用户名: 密码: 验证码:
多孔丝素蛋白膜材料的血管化进程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔丝素蛋白膜(PSFFs)是具有良好的机械性能和理化性质,如柔韧性和抗拉伸强度、降解性、有效的血管化能力等,所以在医学上广泛应用于人造血管、皮肤、骨来代替、修补、辅助修复人体组织器官。利用多孔丝素蛋白膜辅助修复真皮时,必然要求能够快速有效地血管化,而多孔丝素蛋白膜血管化过程是多孔丝素蛋白膜材料、细胞因子、细胞和细胞外基质等因素相互协调作用和适应的过程。但是生物材料中血管新生的细节及至材料与机体组织协同作用的的创伤环境条件下血管化的详细过程相关的研究报告也比较少。
     为了探讨多孔丝素蛋白膜材料应用于创伤修复中的血管化机制,需要对材料植入体内时血管化相关的组织细胞与微环境在组织学和分子生物学水平上探讨与研究。本研究以多孔丝素蛋白膜材料在创伤修复时血管化进程的动态观察作为研究研究目标。通过对多孔丝素蛋白膜材料血管化过程的超微观察分析、血管化有关分子如HIF、VEGF、整合素αvβ3和血管内皮细胞CD34等免疫组化分析,反转录聚合酶链式扩增结合技术(RT-PCR)等手段对丝蛋白生物材料植入大鼠真皮层以后的血管化相关因子HIF、VEGF及受体、Ang-1的行为趋势等进行观察与分析,以期探究材料与组织共存情况下的血管新生过程的真实面貌,从而在分子水平和免疫组化水平对多孔丝素蛋白膜材料血管化过程进行系统研究。
     研究的内容主要分为以下三个部分:
     第一部分为毛细血管形态学变化过程的实验跟踪研究及结果。这部分的工作采用苏木素伊红(HE)染色从组织形态学上对血管形成过程和模式进行分析,并用透射电镜的方法从超微结构分析内皮细胞形成的毛细血管成熟过程进行观察,并对血管新生模式进行分析。结果说明了多孔多孔丝素蛋白膜材料内的血管化过程是血管网从无到有,再从有经调整到优化、合理的血管网的过程以及内皮细胞从少到多,形成新生毛细血管成熟的生长阶段。手术7天后多孔多孔丝素蛋白膜材料周围血管主要以出芽方式侵入材料,内皮细胞周围没有完整的基底膜; 25天后主要是血管网形成,以套叠方式优化血管,内皮细胞和周细胞连接紧密、基底膜完整。在利用多孔丝素蛋白膜材料进行真皮创伤修复过程中,植入早期血管主要以出芽方式新生,而随着修复过程的进行,血管新生方式中出芽方式逐渐减少,而套叠方式逐渐增多,创伤修复后期毛细血管主要以套叠方式新生。
     第二部分为毛细血管新生过程的免疫组化实验跟踪研究及结果。这部分的工作通过制备创伤动物模型,以免疫组化的方法研究HIF、VEGF、血管内皮细胞标记物CD34、整合素avβ3和纤维连接蛋白(FN)、层连接蛋白(LN)在PSFFs和PVA创伤修复中表达的时相性变化,对他们定位、定性和定量研究,并对他们的变化趋势分析,从而进一步探讨多孔丝素蛋白膜材料中的创伤修复和血管化的分子机制。按照统计标准,结果表明手术1天时,多孔丝素蛋白膜和PVA材料里的内皮细胞CD34表达阴性,材料里充满成纤维细胞和炎症细胞;手术7天,15天,25天时PSFFs中微血管密度(MVD)值分别是3.54,11.6,24.5,与PVA中的MVD值比较,统计分析二者具有显著差异(P﹤0.05)。PSFFs中的VEGF在手术1天、7天、15天和25天分值分别是3.4,1.9, 2.5, 2.6。和PVA相比在手术7天时具有显著差异(P﹤0.05),其他时间段差异不显著(P﹥0.05);手术1天、7天、15天和25天PSFFs中HIF表达分别是12,4.8,8.6,9.0,和PVA相比在1天、15天和25天二者之间没有显著差异(P﹥0.05),在手术7天时具有显著差异(P﹤0.05)。另外本章还研究了血管出芽的标记物整合素avβ3、细胞外基质的主要成分FN和基底膜LN的变化趋势。得出PSFFs的血管化过程遵循创伤修复血管形成的一般特点,但也体现了自己的优越性,加快了修复过程。PSFFs比PVA具有良好的血管化能力,并且有利于细胞入侵、血管新生、细胞外基质的重建,从而使组织修复达到良好的效果。另外此结果对血管在多孔丝素蛋白材料中的生长模型进行了完善。
     第三部分为以分子生物学的方法对毛细血管新生过程相关分子,生长因子进行实验跟踪研究及结果。这部分的工作通过逆转录-聚合酶链式反应(RT-PCR)方法对VEGF及受体、Ang-1、整合素、HIF进行扩增,观察他们在4个时间段的变化趋势。结果显示VEGF、HIF和整合素的变化趋势和免疫组化结果一致。PSFFs植入活体后血管形成相关分子为适应环境发生了相关的改变。
     通过以上三部分内容的研究,对多孔丝素蛋白膜材料植入实验中的血管形成过程进行了系统观察分析与研究,通过与对照材料PVA实验结果比较,确认了丝素蛋白膜材料在创伤修复中提供有利于毛细血管新生的正常生理微环境;在毛细血管形成中各种相关因子的动态过程检测或是毛细血管形态数量变化实验结果,都显示了与PVA材料有显著性差异。
     研究观察到在多孔丝素蛋白膜植入体内的血管新生过程中,修复进程前期主要以出芽方式新生、后期主要以套叠新生。在丝素蛋白材料中看到这一现象,为这一现象在新的条件下的再现提供实验证据。
     对多孔丝素膜蛋白材料血管化过程,首先通过对创伤修复进程进行组织学和透射电镜的显微追踪观察;其次通过免疫组化实验对血管化重要因子及要素,如HIF、VEGF、微血管密度等研究分析了他们在材料中的时空性表达趋势,并研究了细胞外基质、血管基底膜的变化过程;最后通过在mRNA分子水平上对多孔丝素蛋白材料膜中的HIF、VEGF和Ang-1、整合素的表达分析。在多方面的实验观察研究的基础上,提出了在丝素蛋白材料的血管化进程的初步模式。为丝蛋白作为医用生物材料的设计制作及其应用的进一步优化等提供了的基础的研究结果。
Silk fibroin has been widely applied in dermis, bone, vessel regeneration due to its biocompatibility, degradability and remarkable mechanical properties. Angiogenesis is a key step during wound healing in most tissues, so biomaterials aiding wound healing requires rapid and effective neovascularization of biomaterials after implantation. Process of neovascularization involved in interactions between cell-cell, cell-growth factors and silk fibroin–extracellular matrix (ECM). Although numbers of researches have focused on the design and preparation of porous biomaterials for excellent neovascularization, the analysis about processes and model on angiogenesis of biomaterial in vivo has been little reported so far.
