用户名: 密码: 验证码:
毛细管格栅空调系统的动态仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和人民生活水平的提高,空调能耗迅猛增加,传统空调采用温湿度耦合处理技术,消耗了大量高品位的能量,低碳经济催生低碳空调,毛细管格栅平面空调系统应运而生。
     毛细管格栅平面空调系统利用低温辐射技术,将温湿度分开来单独控制,实现了空调工程能源的梯级利用,使天然冷源、干燥地区蒸发冷源、工业废热、太阳能等能源在空调工程中应用变得更加可行。毛细管格栅平面空调系统是一种节能、舒适、节约空间、经济效益显著的空调末端系统。
     本文在分析毛细管格栅平面空调系统热过程的基础上,建立了毛细管格栅平面空调系统的动态数学模型,对毛细管格栅的传热影响因素、室内气流组织、空调负荷计算、室内设计参数、新风量及设计参数、空调热回收理论及装置结构等进行了研究。最后通过实验验证了理论分析结果的可靠性,为该空调形式的应用提供了可靠的理论和实践依据。具体内容包括:
     (1)从研究影响舒适性因素、舒适性指标入手,采用Fanger的热舒适指标作为判据,在舒适度和相对湿度相同的条件下,得出毛细管格栅平面空调室内设计温度比传统空调房间在冬季(夏季)供暖(冷)时低(高)1.6℃。
     (2)从分析毛细管格栅传热过程入手,建立了动态数学模型,并对热过程各阶段分别进行科学的简化,分段研究。
     (3)在理论研究的基础上,采用MATLAB软件通过编程、CFD计算模拟,找出了影响毛细管格栅的传热的因素;室内温度、速度、污染物浓度分布;得出了毛细管格栅空调系统负荷的计算方法。
     (4)建立室内湿平衡方程,分析了室内湿度的计算方法,给出了毛细管格栅平面空调新风量、新风参数及运行策略。
     (5)分析空调热回收传热过程,建立了间接蒸发板式热回收装置的数学模型,通过CFD模拟得出了合理的结构参数。
     (6)通过实验对以上理论及模拟结果进行验证,毛细管格栅散热、室内温度、速度以及污染物浓度场均很好的满足舒适性的要求,达到设计标准;通过搭建实验台,对间接蒸发板式热回收装置进行测试,测试表明,间接蒸发板式热回收装置回收效率夏季超过70%,冬季仅为显热热回收的状态下,热回收效率也在60%以上。并通过实验对热回收装置的换热单元数、新排风比等热回收装置参数进行了更好的优化。
With the advent of a new century and the rapid economic growth in China, energy problem has become the biggest obstacle in the development of our country, and the corresponding environmental problem limits our growth rate. Traditional air conditioning system based on the processing technique of coupling between temperature and humidity, it’s need more than 20℃chilled water to meet indoor environmental requirements, but in order to dehumidify, the chilled water must decline to 7℃, and most indoor heat exchange adopt convection heat transfer, those don’t accommodate the modern air conditioning request for energy saving, emission reduction and improving indoor comfortableness.
     Capillary grating plane air-conditioning system uses the low-temperature radiant technology, its temperature and humidity independent control, achieving grading utilization of energy and making natural cold source, evaporation source in the dry areas, industrial waste heat and solar energy apply to air conditioning engineering. Capillary grating plane is an air conditioning system terminal of energy conservation, comfort, space saving and remarkable economical benefits.
     In this paper, based on thermal process of capillary grating plane air-conditioning system, established its dynamical mathematical model, studied the influencing factors of its heat transfer, indoor airflow distribution, load calculation, indoor design parameters, fresh air volume and design parameters, air conditioning heat recovery theory and configuration. In the last, verified the reliability of theoretical analysis by experiment, providing reliable theory and practice evidences for the application of this air conditioning system. The contents include:
     (1) Beginning with studying factors of influencing comfortableness and comfort index, based on Professor Fanger thermal comfort index and in the same conditions on comfort and relative humidity, come to a conclusion that capillary grating plane air-conditioning system indoor design temperature is lower 1.6℃than traditional air conditioning system’s heating in winter and on the contrary in summer.
