumann L. Growth kinetics if the endosymbiont Buchnera aphidicola in the aphid Schizaphis graminum. Appl Environ MicrobioI, 1994, 60:. 3440-3443.
    37. Baumann P, Baumann L, Lai C Y, et al. Genetics, physiology and evolutionary relationship s of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol, 1995, 49: 55-94.
    38. Baumann P, Moran N A, Baumann L. Bacteriocyte-associated endosymbionts of insects. In: Dworkin M, editor. The prokaryotes [online]. New York: Springer. Available: http: /link.springer.de/link/service/books/lOnS/, 2000.
    39. Bermingham E, Martin A P. Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America. Mol Ecol, 1998, 7 (4): 499-517
    40. Blattner F G? Plunkett G, Gloch C A, et al. The complete genome sequence of Escherichia coli K-12. Science, 1997, 277: 1453-1462.
    41. Bracho A M, Martinez-Torres D, Moya A, et al. Discovery and molecular characterization of p lasmid localized in Buchnera sp. Bacterial endosymbiont of the aphid Rhopalosiphon pad. J Mol Evol, 1995, 41: 67-73.
    42. Brehm A, Jesus J, Pinheiro M, Harris D J. Relationships of scincid lizards (Mabuya spp ; Reptilia : Scincidae) from the Cape Verde islands based on mitochondrial and nuclear DNA sequences. Mol Phylo Evol, 2001, 19 (2): 311-316.
    43. Brough C N, Dixon AF. Ultrastructural features of egg development in oviparae of the vetch aphid, Megoura viciae Buekton. Tissue Cell, 1990, 22: 51-63.
    44. Brower A V Z, Desalle R, Vogler A. Gene trees, species trees, and systematics: a cladistic perspective. Annu Rev Ecdl Syst, 1996, 27: 423-450.
    45. Brown B, Emberson R M, Paterson A M. Mitochondrial COI and II provide useful markers for Wlseana (Lepidoptera: Hepialidae) species identification. Bui Ent Res, 1999, 89; 287-293.
    46. Buchner P. Endosymbiosis of Animals with Plant Microorganism. New York: Interscience, 1965: 296-333.
    47. Burbrink F T, Lawson R, Slowinski J B. Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoletd): a critique of the subspecies concept. Evolution Int J Org Evolution, 2005, 4 (6): 2107-2118.
    48. Caterinom S, Cho S, Sperling A H. The current state of insect molecular systematics: A thriving tower of babel. Anriu Rev Entomol, 2000, 45: 1-54.
    49. Clark J W, Hossain S, Burnside C A, et al. Coevolution between a cockroach and its bacterial endosymbiont: a biogeographical perspective. Proc R Soc Lond Ser B, 2000a, 268: 393-398.
    50. Clark M A, Moran N A, Baumann P, et al. Cospeciation between bacterial endosymbionts {Buchnera) and a recent radiation of aphids (Uroleucori) and pitfalls of testing for phylogenetic congruence. Evol, 2000b, 54: 517-525.
    51. Coeur d' acier A, Jousselin E, Martin J-F, Rasplus J-Y. Phylogeny of the Genus Aphis Linnaeus, 1758 (Homoptera: Aphididae) inferred from mitochondrial DNA sequences. Mol Phylo Evol, 2006. online.
    52. Darby A C, Douglas A E. Elucidation of the transmission patterns of an insect-borne bacterium. Appl. Environ. Microbiol, 2003, 69: 4403-4407.
    53. Dadd R H, Krieger D L, Mittler T E. Studies in the artificial feeding of the aphid Myzus persicae. N. Requirements for water-soluble vitamins and ascorbic acid. J. Insect Physiol., 1967. 13: 249-272.
    54. Douglas A E. Sulphate utilization in an aphid symbiosis. Insect Biochem, 1988, 18: 599-605.
    55. Douglas A E. Mycetocyte symbiosis in insects. Bio Rev, 1989, 64: 409-434.
    56. Douglas A E. The nutritional quality of phloem sap utilized by natural aphid populations. Ecol Entomol, 1993, 18: 31-38.
    57. Douglas A E. Reproductive failure and the amino acid pools in pea aphids (Acyrthosiphon pisum) lacking symbiotic bacteria. J Insect Physiol, 1996, 42: 247-255
    58. Douglas A E. Nutritional interactions in insect-microbial symbioses; aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol, 1998, 64: 17-37.
    59. Douglas A E, Minto L B, Wilkinson T L. Quantifying, nutrient production by the microbial symbionts in an aphid. JExpBiol, 2001, 204: 349-358.
