用户名: 密码: 验证码:
基于非等温模型的LED效率衰落及芯片结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaN基发光二极管(LED)具有节能、高效、体积小、寿命长等优点,已经被广泛用于全彩色显示、固体照明、光存储、通讯等领域,具有很大的商机潜力。目前正朝着大功率、高性能的方向发展。然而,随着注入电流的升高LED的内量子效率会逐渐下降,称为效率衰落效应,导致LED在大电流情况下性能显著降低,严重阻碍了大功率LED的发展与应用。因此,挖掘效率衰落效应的物理机制,改善效率衰落效应,提高大功率LED的发光效率,是研究者面临的重大课题。为深入理解效率衰落效应的物理机制,试图提高LED发光效率,本文揭示了LED性能与芯片非等温效应之间的依变关系,并在此指导下提出了几种新型LED芯片结构,在一定程度上改善了LED的效率衰落效应,提高了LED的发光效率。主要包括以下内容:
     首先建立了LED的非等温多物理场耦合模型,精细刻画了芯片的内热源和温度场分布,发现内热源分布是不均匀的,并且以焦耳热和非辐射复合热为主,汤姆逊热和帕尔帖热的贡献很小可忽略。内热源主要集中在量子阱内,产生电流拥塞效应。分析了LED芯片内部热源、温度场与其性能之间的依变关系,指出了等温模型在预测芯片性能时的局限性。俄偈复合所产生的复合热不是内热源的主要贡献,基本可忽略不计。电子漏电流和俄偈复合是导致效率衰落效应的主要原因。为提高LED的量子效率,改善效率衰落效应,本文在非等温模型的基础上提出了几种LED新结构,主要包括:多势垒结构电子阻挡层、锯齿形电子阻挡层、梯形电子阻挡层、耦合插入层电子阻挡层、In组分梯度渐变活性区、渐变尾垒结构。
     多势垒结构电子阻挡层的引入显著提高了芯片的内量子效率,使效率衰落度显著降低了12.85%,并在提高发光复合率的同时,保证了芯片的热稳定性与发光稳定性。通过优化电子阻挡层中的各项参数大大提高了LED内量子效率。提出的AlGaInN电子阻挡层耦合插入InGaN层结构,以及锯齿形电子阻挡层结构,可显著改善LED发光效率。原因是此两种结构的引入,不仅增强了对电子的限制能力,还增加了空穴的注入率,也使活性区中的极化电场减小,减弱了量子限制斯塔克效应。还提出了In浓度梯度升高InxGa1-xN势垒活性区及A1组分渐变AlxGa1-xN尾垒结构。研究发现,In浓度梯度升高的InxGa1-xN势垒改善了活性区最后两个量子阱附近的能带结构,增强了电子阻挡层抑制电子漏电流的有效势垒高度,增强了对电子的限制能力,也提高了空穴从p型区注入活性区的注入率。Al组分渐变AlxGa1-xN尾垒结构使最后一个势垒与电子阻挡层界面处,极化效应诱导的能带弯曲得到显著改善,因此提高了电子阻挡层的有效势垒高度,增强了对电子从活性区溢出到p型区的限制能力,使内量子效率和发光功率都得到提高。
GaN-based light-emitting diode (LED) has attracted much attention in recent years owing to their low energy consumption, high efficiency, compact size, and long life time. Their applications include full-color display, solid-state lighting, optical storage, and mobile platform etc. The injection current of LED increases with illumination intensity increased. However, when injection current increases in GaN-based LED, there exists a phenomenon called "efficiency droop" that is the internal quantum efficiency is reduced with the injection current increased, especially at high injection current density. It forms the obstacle to develop high power and high performance LED. Though a few explanations have been proposed, the mechanism of efficiency droop is still under debate now. Consequently, to clarify the origin mechanism of efficiency droop and improve the efficiency of high power LED becomes a significant issue for researchers. In this paper, the relationship between the self-heating effect and the LED's performance was investigated to understand the mechanism of efficiency droop better, then based on the results several new LED structures were proposed to improve the efficiency droop. The main contents are as follows:
     A non-isothermal multi-physics coupling model for LED was proposed, the temperature field and internal heat source are elaborately described. It is found that, the Joule heat and recombination heat contribute the major part of the whole heat generation, the Thomson heat and Peltier heat can be neglected. The internal heat source is accumulated in the quantum wells and the last quantum well has the highest heat source intensity, which causes the current crowding effect. The relationship between the self-heating effect and the performance of LED was analyzed, then the limitation of the isothermal model for predicting LED's performance was proposed. Auger recombination heat is not the major contributor for internal heat source and it can be neglected. Increasing Auger recombination rate causes little chip temperature change. Electron leakage and Auger recombination are the main responsible mechanisms for efficiency droop. Based on the above, multi-quantum barrier electron blocking layer, sawtooth shaped electron blocking layer, trapezoidal electron blocking layer, AlGalnN electron blocking layer coupled with inserting InGaN layer, gradually increased In-composition InxGa1-xN barriers, and last AlGaN barrier with graded Al composition are proposed to improve the LED efficiency.
     Introducing an AlxGa1-xN/GaN multi-quantum barrier electron blocking layer structure can increase the internal quantum efficiency markedly. The degree of efficiency droop is significantly decreased, ensuring the light output stability and thermal stability of LED simultaneously. The performance of LED was improved significantly by optimizing the structure parameters of electron blocking layer. It is due to the modified energy band diagrams which are responsible for the enhanced carrier concentration in the active region. The proposed sawtooth shaped electron blocking layer and AlGaInN electron blocking layer coupled with inserting InGaN layer can improve the output power performance of LED significantly, which can be explained by the reduced electron leakage and enhanced hole injection efficiency, as well as alleviated electrostatic fields in the quantum wells. The gradually increased In-composition InxGa1-xN barriers and last AlGaN barrier with graded Al composition were also proposed. It is found that, the output power was increased by28%for the LED with gradually increased In-composition InxGa1-xN barriers when compared with the conventional GaN barrier LED at180mA. The improved performance is caused by the enhanced electron confinement and increased hole injection efficiency. The efficiency droop is markedly improved and the output power is greatly enhanced when the conventional GaN last barrier is replaced by AlGaN barrier with Al composition graded linearly from0to15%in the growth direction. These improvements are attributed to enhanced efficiency of electron confining and hole injection caused by the less polarization effect at the last-barrier/electron blocking layer interface when the graded Al composition last barrier is used.
引文
[1]F.A. Ponce, D.P. Bour. Nitride-based semiconductors for blue and green light-emitting devices. Nature 1997,386(27):351-359.
    [2]S. Nakamura. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 1998,281(14):956-962.
    [3]T.Fujii, Y. Gao, R. Sharma, et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett.2004, 84(6):855-857.