     (2) From the beginning with analyzing capillary grating plane heat-transfer process, established a dynamical mathematical model, simplified and studied its thermal process.
     (3) Based on theoretical research, found out the factors of influencing capillary grating plane heat transfer; indoor temperature, velocity and contaminant concentration distribution and the calculation method of capillary grating plane air conditioning load by MATLAB programming and CFD simulation.
     (4) Established indoor humidity equilibrium equation, analyzed the calculation method of indoor humidity and provided the method of ensuing the volume and parameters of fresh air of capillary grating plane air-conditioning system and its operation strategy.
     (5) Analyzed the heat-transfer process of air conditioning heat recovery, established the mathematical model of indirect evaporation plate heat recovery equipment and obtained its reasonable structural parameters by CFD simulation.
     (6)Above theories and simulated result were verified by experiment, capillary plane heat elimination, indoor temperature, velocity and contaminant concentration distribution all can be satisfied the comfortable request very well and came to the designing standard. By setting up laboratory furniture, tested indirect evaporation plate heat recovery equipment and manifested that its heat recovery efficiency could be more than 70% in summer and above 60% in winter, though it is only in the condition of sensible heat recovery. Optimized heat recovery equipment parameters of number of heat transfer unit, fresh air and exhaust air radio by experiment.
引文
[1]江亿.住宅节能[M].北京:中国建筑工业出版社, 2006
    [2]涂逢祥,王庆一.我国建筑节能现状及发展[J].保温材料与建筑节能,2004(7):40-42
    [3]钱以明.高层建筑空调与节能[M].上海:同济大学出版社,1990
    [4]江亿.温湿度独立控制空调系统[M].北京:中国建筑工业出版社,2005
    [5] Xiaoli Hao, Guoqiang Zhang, Youming Chen, et al. A combined system of chilled ceiling, displacement ventilation and desiccant dehumidification[J]. Building and Environment, 2006,41(10):1-11
    [6]王子介.低温辐射供暖与辐射供冷[M].北京:机械工业出版社,2004
    [7]杨芳.金属辐射冷却顶板的研究及其应用[D].长沙:湖南大学,2005
    [8]殷平,杨芳,刘敏.新型辐射板的研制[A] .2004全国暖通年会论文集.北京:中国建筑工业出版社,2004:224
    [9]Helmut E Feustel. Radiant cooling-a literature survey[I],http://www.buildfind.com, 2003-12-23
    [10] L.F.Schutrum, G.V.Parmelee, C.M.Humphreys. Heat exchangers in a ceiling panel heated room[G]// ASHRAE Trans, 2005,111: 197-204
    [11] T.C.Min. Natural convection and radiation in a panel heated room[G]//ASHRAE Trans,2008,114: 337-343
    [12]Lucia Laurent, Fulvio Marcotullio, Paolo Zazzini. A proposal For the Calculation of Panel Heating and Cooling System Based on the Transfer Function Method[G]//ASHRAE Trans, 2002 ,108:183-201
    [13]Yizai Xia, Stanley A. Mumma. Ceiling radiant cooling panels employing heat-conducting rails: deriving the governing heat transfer equations[G]//ASHRAE Trans,2006,112:34-41