     It is necessary to explore and analyze the characters and process of porous silk fibroin films( PSFFs )neovascularization. So this paper aims to study the dynamic process involved in the vascularization of PSFFs for dermis regeneration using immunochemical method, transmission electron microscopy (TEM), Reverse Transcription Polymerase Chain Reaction (RT-PCR) method. Angiogenic factors VEGF and its receptor, hypoxia inducible factor-1(HIF),integrinαvβ3, angiopoietin-1 and so on were observed for exploring a real and systemic process of PSFFs neovascularization.
     This paper includes three parts:
     The first part is to observe process and mode of angiogenesis in PSFFs by hematoxylin-eosin staining (HE) in histology and TEM in ultrastructure. The result showed capillaries formation in PSFFs and polyvinyl alcohol (PVA) sponges went through form avascular to vascular, and matured through remodeling into a complex vascular net. At early stage of wound healing capillaries were formed in PSFFs by sprouting, and intussusceptive angiogenesis were mainly present at late stage.
     The second part is to study vascular endothelial growth factor (VEGF), hypoxia inducible factor-1(HIF), integrinαvβ3, CD34, fibronectin (FN) and laminin(LN) expression in PSFFs and PVA through immunochemical method. The results show that mean value of MVD in PSFFs is 0, 3.54, 11.6, 24.5 respectively after 1, 7, 15, 25 days implantation. It is significant difference compared with that of PVA.VEGF expression in PSFFs is 3.4,1.9, 2.5, 2.6 respectively by day 1,7,15,25. Mean value of HIF expression in PSFFs was 12,4.8,8.6,9.0 by day1,7,15,25. Mean value of HIF and VEGF expression in PVA compared with those of PSFFs are significant difference only by day 7. Trends of HIF expression is consistent with that of VEGF in PSFFs, otherwise integrinαvβ3, FN and LN expression were discussed too. PSFFs have better neovascularization than that of PVA due to excellent characters in angiogenesis, degradation.
     The third part is to study the mRNA expression about VEGF and its receptor, angiopoietin-1(Ang-1), integrinαvβ3, HIF at different times. More proliferating cells in PSFFs were in the absence of oxygen after implanting to dermis defects. The potent angiogenic factors VEGF and its receptor,integrinαvβ3 and Ang-1 may be activated in response to hypoxia under the control of the transcription factor HIF-1.The results of VEGF, HIF -1 and integrinαvβ3 were consistent with that of immunochemical level.