    [4]E.F. Schubert, J.K. Kim. Solid-state light sources getting smart. Science 2005, 208(27):1274-1278.
    [5]M.S. Shur. Solid-state lighting:toward superior illumination. Proc. IEEE 2005, 93:1691-1703.
    [6]H. Hirayama. Quaternary InAlGaN-based high-efficiency ultraviolet light emitting diodes. J. Appl. Phys. Lett.2005,97:091101.
    [7]E.F. Schubert, Light-emitting diodes. New York:Cambridge University Press, 2006.
    [8]Y. Taniyasu, M. Kasu, T. Makimoto. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006,441(18):325-328.
    [9]M.R. Krames, O.B. Shchekin, R. Mueller-Mach, et al. Status and future of high-power light-emitting diodes for solid-state lighting. IEEE J. Display Technol. 2007,3:160-175.
    [10]R.D. Dupuis, M.R. Krames. History, development, and applications of high-brightness visible light-emitting diodes. J. Lightwave Technol.2008,26(9): 1154-1171.
    [11]A. Khan, K. balakrishnan, T. katona. Ultraviolet light-emitting diodes based on group three nitrides. Nature Photonics 2008,2:77-84.
    [12]M.H. Crawford. LEDs for solid-state lighting:performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron.2009,15:1028-1040.
    [13]S. Pimputkar, J. S. Speck, S. P. DenBaars, et al. Prospects for LED lighting. Nature Photonics 2009,3:180-182.
    [14]C.J. Weng. Advanced thermal enhancement and management of LED packages. International Communications in Heat and Mass Transfer 2009,36:245-248.
    [15]N. Horiuchi. Natural white light. Nature Photonics 2010,4:738-738.
    [16]A. Laubsch, M. Sabathi, J. Baur, et al. High-power and high-efficiency InGaN-based light emitters InGaN-based light emitters, IEEE Trans. Electron Devices 2010,57:79-87.
    [17]U. Ozgur, H. Liu, X. Li, et al. GaN-based light-emitting diodes:efficiency at high injection levels. Proceedings of the IEEE 2010,98(7):1180-1196.
    [18]X. Ni, X. Li, J. Lee, et al. Pivotal role of ballistic and quasi-ballistic electrons on LED efficiency. Superlattices and Microstructures 2010,48:133-153.
    [19]T. Cheng, X.B. Luo, S. Huang, et al. Thermal analysis and optimization of multiple LED packaging based on a general analytical solution. International Journal of Thermal Sciences 2010,49:196-201.
    [20]S.P. DenBaars, D. Feezell, K. Kelchner, et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Materialia 2013,61:945-951.
    [21]M.H. Kim, M.F. Schubert, Q. Dai, et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett.2007,91:183507.
    [22]M.F. Schubert, J. Xu, J.K. Kim, et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl. Phys. Lett.2008,93:041102.
    [23]J. Xu, M.F. Schubert, A.N. Noemaun, et al. Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes. Appl. Phys. Lett.2009, 94:011113.
    [24]K.J. Vampola, M. Iza, S. Keller, et al. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Appl. Phys. Lett.2009,94:061116.
    [25]J. Piprek, S. Li. Electron leakage effects on GaN-based light-emitting diodes. Opt. Quant. Electron 2010,42:89-95.
    [26]A. Mao, J. Cho, E.F. Schubert, et al. Reduction of efficiency droop in GaInN/GaN light-emitting diodes with thick AlGaN cladding layers. Electronic Materials Letters,2012,8(1):1-4.
    [27]Y.C. Shen, G.O. Mueller, S. Watanabe, et al. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett.2007,91:141101.
    [28]N.F. Gardner, G.O. Muller, Y.C. Shen, et al. Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2. Appl. Phys. Lett.2007,91:243506.
    [29]K.T. Delaney, P. Rinke, C.G. Van de Walle. Auger recombination rates in nitrides from first principles. Appl. Phys. Lett.2009,94:191109.
    [30]J.R. Chen, Y.C. Wu, S.C. Ling, et al. Investigation of wavelength-dependent efficiency droop in InGaN light-emitting diodes. Appl. Phys. B,2010,98: 779-789.
    [31]E. Kioupakis, P. Rinke, K.T. Delaney, et al. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett.2011, 98:161107.
    [32]K.A. Bulashevich, S.Y. Karpov. Is Auger recombination responsible for the efficiency rollover in Ⅲ-nitride light-emitting diodes? Phys. Status Solidi C 2008, 5(6):2066-2069.
    [33]S.H. Yen, M.C. Tsai, M.L. Tsai, et al. Theoretical investigation of Auger recombination on internal quantum efficiency of blue light-emitting diodes. Appl. Phys. A 2009,97:705-708.
    [34]R. Vaxenburg, E. Lifshitz, A.L. Efros. Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes. Appl. Phys. Lett.2013, 102:031120.
    [35]I.V. Rozhansky, D.A. Zakheim. Analysis of dependence of electroluminescence efficiency of AlInGaN LED heterostructures on pumping. Phys. Status Solidi C 2006,3:2160-2164.
    [36]I.V. Rozhansky, D.A. Zakheim. Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping. Phys. Status Solidi A 2007,204: 227-230.
    [37]J. Xie, X. Ni, Q. Fan, et al. On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers. Appl. Phys. Lett.2008,93:121107.
    [38]X. Ni, Q. Fan, R. Shimada, et al. Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells. Appl. Phys. Lett.93 (2008),171113.
    [39]S.H. Han, D.Y. Lee, S.J. Lee, et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett.2009,94:231123.
    [40]C.H. Wang, C.C. Ke, C.Y. Lee, et al. Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer. Appl. Phys. Lett.2010,97:261103.
    [41]S.H. Han, C.Y. Cho, S.J. Lee, et al. Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes. Appl. Phys. Lett.2010,96:051113.
    [42]L.B. Chang, M.J. Lai, R.M. Lin, et al. Effect of electron leakage on efficiency droop in wide-well InGaN-based light-emitting diodes. Appl. Phys. Express 2011, 4:012106.
    [43]S.J. Chang, S.F. Yu, R.M. Lin, et al. InGaN-based light-emitting diodes with an AlGaN staircase electron blocking layer. IEEE Photon. Technol. Lett.2012, 24(19):1737-1740.
    [44]Y.K. Kuo, S.H. Horng, S.H. Yen, et al. Effect of polarization state on optical properties of blue-violet InGaN light-emitting diodes. Appl. Phys. A 2010,98: 509-515.
    [45]M.F. Schubert, E.F. Schubert. Effect of heterointerface polarization charges and well width upon capture and dwell time for electrons and holes above GaInN/GaN quantum wells. Appl. Phys. Lett.2010,96:131102.