    [14]I.B.Kilkis, et al.A simplified model for radiant heating and cooling panels[J]. Simulation Practice and Theory, 1994,2: 61-76
    [15] Richard K.Stand, Ph.D. Investagation of a condenser-linked radiant cooling system using a heat balance based energy simulation program[G]//ASHRAE, Trans,2003,109:647-655
    [16] Richard K.Stand, K.T.Baumgartner. modeling radiant heating and cooling systems: integration with a whole-building simulation program[J]. Energy and buildings, 2005, 37:389-397
    [17]Taeyeon Kim, Shinsuke Kato. Indoor cooling/heating load analysis based on coupled simulation of convection, radiation and HVAC control[J]. Building and environment, 2001, 36:901-908
    [18] Shuzo Murakami, Shinsuke Katoindoor. Climate design based on CFD coupled simulation of convection, radiation, and HVAC control for attaining a given PMV value[J]. Building and Environment, 2001, 36: 701-709
    [19] Corina stetiu. Energy and peak power savings potential of radiant cooling systems in US commercial buildings[J]. Energy and Buildings, 1999, 34: 127-138
    [20] Koichi Kitagawa, Norilo Komoda. Effect of humidity and small air movement on thermal comfort under a radiant cooling ceiling by subjective experiment[J]. Energy and Buildings, 1999, 34: 185-193
    [21]Jae-WeonJeong, Stanley A. Mumma. Ceiling radiant cooling panel capacity enhanced by mixed convection inmechanically ventilated spaces [J]. Applied Thermal Engineering, 2003 ,23: 2293-2306
    [22]Jae-WeonJeong, Stanley A. Mumma. Practical cooling capacity estimation model for a suspended metal ceiling radiant cooling panel [J]. Energy and Environment, 2006,41: 467-475
    [23]J.Miriel,LiSerres, A.Trombe. Radiant ceiling panel heating-cooling systems: experimental and simulated study of the perfoemances, thermal comfort and energy consumptions [J]. Applied Thermal Engineering, 2002,22: 1861-1837
    [24]AtilaNovoselace, JelenaSrebrice. A critical review on the performance and design of combined cooled ceiling and displacement ventilation systems [J]. Energy and Buildings, 2002,34:497-509
    [25]ChristopherL1Conroy, StanleyA.Mumma.Ceiling radiant cooling pan elsasaviable distributed parallel sensible cooling technology integrated with dedicated outdoor air systems [G]// ASHRAE Trans,2001,107 (1):571-579
    [26] Stanley A. Mumma, Jae-Weon Jeong. Direct digital temperature, humidity and condensate control for a dedicated outdoor air-ceiling radiant cooling panel system [G]// ASHRAE Trans, 2005, 111:547-558
    [27]Dennis L Loveday. Designing for thermal comfort in combined chilledceiling/displacement ventilation environments [G]//ASHRAE Trans,1998, 104:901-911
    [28] R.W.Kulpmann.Thermal comfort and air quality in rooms with cooled ceilings-results of scientific investigations[G]// ASHARE Trans,1999, 105(5):488-502