     In all, Processes and model of capillaries formed in PSFFs were studies in immunochemical and mRNA level, PSFFs have better neovascularization than that of PVA due to excellent characters in degradation, angiogenesis. PSFFs as scaffolds can promote angiogenesis by sprouting at early stage and intussusception at late stage in wound healing; HIF, VEGF and integrinαvβ3, FN and LN expression in PSFFs and PVA were in a dynamic process in mRNA and immuochemical level in order to adapt environment.General regulations in angiogenesis were followed by neovascularization in PSFFs. Primary model for processes of neovascularization were put forward.
引文
1.Gotoh Y,Tsukada M,Minoura N,etal.Synthesis of poly(ethylene glycol)-silk fibroin conjugates and surface interaction between L-929 cells and the conjugates[J].Biomaterials 1997;18(3):267-271.
    2. Gotoh Y,Tsukada M,Minoura N.Effect of the chemical modification of the arginyl residue in Bombyxmori silk fibroin on the attachment and growth of fibroblast cells[J].J Biomed Mater Res 1998 ;(39):351-357.
    3吴微宇,丝素蛋白作为生物医用材料的研究,材料导报2001;15(2):50-51.
    4.Biman B. Mandal, Subhas C. Kundu,Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds.Biomaterials 2009;30, (28):5170-5177.
    5. Sabine Fuchs, Xin Jiang, Harald Schmidt, Eva Dohle, Shahram Ghanaati, Carina Orth, Alexander Hofmann, Antonella Motta, Claudio Migliaresi, Charles J. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cell. Biomaterials2009;30 (7 ): 1329-1338.
    6. Huipin Yuan,Kenji Kurashina,Joost D.de Bruijn,Yubao Li,K.de Groot ,Xingdong Zhang. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 1999;20:1799-1806.
    7.Valluzzi R,Gido S P,Zhang WP,et al. Trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air-water interface[J].Macromolecules1996;(29):8606-8614.
    8.Valluzzi R,He S J,Gido S P,etal.Bombyx mori silk fibroin liquid crystallinity and crystallization at aqueous fibroin-organic solvent interfaces[J].International Journal of Biological Macromolecules 1999;24:227-236.
    9.卢神州,丝素蛋白材料的生物学性能,丝绸2007;12:58-62.
    10.Setzen G,Williams EF.Tissue response to suture materials implanted subcutaneously in a rabbit model.Plast Reconstr Surg.1997;100:1788-1795.
    11. Gregory H. Altman, Frank Diaz, Caroline Jakuba, etal. Silk-based biomaterials,Biomaterials 2003;24 :401-416.
    12.关国平.多孔丝素蛋白材料的血管化及其组织再生性能的研究。苏州大学博士论文.2009.
    13:Brett Levin ,Preliminary results of the application of a silk fibroin scaffold to otology, Otolaryngology–Head and Neck Surgery (2009) xx, xxx
    14:Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci 2007;32:991–1007.
    15:Xinquan Jiang , Jun Zhao , Shaoyi Wang , Xiaojuan Sun , Xiuli Zhang , Jake Chen。Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs.Biomaterials 2009;30:4522–4532。
    16.徐巍巍,闫书芹,李明忠,张雨青,庞凯,罗淼良,丝素蛋白/羟基磷灰石复合多孔材料的制备及其孔结构.苏州大学学报(工科版) 2007; 27 (4):15-18.
    17.朱晨辉,范代娣,马晓轩,薛文娇,惠俊峰,陈岚,段志广,麻璞.类人胶原蛋白-丝素蛋白血管支架的制备及性能表征.生物工程学报2009;25(8):1225-1233.
    18.李玲琍,李光,郭悦文,江建明,聚乙烯醇/丝素蛋白引导骨组织再生膜材料的制备和性能,材料导报:研究篇2009;23(8)29-32.
    19.王永攀,谢军军,熊杰,孙芳,刘冠峰,丝素蛋白/壳聚糖共混纳米纤维的制备.浙江理工大学学报,2009;26(4):481-485.
    20.Yong-Juan Ren, Zi-You Zhou, Bing-Fang Liu, Qun-Yuan Xu, Fu-Zhai Cui. Preparation and characterization of fibroin/hyaluronic acid composite scaffold.International Journal of Biological Macromolecules 2009;4: 372–378.
    21.Qiang Lu, Kun Hu, QingLing Feng, Fuzhai Cui .Growth of fibroblast and vascular smooth muscle cells in fibroin/collagen scaffold,Materials Science and Engineering: C 2009;29(7), 31: 2239-2245.