    [46]M.C. Tsai, S.H. Yen, S.H Chang, et al. Effect of spontaneous and piezoelectric polarization on optical characteristics of ultraviolet AlGaInN light-emitting diodes. Optics Communications 2009,282:1589-1592.
    [47]J. Xu, M.F. Schubert, D. Zhu, et al. Effects of polarization-field tuning in GaInN light-emitting diodes. Appl. Phys. Lett.2011,99:041105.
    [48]J.H. Son, J.L. Lee. Numerical analysis of efficiency droop induced by piezoelectric polarization in InGaN/GaN light-emitting diodes. Appl. Phys. Lett. 2010,97:032109.
    [49]M.H. Kim, W. Lee, D. Zhu, et al. Partial polarization matching in GaInN-based multiple quantum well blue LEDs using ternary GaInN barriers for a reduced efficiency droop. IEEE J. Sel. Top. Quantum Electron.2009,15(4):1122-1127.
    [50]Y.K. Noh, M.D. Kim, J.E. Oh. Reduction of internal polarization fields in InGaN quantum wells by InGaN/AlGaN ultra-thin superlattice barriers with different indium composition. J. Appl. Phys.2011,110:123108.
    [51]H.Y. Ryu. Effect of internal polarization fields in InGaN/GaN multiple-quantum wells on the efficiency of blue light-emitting diodes. Jpn. J. Appl. Phys.2012,51: 09MK03.
    [52]S.H. Han, D. Y. Lee, J. Y. Lim, et al. Effect of internal electric field in well layer of InGaN/GaN multiple quantum well light-emitting diodes on efficiency droop. Jpn. J. Appl. Phys.2012,51:100201.
    [53]Y.K. Kuo, J.Y. Chang, M.C. Tsai, et al. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers. Appl. Phys. Lett.2009,95:011116.
    [54]Y.K. Kuo, T.H. Wang, J.Y. Chang, et al. Advantage of InGaN light-emitting diodes with GaN-InGaN-GaN barriers, Appl. Phsy. Lett.2011,99:091107.
    [55]Y.K. Kuo, T.H. Wang, J.Y Chang. Advantages of blue InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers, Appl. Phys. Lett.2012,100:031112.
    [56]Z.G. Ju, W. Liu, Z.H. Zhang, et al. Improved hole distribution in InGaN/GaN light-emitting diodes with graded thickness quantum barriers. Appl. Phys. Lett. 2013,102:243504.
    [57]A. David, M.J. Grundmann, J.F. Kaeding, et al. Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett.2008, 92:053502.
    [58]C.H. Wang, J.R. Chen, C.H. Chiu, et al. Temperature dependent electroluminescence efficiency in blue InGaN-GaN light emitting diodes with different well widths. IEEE Photon. Technol. Lett.2010,22:236-238.
    [59]J. Wang, L. Wang, W. Zhao, et al. Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization. Appl. Phys. Lett.2010,97:201112.
    [60]T. Mukai, M. Yamada, S. Nakamura. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn. J. Appl. Phys.1999,38: 3976-3981.
    [61]Y. Yang, X.A. Cao, C. Yan. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes. IEEE Trans. Electron Devices 2008,55(7):1771-1775.
    [62]R. Jiang, H. Lu, D.J. Chen, et al. Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes. Chin. Phys. B 2013,22(4): 047805.
    [63]B. Monemar, B.E. Sernelius. Defect related issues in the "current roll-off'in InGaN based light emitting diodes. Appl. Phys. Lett.2007,91:181103.
    [64]N.I. Bochkareva, Ⅴ.Ⅴ. Voronenkov, R.I. Gorbunov, et al. Defect-related tunneling mechanism of efficiency droop in Ⅲ-nitride light-emitting diodes. Appl. Phys. Lett.2010,96:133502.
    [65]S.K. Lee, H.S. Lim, J.H. Lee, et al. Correlation between defect properties and internal quantum efficiency in blue-emitting InGaN based light emitting diodes. J. Appl. Phys.2012,111:103115.
    [66]M.F. Schubert, S. Chhajed, J.K. Kim, et al. Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett.2007,91: 231114.
    [67]K. Akita, T. Kyono, Y. Yoshizumi, et al. Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates. J. Appl. Phys.2007,101:033104.
    [68]Q. Dai, M. F. Schubert, M. H. Kim, et al. Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities. Appl. Phys. Lett.2009,94:111109.
    [69]Y.L. Li, Y.R. Huang, Y.H. Lai. Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness. Appl. Phys. Lett.2007,91:181113.
    [70]J.H. Son, J.L. Lee. Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes. Opt. Express 2010,18:5466-5471.
    [71]H.P. Zhao, G.Y. Liu, J. Zhang, et al. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells, Opt. Express 2011,19:A991-A1007.
    [72]A.A. Efremov, N.I. Bochkareva, R.I. Gorbunov, et al. Effect of the Joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors 2006,40:605-610.
    [73]Y.X. Chen, G.D. Shen, W.L. Guo, et al. Internal quantum efficiency drop induced by the heat generation inside of light emitting diodes (LEDs). Chin. Phys. B.2011,20:017204.
    [74]H. Zhao, G. Liu, R.A. Arif, et al. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid-State Electronics 2010,54:1119-1124.
    [75]H. Zhao, G. Liu, J. Zhang, et al. Analysis of internal quantum efficiency and current injection efficiency in Ⅲ-nitride light-emitting diodes. J. Disp. Technol. 2013,9(4):212-225.
    [76]J. Piprek. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 207,2010,2217-2225.
    [77]C. Huh, W.J. Schaff, L.F. Eastman, et al. Temperature dependence of light-output performance of InGaN/GaN multiple-quantum well light-emitting diodes with various In compositions. Proc. SPIE 2004,5187:330-335.
    [78]H.K. Lee, J.S. Yu. Thermal analysis of InGaN/GaN multiple quantum well light emitting diodes with different mesa sizes. Jnp. J. Appl. Phys.2010,49:04DG11.
    [79]H.K. Lee, J.S. Yu, Y.T. Lee. Thermal analysis and characterization of the effect of substrate thinning on the performances of GaN-based light emitting diodes. Phys. Status Solidi A 2010,207:1497-1504.
    [80]H.K. Lee, D.H. Lee, Y.M. Song, et al. Thermal measurements and analysis of AlGaInP/GaInP MQW red LEDs with different chip sizes and substrate thicknesses. Solid-State Electronics 2011,56:79-84.
    [81]D.H. Lee, H.K. Lee, J.S. Yu, et al. Temperature and thermal characteristics of InGaN/GaN vertical light-emitting diodes on electroplated copper. Semicond. Sci. Technol 2011,26:055014.
    [82]Y.K. Kuo, M.C. Tsai, S.H. Yen. Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electron-blocking layer. Optics Communications 2009,282:4252-4255.