    60. Douglas A E, Prosser W A. Synthesis of the essential amino acid tryptophan in pea aphid (Acyrthosiphon pisum) symbiosis. J Insect Physiol, 1992, 38: 565-568.
    61. DixonA F. Aphid Ecology. Glasgow: Blackie, 1985, 23-35.
    62. Febvay G, Liadouze I, Guillaud J et al. Analysis of energetic amino acid metabolism in Acyrthosiphon pisum: a multidimensional approach to anuno acid metabolism in aphids. Arch. Insect Biochem Physiol, 1995, 29: 45-69.
    63. Felsenstein J. PHYLIP: Phylogeny Inference Programs, version 3.57. University of Washington, Seattle, 1995.
    64. Felsenstein J. Phylogenies from molecular sequence: inferences and reliability. Annu Rev Genet, 1988, 22: 521-565.
    65. Funk D J, Wernegreen J J, Moran N A. Intraspecific variation in symbiont genomes: bottlenecks and the aphid-Buchnera Association. Genetics, 2000, 157: 477-489.
    66. Gomi K, Gotoh T, Noda H. Wolbachia having no effect on reproductive incompatibility in Tetranychus kanzawai Kishida (Acari: Tetranychidae). Appl Entomol Zool, 1997, 32: 485-490.
    67. Griffiths G W, Beck S D. Intracelluar symbiotes of the pea aphid, Acyrthosiphon pisum. J Insect Physiol, 1973, 19: 75-84.
    68. Harada H, Ishikawa H. Gut microbe of aphid closely related to its intracellular symbiont. Biosystems, 1993, 31: 185-191.
    69. Havill N P, Foottit R G, von Dohlen C D. Evolution of host specialization in the Adelgidae (Insecta: Hemiptera) inferred from molecular phylogenetics. Mol Phylo Evol, 2007, online.
    70. Haynes S, Darby A, Daniell T, et al. Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol, 2003, 69: 7216-7223.
    71. HebertPDN, Ratnasingham S, Waard J R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R Soc. lnnd. B (Suppl.), 2003, 03BL0066. S1-6.
    72. Hinde R. The control of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae and Macrosiphum rosae. J Insect Physiol, 1971, 17: 1791-1800.
    73. Houk E J, Griffiths G W, Beck S D. Lipid metabolism in the symbiotes of the pea aphid, Acyrthosiphon pisum. Comp Biochem Physiol. B, 1976, 54: 427-431.
    74. Houk E J, Griffiths G W. Intracellular symbiotes of the Homoptera. Annu. Rev Entomol., 1980, 25: 161-187.
    75. Hsu R, Brisocoe A D, Changb S W, et al. Molecular evolution of a long wave length sensitive opsin inmimetic Heliconius butterflies (Lepidoptera: Nymphalidae). Biol J Linn Soci, 2001, 72: 435-449.
    76. Humphreys N J, Douglas A E. Partitioning of symbiotic bacteria between generations of an insect: a quantitative study of a Buchnera sp. in the pea aphid (Acyrthosiphon pisum) reared at different temperatures. App Environ Microbiol., 1997, 63: 3294-3296.
    77. Kambhampatis, Charltonre. Phylogenetic relationships among Libellula, Ladona and Plathemis (Odonata : Libellulidae) based on DNA sequence of mitochondrial 16S rRNA gene. Syst Entomol, 1999, 24: 37-49.
    78. Kjer K M, Blahnik R J, Holzenthal R W. Phytogeny of caddisflies (Insecta, Trichoptera). Zoolgica Scripta, 2002, 31 (1): 83-91.
    79. Kumar S, Tamura K, Nei M. MEGA: Molecular evolutionary genetics analysis, Ver. 1.01. Pennsylvania State University, University Park, PA, 1993.
    80. Kumar S, Tamura K, Jakobsen I B, Nei M. MEGA2: molecular evolutionary genetics analysia software. Arizona State University, Tempe, Arizona, USA, 2001.
    81. Lai C Y, Baumann L, Baumann P. Amplification of trpEG: adaptation of Buchndera aphidicola to an endosymbiotic association with aphids. Proc NatlAcad Sci USA, 1994, 91: 3819-3823.
    82. Lai C Y, Baumann P, Moran N A. Genetics of the tryptophan biosynthetic pathway of the tryp tophan biosynthetic pathway of the tryptophan biosynthetic pathway of the prokaryotic endosymbiont (Buchnera) of aphid Schlechtendalia chinensis. Insect Mol Biol, 1995, 4: 47-59.