    [29] Stanley A. Mumma. Dedicated outdoor air system and desiccants [I]. Engineered Systems,http//:www.esmagazine.com, 2007-8-24
    [30]Morteza M.Ardehali,Nirvan G.Panah, Therodore F.Smith. Poof of concept modeling of energy transfer mechanisms for radiant conditioning panels[J].Energy conversion and Manfgement, 2004,45 :2005-2017
    [31]J.Miriel , L.Serres, A.Trombe. Radiant ceiling panel heating-cooling systems: experimental and simulated study of the perfoemances, thermal comfort and energy consumptions[J].Applied Thermal Engineering, 2002,22 :1861-1837
    [32]Aydin Misirlioglu,Ulgen Gulact. Low-energy cooling of rooms with chilled ceilings and ceiling-mounted devices[J].International journal of energy research, 2003,29 :763-779
    [33] D. A.麦金太尔.室内气候[M].龙惟定,等.译.上海:上海科学技术出版社, 1988
    [34] P. O. Fanger. Thermal comfort [M]. Robert E. Krieger Publishing Company, Malabar, FL, 1982
    [35]朱颖心.建筑环境学(第二版)[M].北京:中国建筑工业出版社,2005
    [36] Xiaoxiong Yuan, Qingyan Chen, Leon R Glicksman. A critical review of displacement ventilation [G]//ASHRAE Trans, 1998, 104: 78-90
    [37]J.Miriel, L.Serres, A.Trombe. Radiant ceiling panel heating-cooling systems: experimental and simulated study of the performances, thermal comfort and energy consumptions[J]. Applied Thermal Engineering, 2002, 22: 1861-1873
    [38]Ristto Kosonen, Freddie Tan. A feasibility of a ventilated beam system in the hot and humid climate: a case-study approach[J].Building and Environment , 2005,40: 1164-1173
    [39]Prapapong Vangtook, Surapong Chirarattananon. An experimental investigation of radiant cooling in hot humid climate[J].Energy and Buildings , 2006,38:273-285
    [40]Prapapong Vangtook, Surapong Chirarattananon. Application of radiant cooling as a passive cooling option in hot humid climate[J].Energy and Environment, 2007,42:543-556
    [41]Jae-Han Lim, Jae-Hun Jo, Yong-Yee Kim,et al. Application of the control methods for radiant floor cooling system in residential buildings[J].Energy and Environment , 2006,41:60-73
    [42]K.Nagano,T.Mochida. Experiments on thermal environmental design of ceiling radiant cooling for suprine human subjects[J].Energy and Environment, 2004,39:267-275
    [43]Doosam Song,Shinsuke Kato. Radiant panel cooling system with continuous natural cross ventilation for hot and humid regions[J].Energy and Buildings, 2004,36:1273-1280
    [44]J.Niu, J.v.d.Kooi, H.v.d.Ree. Energy saving possibilities with cooled-ceiling systems[J].Energy and Buildings, 1995,23:147-158
    [45] Stanley A. Mumma. DOAS and home security[G]// ASHRAE Trans, 2007,113 :86-91
    [46] Steven J. Emmerich, Tim McDowell. Initial evaluation of DV and DOAS for US commercial buildings[R], NISTIR- 7244, 2005
    [47] Kurt W. Roth, et al. Consumption characteristics of commercial building HVAC systems[M] ( Volume III). Energy Savings Potential. DOE, 2002