    [83]S. Choi, H.J. Kim, S.S. Kim, et al. Improvement of peak quantum efficiency and efficiency droop in Ⅲ-nitride visible light-emitting diodes with an InAIN electron-blocking layer. Appl. Phys. Lett.2010,96:221105.
    [84]H.J. Kim, S. Choi, S.S. Kim, et al. Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAIN electron blocking layer in green light-emitting diodes. Appl. Phys. Lett.2010,96:101102.
    [85]S. Choi, M.H. Ji, J. Kim, et al. Efficiency droop due to electron spill-over and limited hole injection in Ⅲ-nitride visible light-emitting diodes employing lattice-matched InAIN electron blocking layers. Appl. Phys. Lett.2012,101: 161110.
    [86]Y.Y Zhang, G.H. Fan. Comparison of nitride-based dual-wavelength light-emitting diodes with an InAIN electron-blocking layer and with p-type doped barriers. Chin. Phys. B 2011,20(4):048502.
    [87]T.P. Lu, S.T. Li, K. Zhang, et al. The advantage of blue InGaN multiple quantum wells light-emitting diodes with p-AlInN electron blocking layer. Chin. Phys. B 2011,20(9):098503.
    [88]J. Chen, G.H. Fan, Y.Y, Zhang, et al. Performance improvement of InGaN blue light-emitting diodes with several kinds of electron-blocking layers. Chin. Phys. B 2012,21(5):058504.
    [89]J. Chen, G.H. Fan, W. Pang, et al. Comparison of GaN-based light-emitting diodes by using the AlGaN electron-blocking layer and InAIN electron-blocking layer. Chin. Phys. Lett.2011,28(12):128501.
    [90]J. Piprek, Z. M. Simon Li. Origin of InGaN light-emitting diode efficiency improvements using chirped AlGaN multi-quantum barriers. Appl. Phys. Lett. 2013,102:023510.
    [91]Y.Y. Lin, R.W. Chuang, S.J. Chang, et al. GaN-based LEDs with a chirped multiquantum barrier structure. IEEE Photon. Technol. Lett.2012,24(18): 1600-1602.
    [92]N. Zhang, Z. Liu, T. Wei, et al. Effect of the graded electron blocking layer on the emission properties of GaN-based green light-emitting diodes. Appl. Phys. Lett.2012,100:053504.
    [93]Z. Li, M. Lestrade, Y. Xiao, et al. Improvement of performance in p-side down InGaN/GaN light-emitting diodes with graded electron blocking layer. Jpn. J. Appl. Phys.2011,50:080212.
    [94]Y. Y. Zhang, G.R. Yao. Performance enhancement of blue light-emitting diodes with AlGaN barriers and a special designed electron-blocking layer. J. Appl. Phys. 2011,110:093104.
    [95]J.H. Park, D.Y. Kim, S. Hwang, et al. Enhanced overall efficiency of GaInN-based light-emitting diodes with reduced efficiency droop by Al-composition-graded AlGaN/GaN superlattice electron blocking layer. Appl. Phys. Lett.2013,103:061104.
    [96]Y. Li, S. Chen, W. Tian, et al. Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers. IEEE Photonics Journal,2013,5(4):8200309.
    [97]D.Y. Lee, S.H. Han, D.J. Lee, et al. Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett.2012,100:041119.
    [98]J. Piprek, Z. M. Simon Li. Sensitivity analysis of electron leakage in Ⅲ-nitride light-emitting diodes. Appl. Phys. Lett.2013,102:131103.
    [99]S. Chiaria, E. Furno, M. Goano, et al. Design criteria for near-ultraviolet GaN-based light-emitting diodes. IEEE Trans. Electron Devices 2010,57(1): 60-70.
    [100]X. Li, F. Zhang, S. Okur, et al. On the quantum efficiency of InGaN light emitting diodes:Effects of active layer design, electron cooler, and electron blocking layer. Phys. Status Solidi A 2011,208(12):2907-2912.
    [101]王兵,李志聪,姚然,等.GaN发光二极管外延中p型AlGaN电子阻挡层的优化生长.物理学报,2011,60(1):016108.
    [102]K.H. Kim, S.W. Lee, S.N. Lee, et al. Effect of p-AlxGa1-xN electron blocking layer on optical and electrical properties in GaN-based light emitting diodes. J. Vac. Sci. Technol. B 2012,30:061204.
    [103]O. Svensk, P.T. Torma, S. Suihkonen, et al. Enhanced electroluminescence in 405 nm InGaN/GaN LEDs by optimized electron blocking layer. J. Cryst. Growth 2008,310:5154-5157.
    [104]K.B. Lee, P.J. Parbrook, T. Wang, et al. Effect of the AlGaN electron blocking layer thickness on the performance of AlGaN-based ultraviolet light-emitting diodes. J. Cryst. Growth 2009,311:2857-2859.
    [105]Y.K. Kuo,Y.H. Chen, J.Y. Chang, et al. Numerical analysis on the effects of bandgap energy and polarization of electron blocking layer in near-ultraviolet light-emitting diodes. Appl. Phys. Lett.2012,100:043513.
    [106]毛清华,江风益,程海英,等.P-AlGaN电子阻挡层Al组分对硅衬底绿光LED性能影响的研究.2010,59(11):8078-8082.
    [107]S. Grzanka, G. Franssen, G. Targowski, et al. Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes. Appl. Phys. Lett.2007,90:103507.
    [108]H.Y. Ryu, S.H. Lee. Simulation of the effects of AlGaN electron-blocking layers on the characteristics of InGaN blue light-emitting diodes. Journal of the Korean Physical Society 2012,61(9):1395-1399.
    [109]Yun Ji, Zi-Hui Zhang, Zabu Kyaw, et al. Influence of n-type versus p-type AlGaN electron-blocking layer on InGaN/GaN multiple quantum wells light-emitting diodes. Appl. Phys. Lett.2013,103:053512.
    [110]S.H. Yen, M.C. Tsai, M.L. Tsai, et al. Effect of n-type AlGaN layer on carrier transportation and efficiency droop of blue InGaN light-emitting diodes. IEEE Photon. Technol. Lett.2009,21:975-977.
    [111]Y. Li, Y. Gao, M. He, et al. Effect of polarization-matched n-type AlGaInN electron-blocking layer on the optoelectronic properties of blue InGaN light-emitting diodes, J. Disp. Technol.9 (2013),244-248.
    [112]Q.R. Yan, Y. Zhang, S.T. Li, et al. Improved color rendering of phosphor-converted white light-emitting diodes with dual-blue active layers and n-type AlGaN layer. Opt. Lett.2012,37(9):1556-1558.
    [113]严启荣,章勇,闫其昂,等.反对称n-AlGaN层对GaN基双蓝光波长发光二极管性能的影响.物理学报,2012,61(3):036103.