    22. Andrew M. Altman, Vishal Gupta, Carmen N. Ríos, Eckhard U. Alt, Anshu B. Mathur. Adhesion, migration and mechanics of human adipose-tissue-derived stem cells on silkfibroin–chitosan matrix,Acta Biomaterialia2009, In Press, Corrected Proof.
    23.Gobin AS,Butler CE,Mathur AB. Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin–chitosan blend.Tissue Eng 2006;12:3383–94.
    24.Altman AM,Yan Y,Mathias N,Bai X,Rios C,Mathur AB,et al. IFATS collection: human adipose-derived stem cells seeded on silk fibroin–chitosan scaffold enhance wound repair in murine soft tissue injury model.Stem Cells 2009;27:250–258.
    25.Rios CN,Skoracki RJ, Miller MJ,Satterfield WC,Mathur AB.In vivo bone formation in silk fibroin and chitosan blend scaffolds via ectopically grafted periosteum as a cell source:a pilot study.Tissue Eng 2009;15:2717–2725.
    26;Auguste P,Lemiere S,Larrieu-Lahargue F,et al. Molecular mechanisms of tumor vascularization .Crit Rev Oncol Hematol 2005;54(1):53-61.
    27 Antoine R. Ramjaun, Kairbaan Hodivala-Dilke ,The role of cell adhesion pathways in angiogenesis。The International Journal of Biochemistry & Cell Biology, 2009; 41(3): 521-530.
    28.DjonovV,Baum O,Burri PH.Vascular remodeling by intussusceptive angiogenesis.Cell Tissue Res2003;314:107–117.
    29.Nenad Filipovic,Akira Tsuda ,Grace S.Lee, Lino F.Miele ,Miao Lin ,Moritz A.Konerding,Steven J.Mentzer.Computational flow dynamics in a geometric model of intussusceptive angiogenesis.Microvascular Research 2009;78:286–293.
    30伍冬平.多孔丝素蛋白材料中血管新生模式研究.苏州大学硕士论文2009.
    31:Alyssa CT, Lara MS, Paul AY, Shayn MP. Chronic whole-body hypoxia induces intussusceptive angiogenesis and microvascular remodeling in the mouse retina Microvascular Research 2010;79(2): 93-101
    32.Olaf Kilian ,Sabine Wenisch ,Srikanth Karnati,Eveline Baumgart– Vogt ,etal.Observations on the microvasculature of bone defects filled with biodegradable nanoparticulate hydroxyapatite. Biomaterials 2008;29 : 3429–3437.
    33. Breier G,Angiogenesis in embryonic development-a review.Placenta 21(SupplA)2000;S11–S15.
    34.Chang YS,di Tomaso E,McDonald DM,et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood .Proc Natl Acad Sci USA2000;97(26):14608-14613.
    35.Unger RE,Wolf M,Peters K,et al.Growth of human cells on a non- woven silk fibroin net:a potential for use in tissue engineering [J].Biomaterials2004;25:1069- 1075.
    36. Stephanie L.K.Bowers,Indroneal Banerjee,Troy A.Baudino The extracellular matrix:At the center of it all?,Journal of Molecular and Cellular Cardiology 2010;48:474–482.
    37. Rsfii S,Meeus S,Dias S,et al. Contribution of marrow-derived progenitor to vascular and cardiac regeneration [J].Semin Cell Dev Biol2002; 13(1):61-67.
    38.Wen Zeng, Wei Yuan, Li Li, etal.The promotion of endothelial progenitor cells recruitment by nerve growth factors in tissue-engineered blood vessels.Biomaterials2010;31(7):1636-1645.
    39. Karen K, Hirschi KK, D’Amore. Pericytes in the microvasculature [J]. Cardiovasc Res 1996;32 (4) :687-698.
    40. Li J,Zhou L,Tran HT,Chen Y,Nguyen NE,Karasek MA,etal.Over expression of laminin-8 in human dermal microvascular endothelial cells promotes angiogenesis-related functions.J Invest Dermatol 2006;126:432–40.
    41. KimS.Midwood,LeylaValenickWilliams,JeanE.Schwarzbauer.Tissue repair and the dynamics of the extracellular matrix. The International Journal of Biochemistry & Cell Biology 2004; 36:1031–1037.
    42. Edward M.Conway,Desire Collen,Peter Carmeliet.Molecular mechanisms of blood vessel growth.Cardiovascular Research2001; 49:507–521.
    43金惠铭,李先涛。血管新生的调控,中国微循环2001;5(2):85-88.
    44.Yi Hao Shen, Molly S. Shoichet, Milica Radisic.Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells。Acta Biomaterialia2008; 4(3): 477-489.