    [48] Stanley A. Mumma. Avoiding pitfalls[J]. IAQ Applications,2006,9:23-25
    [49] Stanley A. Mumma. DOAS and desiccants[J].Engineered System, 2007,33(11):12-13
    [50] Stanley A. Mumma. DOAS and homeland security system[J]. Engineered System, 2007,33 (6):33-35
    [51] Jae-Weon Jeong, Stanley A. Mumma. Designing a dedicated outdoor air system with ceiling radiant cooling panels[J]. ASHRAE Journal,2006,10:56-64
    [52] Stanley A. Mumma, Jae-Weon Jeong. Direct digital temperature, humidity, and condensate control for a dedicated outdoor air-ceiling radiant cooling panel system[G]// ASHRAE Trans. 2005,111:547-558
    [53] Dennis L Loveday. Designing for thermal comfort in combined chilled ceiling/displacement ventilation environments[G]// ASHRAE Trans. 1998 , 104 : 901-911
    [54]葛凤华.平均辐射温度与辐射供暖、辐射供冷[J] .吉林建筑工程学院学报, 2006, 23(2): 45-48
    [55]闫全英,齐正新,王威.天棚辐射供冷系统换热过程的研究[J] .建筑热能通风空调, 2004, 23(6): 13-19
    [56]闫全英,齐正新,王威.无保温楼板辐射供冷系统热过程的研究[J] .建筑热能通风空调, 2005, 24(1): 1-6
    [57]马景骏,孙丽颖.冷却顶板系统的热舒适性分析[J] .哈尔滨工程大学学报, 2001, 22(5):27-30
    [58]王智丽,周孝清.与独立新风相结合的冷却顶板的传热机制分析[J] .制冷空调与电力机械, 2005,26(102): 26-30
    [59]朱能,刘珊.置换通风与冷却顶板的热舒适性研究[J] .制冷学报, 2000,21 (4):: 64-70
    [60]那艳玲,涂光备,于松波,等.冷却顶板对置换通风系统的影响:CFD研究[J] .暖通空调, 2005, 35(1): 11-15
    [61]朱纪军,郭兵.顶板冷辐射加置换通风空调系统评价分析[J].能源工程,2007,26(4):70-72
    [62]周鹏.置换通风与冷却顶板[J].暖通空调,1998,28(5):1-5
    [63]薛红香.毛细管辐射空调系统的舒适性研究[D].济南:山东建筑大学大学,2009
    [64]L.Z.Zhang, J.L.Niu.Indoor humidity behaviors associated with decoupled cooling in hot and humid climates[J].Building and Environment, 2003,38:99-107
    [65]L.Z.Zhang, J.L.Niu. A pre-cooling munters environmental control desiccant cooling cycle in combination with chilled-ceiling panels[J]. Energy, 2003,28:275-292
    [66]C.L.Conroy,S.A. Mumma.Ceiling radiant cooling panels as a viable distributed parallel sensible cooling technology integrated with dedicated outdoor air systems.[G]// ASHRAE Trans. 2001 , 107:578-585
    [67]张燕,丁云飞.太阳能液体除湿处理热湿地区冷却顶板新风湿负荷[J] .建筑科学, 2006, 22(3):70-74
    [68]李银明,黄翔.西北地区蒸发冷却、辐射吊顶系统的顶棚送风方式[J] .制冷与空调, 2005, 5(3):44-47
    [69]李银明,黄翔.蒸发冷却与冷却吊顶相结合的半集中式空调系统的探讨[J] .流体机械, 2005, 33(1):: 5 6-59
    [70]谭礼保,李强民.夏季湿热地区置换通风和冷却顶板复合系统节能潜力研究[J] .暖通空调, 2006, 36(12):104-108
    [71]熊帅,汤广发,杨光,等.辐射冷吊顶、独立新风系统的技术研究与可行性分析[J] .制冷与空调, 2006, 6(4):34-38
    [72]丁云飞,丁静,王卓越,等.除湿转轮处理冷却顶板空调系统的湿负荷[J] .华南理工大学学报(自然科学版), 2004, 32(3):1 0-14
    [73]朱能,田喆,马九贤.冷天花冷却顶板热工性能分析[J] .制冷学报, 2000, 21(3): 19-28
    [74]陈启,马一太.辐射顶板空调系统的优势[J] .节能技术, 2005, 23(129): 40-43
    [75]田喆,彭鹏,周志雄,等.冷却顶板的测试标准及相应的实验研究[J] .建筑热能通风空调, 2004, 123(2):: 8 7-91
    [76]田喆,朱能,涂光备.冷却顶板系统应用中的一些问题[J] .暖通空调, 2004, 34(3): 73-76
    [77]苏夺,陆琼文.辐射空调方式及其发展方向[J] .制冷空调与电力机械, 2005, 24(93): 26-30
    [78]王晋生.加装长波高透过性薄膜的冷却顶板置换通风系统实验与模拟[D] .上海:同济大学, 2005
    [79]肖益民,付祥钊.冷却顶板空调系统中用新风承担湿负荷的分析[J] .暖通空调, 2002, 32(3): 15-17
    [80]孙丽颖,马最良.冷却吊顶供水方式对系统运行能耗的影响[J] .暖通空调, 2003, 33(1): 107-109
    [81]狄洪发,王威,江亿,等.辐射吊顶的实验研究[J] .暖通空调, 2000, 30(4): 5-8