    [114]B.B. Ding, F. Zhao, J.J. Song, et al. Performance improvement of blue InGaN light-emitting diode with a specially designed n-AlGaN hole-blocking layer. Chin. Phys. B 2013,22(8):088503.
    [115]Z. Liu, J. Ma, X. Yi, et al. p-InGaN/AlGaN electron blocking layer for InGaN/GaN blue light-emitting diodes. Appl. Phys. Lett.2012,101:261106.
    [116]S.J. Lee, C.Y. Cho, S.H. Hong, et al. Enhanced optical power of InGaN/GaN light-emitting diode by AlGaN interlayer and electron blocking layer. IEEE Photon. Technol. Lett.2012,24(22):1991-1994.
    [117]Y.K. Kuo, J.Y. Chang, M.C. Tsai. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer. Opt. Lett.2010,35:3285-3287.
    [118]C.S. Xia, Z.M. Li, W. Lu, et al. Efficiency enhancement of blue InGaN/GaN light-emitting diodes with an AlGaN-GaN-AlGaN electron blocking layer. J. Appl. Phys.2012,111:094503.
    [119]Y.K. Kuo, T.H. Wang, J.Y. Chang, et al. Slightly-doped step-like electron-blocking layer in InGaN light-emitting diodes. IEEE Photon. Technol. Lett.2012,24:1506-1508.
    [120]J. Chen, G.H. Fan, Y.Y. Zhnag. Improvement of characteristics of InGaN light-emitting diode by using a staggered AlGaN electron-blocking layer. Chin. Phys.B 2013,22(1):018504.
    [121]J.H. Tong, B.J. Zhao, Z.W. Ren, et al. InGaN-based blue light emitting diodes with AlInN-GaN-AlInN electron blocking layers. Chin. Phys. Lett.2013,30(5): 058503.
    [122]S.N. Lee, S.Y. Cho, H.Y. Ryu, et al. High-power GaN-based blue-violet laser diodes with AlGaN/GaN multiquantum barriers. Appl. Phys. Lett.2006,88: 111101.
    [123]R.B. Chung, C. Han, C.C. Pan, et al. The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes. Appl. Phys. Lett.2012,101:131113.
    [124]Y.Y. Zhang, X.L. Zhu, Y.A. Yin, et al. Performance enhancement of near-UV light-emitting diodes with an InAlN/GaN superlattice electron-blocking layer. IEEE Electron Device Lett.2012,33:994-996.
    [125]C.S. Xia, Z.M. Simon Li, Z.Q. Li, et al. Effect of multiquantum barriers in performance enhancement of GaN-based light-emitting diodes. Appl. Phys. Lett. 2013,102:013507.
    [126]C.C. Gong, G.H. Fan, Y.Y. Zhang, et al. Influence of AlGaN/GaN superlattices as electron blocking layer on the performance of blue InGaN light emitting diode. Chin. Phys. B 2012,21(6):068505.
    [127]S.J. Lee, S.H. Han, C.Y. Cho, et al. Improvement of GaN-based light-emitting diodes using p-type AlGaN/GaN superlattices with a graded Al composition. J. Phys. D:Appl. Phys.2011,44:105101.
    [128]H. Hirayama, Y. Tsukada, T. Maeda, et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 2010,3: 031002.
    [129]S.J. Kim, S.H. Son, T.G. Kim. Improved light output power in GaN-based vertical light-emitting diodes with p-AlInGaN/GaN superlattice. Journal of the Korean Physical Society 2012,60(8):1258-1262.
    [130]Y.Y. Zhang, Y.A. Yin. Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer. Appl. Phys. Lett.2011,99:221103.
    [131]K.S. Kim, J.H. Kim, S.J. Jung, et al. Stable temperature characteristics of InGaN blue light emitting diodes using AlGaN/GaN/InGaN superlattices as electron blocking layer. Appl. Phys. Lett.2010,96:091104.
    [132]F. Zhao, G.R. Yao, J.J. Song, et al. Performance improvement of blue light-emitting diodes with an AlInN/GaN superlattice electron-blocking layer. Chin. Phys. B 2013,22(5):058503.
    [133]J.Y. Xiong, Y.Q. Xu, F. Zhao, et al. Performance enhancement of InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer. Chin. Phys. B 2013,22(10):108505.
    [134]F.M. Chen, B.T. Liou, Y.A. Chang, et al. Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes. Proc. SPIE 2013,862526:1-7.
    [135]Y.A. Chang, J.Y. Chang, Y.T. Kuo, et al. Investigation of green InGaN light-emitting diodes with asymmetric AlGaN composition-graded barriers and without an electron blocking layer. Appl. Phys. Lett.2012,100:251102.
    [136]H.Y. Ryu, J.M. Lee. Effects of two-step Mg doping in p-GaN on efficiency characteristics of InGaN blue light-emitting diodes without AlGaN electron-blocking layers. Appl. Phys. Lett.2013,102:181115.
    [137]Y.Y. Zhang, G.H. Fan, T. Zhang. Performance enhancement of blue light-emitting diodes without an electron-blocking layer by using p-type doped barriers and a hole-blocking layer of low Al mole fraction. IEEE J. Quantum Electron.2012,48:169-174.
    [138]Y.Y. Zhang, G.H. Fan, Y.A. Yin, et al. Performance enhancement of blue light-emitting diodes without an electron-blocking layer by using special designed p-type doped InGaN barriers. Opt. Express 2011,20:A133-A140.
    [139]H.Y. Ryu, JI. Shim, C.H. Kim, et al. Efficiency and electron leakage characteristics in GaN-based light-emitting diodes without AlGaN electron-blocking-layer structures. IEEE Photon. Technol. Lett.2011,23(24): 1866-1868.
    [140]Z. Si, T. Wei, J. Yan, et al. Improved hole distribution in InGaN/GaN dual-wavelength light-emitting diodes with Mg-doped quantum-wells. Phys. Status Solidi A 2013,210(3):559-562.
    [141]Y.J. Lee, C.H. Chen, C.J. Lee. Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells. IEEE Photon. Technol. Lett.2010,22:1506-1508.
    [142]朱丽虹,蔡加法,李晓莹,等.In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能.物理学报,2010,59(7):4996-5001.
    [143]邢艳辉,韩军,刘建平,等.垒掺In提高InGaN/GaN多量子阱发光特性.物理学报,2007,56(12):7295-7299.
    [144]C.S. Xia, Z.M. Simon Li, Z.Q. Li, et al. Optimal number of quantum wells for blue InGaN/GaN light-emitting diodes. Appl. Phys. Lett.2012,100:263504.
    [145]J.Y. Chang, Y.K. Kuo, M.C. Tsai. Correlation of barrier material and quantum-well number for InGaN/(In)GaN blue light-emitting diodes. Phys. Status Solidi A 2011,208(3):729-734.