    45:ZHANG Hong,LI Guigang,JI Caini,HE Hua,WAN G Junming,HU Weikun,WU Hua,CHEN Jing. Effects of Vascular Endothelial Cell Growth Factor on FibrovascularIngrowth into Rabbit’s Hydroxyapatite Orbital Implant.Journal of Huazhong University of Science and Technology .Med Sci 2004;24(3):286-288.
    46. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor.Endocr Rev1997; 18(1):4-25.
    47. Dvorak HF,Brown LF,Detmar M,et al.Vascular permeability factor/vascular endothelial growth factor,microvascular hyper-permeability,and angiogenesis.Am J Pathol1995,146(5):1029-1039.
    48.Taub PJ,Marmu JD,Zhang WX,et al.Locally administered vascular endothelial growth factor cDNA increase survival of ischemic experimental skin flaps.Plast Reconstr Surg1998;102(6):2033-2039.
    49. Marja Lohela,Maija Bry,Tuomas Tammela and Kari Alitalo,VEGFs and receptors involved in angiogenesis versus lymphangiogenesis .Current Opinion in Cell Biology 2009; 21:154–165.
    50. Yancopoulos GD,Davis S,Gale NW,et al.Vascular-specific growth factors and blood vessel formation.Nature2000,;407(6801):242-248.
    51:Yoon YS,Johnson IA,Park JS,et al. Therapeutic myocardial angiogenesis with vascular endothelial growth factors[J].Mol Cell B iochem2004;264(122):63-74.
    52.Gerber HP,McMurtrey A,Kowalski J,et al.Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway requirement for Flk-1/KDR activation[J].J Biol Chem1998;27(346):30336-30343.
    53. Tran J,Rak J,Sheehan C,et al.Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cell[sJ].Biochem Biophys Res Commun1999,26(43):781-788.
    54.Veikkola T, Alitalo K.VEGFs, receptors and angiogenesis. Semin Cancer Biol. 1999; 9(3):211-220.
    55.Taipale J,Makinen T,Arighi E,etal.Vascular endothelial growth factor receptor-3.Curr Top Microiol Immionl1999;237:85-96.
    56. Ulrich Hersel, Claudia Dahmen, Horst Kessler RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.Biomaterials2003; 24 (24): 4385-4415
    57. Friedlander M,Brooks PC,Shaffer,et al.Definition of two angiogenic pathways byανdistinct integrins[J].Science1995;270(5):1500-1502.
    58.Brooks PC.Role of integrins in angiogenesis[J].EurJ Cancer 1996;32(10):2423-2429.
    59 Li X,Regezi J,Ross FP,et al.Integrin alphavbeta3 mediates k1735 murine melanomacell motility in vivo and in vitro[J].Cell Sci2001,114(14):2665-2672.
    60 Friedlander DR,Zagzag D,Shiff B,et al.Migration of two brain tumor cells on ext racellular matrix proteins in vitro correlates with tumor type and grade and involvesανandβ1 integrins[J].Cancer Res1996;56(6):1939-1947.
    61. Rusnati M,Tanghetti E,Gualandris,et al.αvβ3 integrin mediates the cell adhesive capacity and biological activity of basic fibroblast growth factor in cultured endothelial cells[J].Mol Boil Cell1997;8(9):2449-2461.
    62. SoldiR,MitolaS,StraslyM,etal Role of alphav beta3 integrin in the activation of vaseular endothelial growth facto receptor-2.EMBOJ 1999; 15:882-892
    63 .Marcin G Tonnesen, Xiaodong Feng, and Richard A.F Clark,Angiogenesis in wound healing,Journal of investigative dermatology symposium proceedings 2000;5:40-46,
    64. Qi JH,Claesson-Welsh L.VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase[J].Exp Cell Res2001;26(31):173-182.
    65. Egeblad M, Werb Z.New functions for the matrix metalloproteinases in cancer progression [J].Nat Rev Cancer2002;2(3):161-174.
    66.Byzova TV,Goldman CK,Pampori N,etal.Mechanism for modulation of cellular responses to VEGF: activation of the integrins[J].Mol Cell2000;6(4):851-860.
    67.Kim S,Bakre M,Yin H,Varner JA.Inhibition of endothelial cell survival and angiogenesis by protein kinase A.J Clin Invest 2002;110:933–941.
    68. Eliceiri BP,Puente XS,Hood JD,etal.Src2 mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling[J].J Cell B iol;2002;157 (1):149-160.
    69. Ke Q, Costa M.Hypoxia-inducible factor-1(HIF-1)[J].Mol Pharmacol2006; 70(5):1469-1480.
    70. Semenza GL.Hypoxia-inducible factor 1: master regulator of O2 homeostasis [J].Curr Op in Genet Dev1998;8(5):588-594.
    71. Zagorska A, Dulak J.HIF-1: the knowns and unknowns of hypoxia sensing[J].Acta Biochim Pol2004;51(3):563-585.
    72.Liu LX, LU H,Luo Y,eta1.Stabilization of vascular endothelial growth factor mRNA by hypoxia inducible factor[J].Biochem Biophys Res Commun2002;291(4):908-914.