    83. Lanham U N. The Blochmann bodies: hereditary intracellular symbionts of insects. Biol Rev Cambridge Philos Soc, 1968, 43: 269-286.
    84. Loshai G, Smithda S, Allenj A, et al. Incomplete sexual isolation in sympatry between subspecies of the butterfly Danaus chrysippus.(L.) and the creation of ahybrid zone. Heredity, 2003, 90(3):236-246..
    85. Maddison W P, Maddison D R. MacClade: analysis of phylogeny and character evolution, version 3.0. Sinauer Associates, MA, 1992.
    86, MasatoshiNei, SudhirKumar. 吕宝钏,钟扬,高莉萍等译.分子进化与系统发育.北京:高等教育出版社,2002,1-258.
    87. Miao X X, Gan M, Ding D C. The role of bacterial Symbionts in amino acid composition of black bean aphids. Entomol Sin, 2003, 10(3):167-171.
    88. Miao X X, HuangY P, Zhu X X, Ding D C. Appl Entomol Zool, 2004, 39(2): 243-248.
    89. Milbum N S. Fine structure of the pleomorphic bacteroids in the mycetocytes and ovaries of several genera of cockroaches. J Insect Physiol, 1966, 12:1245-1254.
    90. Monteiro A, Pierce N E. Phylogeny ofBicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-la gene sequences. MolPhylo Evol, 2001, 18(2):264-281.
    91. Moran N A, Kaplan M E, Gelsey M J, et al. Phylogenetics and evolution of the aphid genus Uroleucon based on mitochondrial and nuclear DNA sequences. System Entomol, 1999, 24:85-93.
    92. Muller V J. Untersuchungen zur Wirkung wechselnder Photoperi0den auf die Infektionsf0rmembildung der a-Symbionten yon Stenocranus minutus. Fabr Jahrb Abt Syst Oekol G Taere, 1973, 100:171-182.
    93. Munson M A, Baumann P. Molecular cloning and nucleotide sequence of a putative trpDC (F) BA operon in Buchnera aphidicola (endosymbiont of the aphid Schizaphis gram inum). J Bacteriol,1993, 175:6426-6432.
    94. Munson M A, Baumann P, Cark M A, et al. Evidence for the establishment of aphid eubacterium endosymbiosis in an ancestor offour aphid families. T Bacteriol, 1991, 173: 6321-6324.
    95. Nakabachi A, Ishikawa H. Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbioticbacteria, Buchnera. JInsectPhysiol, 1999, 45: 1-6.
    96. Ohtaka C, Ishikawa H. Effects of heat treatment on the symbiotic system of an aphid mycetocyte. Symbiosis, 1991, 11: 19-30.
    97. Peanacchio F, Fanti P, Falabella P, et al. Development and nutrition of the braconid wasp, Aphidius ervi in Aposymbiotic Host Aphids: Arch.Insect Biochem Physiol,1999, 40:53-69.
    98. Prosser W A, Douglas.A E. The aposymbiotic aphid: an analysis of chI0rtetracycline-treated pea aphid, Acyrthosiphonpisum. J Insect Physiol, 1991, 37:713-719.
    99. Raven J A. Phytophages of xylem and phloem: a comparison of plant sap-feeders. Adv Ecol Res, 1983, 13: 136-234.
    100. Reed R D, Sperling F A H. Interaction of process partitions in phylogenetic analysis: An example from the swallow tail butterfly Genus Papilio. Mol Biol Evol, 1999, 16 (2): 285-297.
    101. Regier J C, Fangq Q, Mitter C, et al. Evolution and phylogenetic utility of the period gene in lep idop tera. Mol Biol Evol, 1998, 15 (9): 1172-1182.
    102. Rosario G, Beatriz S-M, Vicente P-B et al.. Plasmids in the aphid endosymbiont Buchnera aphidicola with the smallest genomes. A puzzling evolutionary story. Gene, 2006, 370: 17-25.
    103. Sandstrom J P, Moran N A. How nutritionally unbalanced is phloem sap for aphids? Entomol Exp Appl, 1999, 91: 203-210.
    104. Sandstrom J P, Russell J A, White J P, Moran N A. Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol, 2001, 10: 217-228.
    105. Sandstrom J P, Telang A, Moran N A. Nutritional enhancement of host plants by aphids-a comparison of three aphid species on grasses. J Insect Physilol, 2000, 46: 33-40.
    106. Sasaki T, Aoki T, Hayashi H et al. Amino acid composition of the honeydew of symbiotic and aposymbiotic pea aphids Acyrthosiphon piston. J Insect Physiol, 1990, 36: 35-40.