    [146]张运炎,范广涵.量子阱数量变化对双波长LED作用的研究.物理学报,2011,60(7):078504.
    [147]C.H. Wang, S.P. Chang, W.T. Chang, et al. Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells. Appl. Phys. Lett.2010,97:181101.
    [148]Y.L. Li, Y.R. Huang, Y.H. Lai. Investigation of efficiency droop behaviors of InGaN/GaN multiple-quantum-well LEDs with various well thicknesses. IEEE J. Sel. Top. Quantum Electon.2009,15(4):1128-1131.
    [149]M. Maier, K. Kohler, M. Kunzer, et al. Reduced nonthermal rollover of wide-well GaInN light-emitting diodes. Appl. Phys. Lett.2009,94:041103.
    [150]路慧敏,陈根祥.阱宽和垒厚对InGaNGaN多量子阱结构光电特性的影响.红外与激光工程,2011,40(4):698-700.
    [151]T.P. Lu, S.T. Li, K. Zhang, et al. Blue InGaN light-emitting diodes with dip-shaped quantum wells. Chin. Phys. B 2011,20(10):108504.
    [152]Y.Q. Xu, G.H. Fan, D.T. Zhou, et al. Advantage of dual wavelength light-emitting diodes with dip-shaped quantum wells. Chin. Sci. Bull.2012, 57(20):2562-2566.
    [153]L. Wang, R. Li, Z. Yang, et al. High spontaneous emission rate asymmetrically graded 480 nm InGaN/GaN quantum well light-emitting diodes. Appl. Phys. Lett. 2009,95:211104.
    [154]Z. Zheng, Z. Chen, Y. Chen, et al. Improved carrier injection and efficiency droop in InGaN/GaN light-emitting diodes with step-stage multiple-quantum-well structure and hole-blocking barriers. Appl. Phys. Lett.2013,102:241108.
    [155]L.H. Zhu, W. Liu, F.M. Zeng, et al. Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells. IEEE Photonics Journal,2013,5(2):8200208.
    [156]K. Ding, Y.P. Zeng, X.C. Wei, et al. A wide-narrow well design for understanding the efficiency droop in InGaN/GaN light-emitting diodes. Appl. Phys. B 2009,97:465-468.
    [157]J.Y. Zhang, L.E. Cai, B.P. Zhang, et al. Efficient hole transport in asymmetric coupled InGaN multiple quantum wells. Appl. Phys. Lett.2009,95:161110.
    [158]Y.A. Chang, Y.T. Kuo, J.Y. Chang, et al. Investigation of InGaN green light-emitting diodes with chirped multiple quantum well structures. Opt. Lett. 2012,37(12):2205-2207.
    [159]M. Maier, T. Passow, M. Kunzer, et al. Towards a deeper understanding of the reduced efficiency droop in low defect-density GaInN wide-well LEDs. Phys. Status Solidi C 2010,7(7):2148-2150.
    [160]X. Li, S. Okur, F. Zhang, et al. Improved quantum efficiency in InGaN light emitting diodes with multi-double-heterostructure active regions. Appl. Phys. Lett.2012,101:041115.
    [161]T.H. Wang, Y. K. Kuo. Efficiency enhancement of blue InGaN light-emitting diodes with shallow first well. IEEE Photon. Technol. Lett.2012,24(22): 2084-2086.
    [162]Q.R. Yan, Q.A. Yan, P.P. Shi, et al. Dual-blue light-emitting diode based on strain-compensated InGaN-AlGaN/GaN quantum wells. Chin. Phys. B 2013, 22(2):026102.
    [163]H. Zhao, R.A. Arif, N. Tansu. Design analysis of staggered InGaN quantum wells light-emitting diodes at 500-540 nm. IEEE J. Sel. Top. Quantum Electon. 2009,15(4):1104-1114.
    [164]H.P. Zhao, G.Y. Liu, X.H. Li, et al. Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime. IET Optoelectron.2009,3(6):283-295.
    [165]Y.C. Yao, Y.C. Chen, Y.J. Lee. Suppression of efficiency-droop effect of InGaN-based LEDs by using localized high indium quantum wells. Proc. SPIE 2012,82781T:1-8.
    [166]C.T. Liao, M.C. Tsai, B.T. Liou, et al. Improvement in output power of a 460 nm InGaN light-emitting diode using staggered quantum well. J. Appl. Phys. 2010,108:063107.
    [167]B.T. Liou, M.C. Tsai, C.T. Liao, et al. Numerical investigation of blue InGaN light-emitting diodes with staggered quantum wells. Proc. SPIE 2009,72111D: 1-8.
    [168]M.C. Tsai, S.H. Yen, Y.K. Kuo. Investigation of blue InGaN light-emitting diodes with step-like quantum well. Appl. Phys. A 2011,104:621-626.
    [169]S.H. Han, D.Y. Lee, H.W. Shim, et al. Improvement of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal wells. J. Phys. D:Appl. Phys.2010,43:354004.
    [170]R.M. Lin, M.J. Lai, L.B. Chang, et al. Effect of trapezoidal-shaped well on efficiency droop in InGaN-based double-heterostructure light-emitting diodes. International Journal of Photoenergy 2012, (2012):917159.
    [171]Z. Chen, W. Yang, L. Lei, et al. Efficiency droop alleviation in blue light emitting diodes by using the InGaN/GaN triangular-shaped quantum well. Chin. Phys. B 2012,21(10):108505.
    [172]L.H. Zhu, Q.H. Zheng, B.L. Liu. Performance improvement of InGaN/GaN light-emitting diodes with triangular shaped multiple quantum wells. Semicond. Sci. Technol.2009,24:125003.
    [173]J.P. Liu, J.H. Ryou, R.D. Dupuis, et al. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes. Appl. Phys. Lett.2008,93:021102.
    [174]A. Knauer, H. Wenzel, T. Kolbe, et al. Effect of the barrier composition on the polarization fields in near UV InGaN light emitting diodes. Appl. Phys. Lett. 2008,92:191912.
    [175]T.H. Chiang, Y.Z. Chiou, S.J. Chang, et al. Effect of silicon doped quantum barriers on nitride-based light emitting diodes. J. Electrochem. Soc.2011,158(8): H836-H839.
    [176]J. Chen, G.H. Fan, W. Pang, et al. Investigation of GaN-based dual-wavelength light-emitting diodes with p-type barriers and vertically stacked quantum wells. Chin. Phys. Lett.2012,10(6):062302.
    [177]张运炎,范广涵.不同掺杂类型的GaN间隔层和量子阱垒层对双波长LED作用的研究.物理学报,2011,60(1):018502.
    [178]刘小平,范广涵,张运炎,等.量子阱垒层掺杂变化对双波长LED调控作用研究.物理学报,2012,61(13):138503.