    73.Gerber HB,Condorelli F,Park J,etal.Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes.Flt-1,but not Flk-1/KDR,is up regulated by hypoxia[J].J Biol Chem1997;272(38):23659-23667.
    74.Philip Bao,Arber Kodra,Marjana Tomic-Canic,Michael S.Golinko, H.Paul Ehrlich,and Harold Brem, The Role of Vascular Endothelial Growth Factor in Wound Healing。Journal of Surgical Research 2009; 153:347–358.
    75. James J M, Jennifer L W, Vascularization of Engineered Tissues: Approaches to Promote Angiogenesis in Biomaterials [J],Current Topics in Medicinal Chemistry,2008;8(4):300-310.
    76. Beatriz Dela Riva, Esther Sánchez, Antonio Hernández, Ricardo Reyes, etal.Local controlled release of VEGF and PDGF from a combined brushite–chitosan system enhances bone regeneration. Journal of Controlled Release2009 In Press, Corrected Proof,
    77.Gresham T.Richter,;Chun Y.Fan,MD,Ozan Ozgursoy,;Justin McCoy,Emre Vural,,Effect of Vascular Endothelial Growth Factor on Skin Graft Survival in Sprague-Dawley Rats.Arch Otolaryngology Head Neck Surg.2006;132:637-641.
    78.A.Eser Elein, Y.Murat Elcin,Localized Angiogenesis Induced by Human Vaseular Endothelial Growth Factor activated PLGA Sponge[J] , Tissue Engineering ,2006;12(4):959-968.
    79.HaifeiShi, ChunmaoHan, ZhengweiMao, Enhanced Angiogenesis in Porous Collagen-Chitosan Scaffolds Loaded with Angiogenesis[J] , Tissue engineeringPartA2008;14(11);1775-1785.
    80.Anat Perets , Yaacov Baruch , Felix Weisbuch , Gideon Shoshany , Gera Neufeld ,Smadar Cohen.Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres.Journal of Biomedical Materials Research Part A 2003;65A:4: 489-497.
    81. Ilaria Dal Pra,Giuliano Freddi,Jasminka Minic,Anna Chiarini,Ubaldo Armato,De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials2005;26(14):1987-1999.
    82. Unger RE,Peters K,Wolf M,Motta A,Migliaresi C, Kirkpatrick C.J.Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells.Biomaterials 2004;25:5137–5146.
    83. Kirkpatrick. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 2009; 30(7): 1329-1338.
    84.Esther Wenk, Amanda R. Murphy, David L. Kaplan, Lorenz Meinel, Hans P. Merkle, Lorenz Uebersax .The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Biomaterials2010; 31(6): 1403-1413.
    1.刘辉凤.毛细血管新生方式与缺氧速度的关系.苏州大学硕士论文2009.
    2.Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U ,De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials Biomaterials2005;26 (14):1987-1999.
    3.Unger.RE,Peters K,Wolf M,Motta A,Migliaresi C,Kirkpatrick CJ. Endothelialization of a non-woven silk fibroin net for use in tissue engineering:growth and gene regulation of human endothelial cells。Biomaterials2004;25:5137–5146.
    4. Sabine Fuchs, Xin Jiang, Harald Schmidt, Eva Dohle, Shahram Ghanaati, Carina Orth, Alexander Hofmann, Antonella Motta, Claudio Migliaresi, Charles J.Kirkpatrick.Dynamic processes involved in the pre- vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells.Biomaterials2009;30(7):1329-1338.
    5.关国平.多孔丝素蛋白膜材料的血管化及其组织再生性能的研究.苏州大学博士论文2009.
    6. Bai Lun, Xu Jianmei, Sun Qilong, Di Chuanxia, Song Jiangchao, Wu Zhengyu. On the growth model of the capillaries in the porous silk fibroin films. J Mater Sci: Mater Med2007; 18:1917-1921.
    7.Bai Lun, Xu Jianmei, Sun Qilong, Di Chuanxia, Zuo Baoqi, Guan Guoping, Wu Zhengyu. Density of capillaries in the porous silk fibroin films. Front. Mater. Sci. China, 2007; 1(3): 237-242.