    [82]纪秀玲,李国忠,戴自祝.室内热环境舒适性的影响因素及预测评价研究进展[J].卫生研究,2003,32(3):295-298
    [83] ISO7730. Moderate thermal environment determination of the PMV and PPD indices and specification of the conditions for thermal comfort[S]. Geneva: International Standard Organization, 1984
    [84] ASHRAE.ANSI/ASHRAE 55-1992.Thermal environmental conditions for human occupancy[S]. Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc, 1992
    [85] P. O. Fanger. Thermal comfort [M]. Robert E. Krieger Publishing Company, Malabar, FL, 1982
    [86] B.H.巴格斯罗夫斯基.建筑热物理学[M].北京:中国建筑工业出版社,1988
    [87]邹平华,赵丽娜,刘孟军.辐射采暖房间维护结构表面角系数的计算[J].建筑热能通风空调,2005,24(3):1-4
    [88] Mcintyre. Indoor climate [M]. London: Applied Science Publisher, 1980
    [89]陆亚俊,马最良,邹平华.暖通空调[M].中国建筑工业出版社, 2007
    [90]Stanley A.Mumma.Chilled ceilings in parallel with dedicated outdoor air systems: addressing the concerns of condensation, capacity, and cost[G]// ASHRAE Trans, 2002,108(2):1-12
    [91]周兴红.低温地板辐射采暖数值模拟及其性能分析[D].南京:南京理工大学,2004
    [92]苗常海.地板辐射采暖节能机理研究及设计软件[D].天津:天津大学,2004 [93吴望一.流体力学[M].北京:北京大学出版社,1982
    [94]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1999
    [95]章熙民,任泽霈,梅飞鸣.传热学(第三版)[M].北京:中国建筑工业出版社,1993
    [96]贾力,方肇洪,钱兴华.高等传热学[M].北京:高等教育出版社,2003
    [97]王海霞.板式地板辐射采暖传热性能的研究[D].天津:天津大学,2005
    [98]GB50019-2003,供热通风及空调工程设计规范[S].北京:中国计划出版社,2003
    [99]刘学来.建筑热桥内表面温度的计算及外保温措施[D].西安:西安建筑科技大学,2004
    [100]陆耀庆.实用供热空调设计手册[M].北京:中国建筑工业出版社,2008
    [101]张兰双.低温热水地板辐射采暖系统传热分析计算[D].大庆:大庆石油学院,2006
    [102]杨世铭,陶文铨.传热学(第三版) [M].北京:高等教育出版社,1998
    [103]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2003
    [104]陶文铨.计算流体力学与传热学[M].北京:中国建筑工业出版社, 1991
    [105]刘学来,李永安.低温热水地板辐射采暖快速水力计算表[J].华中科技大学学报(城市科学版)2002,19(3):37-39
    [106]刘学来,马玉奇,李永安,等.毛细管平面空调系统的火用分析[J].山东建筑大学学报,2009,24(1):69-72
    [107]张川燕,王子介.辐射供冷地面对围护结构内表面温度及室内热舒适的影响[J].建筑科学,2008,24(10):79-84
    [108] M.F Brunk. Cooling ceilings-an opportunity to reduce energy costs by way of radiant cooling[G]// ASHRAE Trans1993 ,99(2):479-487
    [109]赵荣义,范存养,薛殿华,等.空气调节[M].北京:中国建筑工业出版社,1998
    [110] GB50189-2005.公共建筑节能设计标准.北京:中国建筑工业出版社,2006
    [111]刘栓强,刘晓华,江亿.温湿度独立控制空调系统中独立新风系统的研究[J].暖通空调,2010,40(12):85-90
    [112]刘学来,薛红香,李永安,等.毛细管平面辐射空调房间室内计算温度研究[J].煤气与热力,2010,30(3):A24-A29
    [113]王建奎,陆麟,曾宪纯.温湿度独立控制系统中最小新风量计算方法研究[J].暖通空调,2010,40 (1): 29-32
    [114]热泵式溶液调湿新风机组http://www.sinorefine.com.cn/product_p_HVF.asp ,2009-8-18
    [115]Cussler, L. H. Diffusion mass transfer in fluid system[M]. London: London Cambridge University Press,1997
    [116]W. M.罗森诺,等.传热学应用手册(上册)[M].谢力,译.北京:化学工业出版社,1988
    [117]崔新阳.毛细管平面空调系统的热工特性及水力计算方法的研究[D].济南:山东建筑大学大学,2010
    [118]顾浩.毛细管平面辐射空调系统的设计研究[D].济南:山东建筑大学大学,2010
    [119]马玉奇.基于遗传算法的冷却/供暖顶板空调系统研究[D].济南:山东建筑大学大学,2008
    [120]陈恒亮.横流板式间接蒸发热回收装置的研究[D].济南:山东建筑大学大学,2008
    [121]邢滕.空调用湿式热回收装置性能研究[D].济南:山东建筑大学大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700