    [179]陈峻,范广涵,张运炎.选择性p型量子阱垒层掺杂在双波长发光二极管光谱调控中的作用.物理学报,2012,61(8):088502.
    [180]N. Zhang, Z. Liu, Z. Si, et al. Reduction of efficiency droop and modification of polarization fields of InGaN-based green light-emitting diodes via Mg-doping in the barriers. Chin. Phys. Lett.2013,30(8):087101.
    [181]D. Zhu, A.N. Noemaun, M.F. Schubert, et al. Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping. Appl. Phys. Lett.2010,96:121110.
    [182]M.C. Tsai, S.H. Yen, Y.K. Kuo. Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers. Appl. Phys. Lett. 2011,98:111114.
    [183]M.C. Tsai, S.H. Yen, Y.C. Liu, et al. Numerical study of blue InGaN light-emitting diodes with varied barrier thicknesses. IEEE Photon. Technol. Lett. 2011,23(2):76-78.
    [184]陈峻,范广涵,张运炎.渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究.物理学报,2012,61(17):178504.
    [185]S.F. Yu, R.M. Lin, S.J. Chang, et al. Improved carrier distributions by varying barrier thickness for InGaN/GaN LEDs. J. Disp. Technol.2013,9(4):239-243.
    [186]C.H. Wang, S.P. Chang, P.H. Ku, et al. Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers. Appl. Phys. Lett.2011,99:171106.
    [187]C.H. Wang, S.P. Chang, P.H. Ku, et al. Efficiency and droop improvement in InGaN/GaN light-emitting diodes by selective carrier distribution manipulation. Appl. Phys. Express 2012,5:042101.
    [188]J.H. Tong, S.T. Li, T.P. Li, et al. Efficiency enhancement of InGaN based blue light emitting diodes with InGaN/GaN multilayer barriers. Chin. Phys. B 2012, 21(11):118502.
    [189]D.F. Luo, C.P. Chen, J. Peng, et al. The efficiency improvement of blue InGaN multiple quantum-well light-emitting diodes with AlGaN/InGaN superlattice barriers. Chin. Phys. Lett.2013,30(3):038504.
    [190]Y.K. Kuo, T.H. Wang, J.Y. Chang. Blue InGaN light-emitting diodes with multiple GaN-InGaN barriers. IEEE J. Quantum Electron.2012,48(7):946-951.
    [191]H.J. Chung, R.J. Choi, M.H. Kim, et al. Improved performance of GaN-based blue light emitting diodes with InGaN/GaN multilayer barriers. Appl. Phys. Lett. 2009,95:241109.
    [192]L.W. Cheng, C.Y. Xu, Y. Sheng, et al. Study on GaN-based light emitting diode with InGaN/GaN/InGaN multi-layer barrier. Opt. Quant. Electron.2012,44: 75-81.
    [193]J.H. Tong, B.J. Zhao, X.F. Xing, et al. Droop improvement in blue InGaN light emitting diode with GaN/InGaN superlattice barriers. Chin. Phys. B 2013,22(6): 068505.
    [194]R.M. Lin, M.J. Lai, L.B. Chang, et al. Effect of an asymmetry AlGaN barrier on efficiency droop in wide-well InGaN double-heterostructure light-emitting diodes. Appl. Phys. Lett.2010,97:181108.
    [195]C.L. Tsai, Z.F. Xu, W.J. Huang, et al. Effects of an asymmetric barrier layer on the structural and optical properties of InGaN LEDs. J. Electrochem. Soc.2012, 159(5):H473-H477.
    [196]G. Liu, J. Zhang, C.K. Tan, et al. Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes. IEEE Photonics Journal 2013,5(2):2201011.
    [197]J.Y. Chang, M.C. Tsai, Y.K. Kuo. Advantages of blue InGaN light-emitting diodes with AlGaN barriers. Opt. Lett.2010,35:1368-1370.
    [198]P.M. Tu, C.Y. Chang, S.C. Huang, et al. Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier. Appl. Phys. Lett. 2011,98:211107.
    [199]J.Y. Chang, Y.K. Kuo. Influence of polarization-matched AlGaInN barriers in blue InGaN light-emitting diodes. Opt. Lett.2012,37(9):1574-1576.
    [200]Y.K. Kuo, Y.H. Chen, J.Y. Chang, et al. Advantages of near-ultraviolet light-emitting diodes with polarization matched InGaN/AlGaInN multi-quantum wells. Phys. Status Solidi A 2012,209(10):2078-2081.
    [201]C.H. Chiu, P.M. Tu, J.R. Chang, et al. Reduction of efficiency droop in InGaN-based UV light-emitting diodes with InAlGaN barrier. Proc. SPIE 2012, 826222:1-6.
    [202]Y.A. Chang, Y.R. Lin, J.Y. Chang, et al. Design and characterization of polarization-reversed AlInGaN based ultraviolet light-emitting diode. IEEE J. Quantum Electron.2013,49(6):553-559.
    [203]J.Y. Chang, F.M. Chen, Y.K. Kuo, et al. Numerical study of the suppressed efficiency droop in blue InGaN LEDs with polarization-matched configuration. Opt. Lett.2013,38:3158-3161.
    [204]L. Wang, J.X. Wang, W. Zhao, et al. Effects of InGaN barriers with low indium content on internal quantum efficiency of blue InGaN multiple quantum wells. Chin. Phys. B 2010,19(7):076803.
    [205]W. Lee, M.H. Kim, D. Zhu, et al. Growth and characteristics of GaInN/GaInN multiple quantum well light-emitting diodes. J. Appl. Phys.2010,107:063102.
    [206]Y.K. Kuo, M.C. Tsai, S.H. Yen, et al. Enhancement of light power for blue InGaN LEDs by using low-indium-content InGaN barriers. IEEE J. Sel. Top. Quantum Electron.2009,15(4):1115-1121.
    [207]J.Y. Chang, Y.A. Chang, F.M. Chen, et al. Improved quantum efficiency in green InGaN light-emitting diodes with InGaN barriers. IEEE Photon. Technol. Lett.2013,25(1):55-58.
    [208]B.C. Chen, C.Y. Chang, Y.K. Fu, et al. Improved performance of InGaN/GaN light-emitting diodes with thin intermediate barriers. IEEE Photon. Technol. Lett. 2011,23(22):1682-1684.
    [209]M.C. Tsai, S.H. Yen, Y.K. Kuo. Carrier transportation and internal quantum efficiency of blue InGaN light-emitting diodes with p-doped barriers. IEEE Photon. Technol. Lett.2010,22(6):374-376.
    [210]X.F. Wang, J.H. Tong, B.J. Zhao, et al. Efficiency and droop improvement in blue InGaN-based light emitting diode with a p-InGaN layer inserted in GaN barriers. Chin. Phys. B 2013,22(9):098504.