    8.Mingzhong Li, Shenzhou Lu, Zhengyu Wu, Haojing Yan, Jingyu Mo, Lihong Wang. Study on Porous Silk Fibroin Materials. I. Fine Structure of Freeze Dried Silk Fibroin. Journal of Applied Polymer Science2001;79:2185-2191
    9 Mingzhong Li, Zhengyu Wu, Changsheng Zhang, Shenzhou Lu, Haojing Yan, Dong Huang Huilan Ye. Study on Porous Silk Fibroin Materials. II. Preparation and Characteristics of Spongy Porous Silk Fibroin Materials. Journal of Applied Polymer Science2001;79: 2192-2199.
    10.Williams SK,Kleinert LB,Hagen KM,Clapper DL.Covalent modification of porous implants using extracellular matrix proteins to accelerate neo vascularization.J Biomed Mater Res A 2006;78:59–65.
    11.Sung HJ,Meredith C,Johnson C,Galis ZS.The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis Biomaterials 2004;25:5735–42.
    12.Kidd KR,Nagle RB,Williams SK.Angiogenesis and neovascularization associated with extracellular matrix-modified porous implants.J Biomed Mater Res2002;59:366–377.
    13. Flamme I,Frolich T,Risau W. Molecular mechanism of vasculogenesis and embryonic angiogenesis.J Cell Physiol 1997;173:206–210.
    14.Ni H,Yuen PS,Papalia JM,Trevithick JE,Sakai T,Fassler R,etal.Plasma fibronectin promotes thrombus growth and stability in injured arterioles.ProcNatl Acad Sci U S A 2003;100:2415–2419.
    15.Gerhardt H,Betsholtz C.Endothelial–pericyte interactions in angiogenesis.Cell Tissue Res 2003;314:15–23.
    16.Olaf Kilian,Sabine Wenisch,Srikanth Karnati,Observations on the microvasculature of bone defects filled with biodegradable nanoparticulate hydroxyapatite[J] ,Biomaterials2008;29:3429-3437.
    17.Zhou A,Egginton S,Hudlicka O,Brown MD.Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment withalpha1-antagonistprazosin.Cell Tissue Res 1998;293-303.
    18.Kurz H, Burri PH, Djonov VG. Angiogenesis and vascular remodeling by intussusception: from form to function [J]. News Physiol Sci 2003; 18:65–70.
    1.盛茗,血管内皮细胞功能及调节机制的研究.苏州大学博士论文2002。
    2.Ferrara N,Davis-Smyth T. The biology of vascular endothelial growth factor.Endocr Rev1997;18(1):4-25.
    3.Banai S,Shweiki D,Pinson A,Chandra M,Lazarovici G, Keshet E. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. CardiovascRes 1994;28: 1176–1179.
    4.Semenza GL.HIF-1 and human disease:one highly involved factor. Genes Dev 2000;14: 1983–1991.
    5.Soldi R,Mitola S,Strasly,etal.Role ofαvβ3 intgrin in the activation of vaseular endothelial growth factor receptor-2.EMBOJ1999;15: 882-892.
    6.李玉林,寇伯君,吴珊,张丽红,朱桂彬.层粘连蛋白受体和nm23蛋白在乳腺癌组中的表达及其与间质微血管密度和肿瘤转移的关系.中华病理学杂志2000; 29;(3)168-171.
    7.王川,张祥福,杨发端,等.nm23基因产物/NDPK在大肠癌中的表达及其临床意义.中华病理学杂志1995.24(6):356-358.
    8 . Weidner N,Semple JP,Welch WR, et al. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma.NewEngJMed199;324: 1-8.
    9. Folkman J,Brem H.Angiogenesis and inflammation.In:Gallin J,Goldstein I,Snyderman R, Eds. Inflammation:Basic Principles and Clinical Correlates.2nd ed.New York:Raven Press1992:821–839.
    10.潘秀花. VEGF和Ang-1在皮肤创伤和放射性烧愈合过程中表达变化的研究.苏州大学2006硕士论文.
    11. Namiki A,Brogi E,Kearney M,et al.Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells.J Biol Chem 1995;270:31189-31195.
    12. Detmar M,Brown LF,Berse B,et al.Hypoxia regulates the expression of vascular permeability factor/vascular endothelial growth factor(VPF/VEGF)and its receptors in human skin.J Invest Dermatol 1997;108:263-268.
    13.Levy AP,Levy NS,Loscalzo J,et al.Regulation of vascular endothelial growth factor in cardiac myocytes.Circ Res 1995;76:758-766.
    14. Shweiki D,Itin A,Soffer D,et al.Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.Nature 1992;359:843-845.
    15. Silver IA.The measurement of oxygen tension in healing tissue.Progr Respir Res 1969;3:124-135.
    16. B irner P, Gatterbauer B, Oberhuber G, etal.Expression of hypoxia inducible factor-1 alpha in oligodendrogliomas: its impact on prognosis and on neoangiogensis [J].Cancer2001; 92(1):165-171.