    107. Sasaki T, Hayashi H, Ishikawa H. Growth and reproduction of the symbiotic and aposymbiotic pea aphids, Acyrthosiphon pisum maintained on artificial diets. J Insect Physiol, 1991, 37: 749-756.
    108. Shigenobu S, Watanabe H, Hattori M et al. Genome sequence of the endocellular bacterial symbiont ofaphids Buchnera sp.APS. Nature, 2000, 407 (7): 81-86.
    109. Shufran K A, Burd J D, Anstead J A, Lushai G. Mitochondrial DNA sequence divergence among greenbug (Homoptera: Aphididae) biotypes: evidence for host-adapted races. Insect Mol Biol, 2000, 9 (2): 279-284.
    110. Soler T, Latorre A, Sabater B, et al. Molecular characterization of the leucine plasmid from Buchnera aphidicola, primary endosymbiont of aphid Acyrthosiphon pisum. Curr Microbiol, 2000, 40 (4): 264-268.
    111. Swofford D L. PAUP: Phylogenetic analysis using Parsimony, version 4.0. Smithsonian Institute, Washington DC, 1997
    112. Vicente P-B, Amparo L, Rosario G, Andre's M. Comparative analysis of two genomic regions among four strains of Buchnera aphidicola, primary endosymbiont of aphids. Gene, 2005, 345: 73-80.
    113. Wahlberg N, Weingartner E, Nylin S. Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). Mol Phylo Evol, 2003, 28: 473-484.
    114. Walker J E, SarasteM, Gay N J. The uncoperon. Nucleotide sequence, regulationand structure of ATP-synthase. Biochim Biophys Acta, 1984, 768: 164-200.
    115. Wernegreen J J, Moran N A. Vertical transmission of biosynthetic plasmids in aphid endosyrnbionts (Buchnera). J Bacteriol, 2001, 183 (2): 785-790.
    116. Wilkinson T L. The elimination of intracellular microorganisms from insects: an analysis of antibiotic-treatment in the pea aphid (Acyrthosiphon piswn). Comp Biochem Physiol A, 1998, 119: 871-881.
    117. Wilkinson TL, AdamsD, MintoLB, Douglas A E. The impact of host plant on the abundance and function of symbiotic bacteria in an aphid. J Exp Biol, 2001, 204: 3027-3038.
    118. Wilkinson T L, Douglas A E. Aphid feeding, as influenced by the disruption of the symbiotic bacteria. J Insect Physiol, 1995, 4.1: 635-640.
    119. Wilkinson T L, Douglas A E. Why pea aphids (Acyrthosiphon piswn) lacking symbiotic bacteria have elevated levels of the amino acid glutamine. J Insect Physiol, 1995, 41: 921-927.
    120. Wilkinson T L, Douglas AE. The impact of aposymbiosis on amino acid metabolism of pea aphids. Entomol ExpAppl., 1996, 80: 279-282.
    121. Wilkinson T L, Douglas A E- Host cell allometry and regulation of the symbiosis between pea aphids, Acyrthosiphon piswn, and bacteria, Buchnera. J Insect Physiol., 1998, 44: 629-635.
    122. Wilkinson T L, Douglas A E. The assimilation and allocation of nutrients by symbiotic and aposymbiotic pea aphids, Acyrthosiphon piswn. Entomol ExpAppl., 1999, 91: 195-201.
    123. Wilkinson T L, Fukatsu T, Ishikawa H. Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon piswn (Hemiptera: Aphidoidea). Arthropod Structure&Development, 2003, 32: 241-245.
    124. Wilkinson T L, Ishikawa H. On the functional significance of symbiotic microorganisms in the Homoptera: a comparative study of Acyrthosiphon piswn and Nilaparvata lugens. Physiol Entomol, 2001, 26: 86-93.
    125. Xie L, Miao H, Hong X Y. The two-spotted spider mite Tetranychus urticae Koch and the carmine spider mite Tetranychus cinnabarinus (Boisduval) in China mixed in their Wolbachia phylogenetic tree. Zoota, 2006, 1165: 33-46.
    126. Zientz E, Silva F J, Gross R. Genome interdependence in insect-bacterium symbioses. Genome Biol, 2001, 2 (12): 1032.
    127. Zuckerkandi E, Paining L. Molecular disease, evolution and genie heterogeneity. In M. Kasha & B. Pullman eds. "Horizons in Biochemistry", Academic Press, New York, 1962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700