    [211]Z.H. Zhang, S.T. Tan, Z. Ju, et al. On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes. J. Disp. Technol.2013,9(4):226-233.
    [212]Y.K. Kuo, M.C. Tsai, S.H. Yen, et al. Effect of p-type last barrier on efficiency droop of blue InGaN light-emitting diodes. IEEE J. Quant. Electron.2010,46: 1214-1220.
    [213]S.H Yen, M.L Tsai, M.C. Tsai, et al. Investigation of optical performance of InGaN MQW LED with thin last barrier. IEEE Photon. Technol. Lett.2010,22: 1787-1789.
    [214]Y.K. Kuo, Y.H. Shih, M.C. Tsai, et al. Improvement in electron overflow of near-ultraviolet InGaN LEDs by specific design on last barrier. IEEE Photon. Technol. Lett.2011,23:1630-1632.
    [215]J. Chen, G.H. Fan, W. Pang, et al. Improvement of efficiency droop in blue InGaN light-emitting diodes with p-InGaN/GaN superlattice last quantum barrier. IEEE Photon. Technol. Lett.2012,24:2218-2220.
    [216]C.S. Xia, Z.M. Simon Li, W. Lu, et al. Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier. Appl. Phys. Lett.2011,99:233501.
    [217]J.R. Chen, T.C. Lu, H.C. Kuo, et al. Study of InGaN-GaN light-emitting diodes with different last barrier thicknesses. IEEE Photon. Technol. Lett.2010,22: 860-862.
    [218]X.P. Liu, G.H. Fan, S.W. Zheng, et al. Investigation of GaN-based light-emitting diodes using a p-GaN/i-InGaN short-period superlattice structure as last quantum barrier. Sci. Chin. Tech. Sci.2013,56(1):98-102.
    [219]E.H. Park, J. Jang, S. Gupta, et al. The effect of the last quantum barrier on the internal quantum efficiency of InGaN-light emitting diode. Appl. Phys. Lett.2008, 93:101112.
    [220]T. Lu, S. Li, C. Liu, et al. Advantages of GaN based light-emitting diodes with a p-InGaN hole reservoir layer. Appl. Phys. Lett.2012,100:141106.
    [221]H. Li, J. Kang, P. Li, et al. Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer. Appl. Phys. Lett.2013, 102:011105.
    [222]L. Wang, J. Wang, H. Li, et al. Study on injection efficiency in InGaN/GaN multiple quantum wells blue light emitting diodes. Appl. Phys. Express 2008,1: 021101.
    [223]L.J. Wu, S.T. Li, L. Chao, et al. Simulation study of blue InGaN multiple quantum wells light-emitting diodes with different hole injection layer. Chin. Phys. B 2012,21(6):068506.
    [224]C. Liu, T. Lu, L. Wu, et al. Enhanced performance of blue light-emitting diodes with InGaN/GaN superlattice as hole gathering layer. IEEE Photon. Technol. Lett. 2012,24(14):1239-1241.
    [225]R.M. Lin, S.F. Yu, S.J. Chang, et al. Inserting a p-InGaN layer before the p-AlGaN electron blocking layer suppresses efficiency droop in InGaN-based light-emitting diodes. Appl. Phys. Lett.2012,101:081120.
    [226]C. Liu, Z.W. Ren, X. Chen, et al. Advantages of InGaN-based light emitting diode with p-InGaN/p-GaN superlattice hole accumulation layer. Chin. Phys. B 2013,22(5):058502.
    [227]J. Kang, H. Li, Z. Li, et al. Enhancing the performance of green GaN-based light-emitting diodes with graded superlattice AlGaN/GaN inserting layer. Appl. Phys. Lett.2013,103:102104.
    [228]J.H. Zhu, S.M. Zhang, H. Wang, et al. The investigation on carrier distribution in InGaN/GaN multiple quantum well layers. J. Appl. Phys.2011,109:093117.
    [229]G.M. Wu, S.H. Chen. Blue InGaN/GaN light-emitting diodes using Mg-doped AlGaN electron blocking layer. Journal of the Korean Physical Society 2008, 52(5):1570-1574.
    [230]APSYS by Crosslight Software Inc., Burnaby, Canada. (http://www.crosslight.com)
    [231]S.L. Chuang, C.S. Chang.k·p method for strained wurtzite semiconductors. Phys Rev B 1996,54:2491-2504.
    [232]S.L. Chuang, C.S. Chang. A band-structure model of strained quantum-well wurtzite semiconductors. Semicond. Sci. Technol.1997,12:252-263.
    [233]I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys.2001,89:5815-5875.
    [234]I. Vurgaftman, J.R. Meyer. Band parameters for nitrogen containing semiconductors. J. Appl. Phys.2003,94:3675-3696.
    [235]V. Fiorentini, F. Bernardini, O. Ambacher. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Appl. Phys. Lett.2002,80: 1204-1206.
    [236]F. Renner, P. Kiesel, G.H. Dohler, et al. Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy. Appl. Phys. Lett.2002,81:490-492.
    [237]H. Zhang, E.J. Miller, E.T. Yu, et al. Measurement of polarization charge and conduction-band offset at InxGa1-xN/GaN heterojunction interfaces. Appl. Phys. Lett.2004,84:4644-4646.
    [238]C.M. Caughey, R.E. Thomas. Carrier mobilities in silicon empirically related to doping and field. Proc IEEE 1967,55:2192-2193.
    [239]J. Piprek. Semiconductor optoelectronic devices:introduction to physics and simulation.2003, Chapter 6:145-147.
    [240]S. Huang, H. Wu, B. Fan, et al. A chip-level electro thermal coupled design model for high-power light-emitting diodes. J. Appl. Phys.2010,107:054509.
    [241]A. Chitnis, J.P. Zhang, V. Adivarahan, et al. Improved performance of 325-nm emission AlGaN ultraviolet light-emitting Diodes. Appl. Phys. Lett.2003,82: 2565-2567.
    [242]R.C. Tu, C.J. Tun, S.M. Pan, et al. Improvement of near-ultraviolet InGaN-GaN light-emitting diodes with an AlGaN electron-blocking layer grown at low temperature. IEEE Photon. Technol. Lett.2003,15:1342-1344.
    [243]K.H. Kim, Z.Y. Fan, M. Khizar, et al. AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers. Appl. Phys. Lett.2004,85:4777-4779.
    [244]K Iga, H Uenohara, F Koyama. Electon reflectance of multiquantum barrier (MQB). Electron. Lett.1986,22:1008-1010.
    [245]K. Kishino, A. Kikuchi, Y. Kaneko, et al. Enhanced carrier confinement effect by the multiquantum barrier in 660 nm GaInP/AlInP visible lasers. Appl. Phys. Lett.1991,58:1822-1824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700