    17. Jones A,Fujiyama C,B lanche C,et al.Relation of vascular endothelial grow th factor p roduction to exp ression and regulation of hypoxia inducible factor1 alpha and hypoxiainducible factor2 alpha in human bladder tumor and cell lines [J].Clin Cancer Res2001;7(5):1263--272.
    18.Semenza GL,Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J].Mol Cell Biol1992;12(12):5447-5454。
    19.Ryan H E,Poloni M,M cNulty W,et al.Hypoxia inducible factor-1 alpha is a positive factor in solid tumor growth[J].Cancer Res2000;60 (15):4010-4015.
    20.Morbidelli L,Chang CH,Douglas JG,etal.Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium.Am J Physiol 1996;270:H411-415.
    21. Paul C. Lee, Melina R. Kibbe, Matthew J. Schuchert, Donna B. Stolz, Simon C. Watkins, Bartley P. Griffith, Timothy R. Billiar, Larry L. Shears II.Nitric Oxide Induces Angiogenesis and upregulatesαvβ3 Integrin Expression on Endothelial Cells .Microvascular Research,2000; 60(3):269-280.
    22.Pepper MS,Ferrara N,Orci L,etal.Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro.Biochem Biophys Res Commun 1992;189:824-831.
    23. Gerber HP,McMurtrey A,Kowalski J,etal.Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway.Requirement for Flk-1/KDR activation.J Biol Chem 1998;273:30336-30343.
    24. M.J.Humphries,Integrin structure,Biochem.Soc.Trans. 2000 (28):311–339.
    25.R.O.Hynes,Integrins:a family of cell surface receptors,Cell1987;48:549–554.
    26 E.Ruoslahti.The Walter Herbert Lecture.Control of cell motility and Tumour invasion by extracellular matrix interactions.Br.J.Cancer1992; 66:239–242.
    27.R.O.Hynes,Integrins:versatility,modulation,and signaling in cell adhesion, Cell 1992;69:11–25.
    28. Uhm JH, Gladson C.L, Rao JS, The role of integrins in the malignant phenotype of gliomas, Front Biosci. 1999; 4D: 188-199.
    29.Brooks PC,Clark RA,Cheresh DA:Requirement of vascular integrin alphavbeta3 for angiogenesis. Science 1994;264:569-571.
    30.Drake CJ,Cheresh DA,Little CD: An antagonist of integrin alphavbeta3 prevent s maturatio n of blood vessels during embryonic neovascularization. J Cell Sci 1995, 108(7):2655-2661.
    31.Eliceiri BP,Cheresh DA: Th erole of alphav integrins during angiogenesis. MolMed1998; 4:741-750.
    32. KairbaanHodivala-Dilke, avb3 integrin and angiogenesis: a moody integrin in a changing environment. CurrentOpinioninCellBiology 2008; 20:514–519.
    33. Moscatelli D, Rifkin DB. Membrane and matrix localization of proteinases: a common theme in tumour cell invasion and angiogenesis. Biochim Biophys Acta 1988; 948: 67-85.
    34. Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 1999; 103: 1237-1241.
    35. Nicosia RF, Villaschi S. Autoregulation of angiogenesis by cells of the vessel wall. Int Rev Cytol 1999; 185: 1-43.
    36. Vernon RB, Sage EH. Extracellular matrix and creation of vascular form. Am J Pathol 1995; 147: 873-883.
    37.Stephanie L.K.Bowers,Indroneal Banerjee,Troy A B. The extracellular matrix:At the center of it all?,Journal of Molecular and Cellular Cardiology 2010;48:474–482
    38. Etsuro sato,Sekiya koyam A,Sharon L.Reactive oxygen and nitrogen metabolites modulate fibronectin induced fibroblast migration in vitro[J].Free Radical Biology&Medicine2001;30:22-29
    39. Qing Sun,Greory M.Smith. Indetification of motif epitopes in staphlococcus aureus fibronectin binding for the production antibody inhibitors of fibronectin binding[J].Infection and Immunty,1997,65(2):537
    40. Samantha FS, Dominique G,Botond C, EllenVan OS. Regulation of fibronectin matrix assembly and capillary morphogenesis in endothelial cells by Rhofamily GTPases. Experimental cell research 2009;315:2092– 2104.
    41.关国平.多孔丝素蛋白材料的血管化及其组织再生性能的研究。苏州大学博士论文.2009.
    42.Sakamoto N, Iwahana M, Tanaka MG,Osada Y.Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide CDPGYIGSR-NH2. Cancer Res 1991;51:903-906.
    43.Grant DS, Kinsella JL,Fridman R, Aurbach R, Piasecki BA, Yamada Y, Zain M,Kleinman HK.Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J Cell Physiol 1992; 123:117-130.
    44.Kleinman HK, Weeks BS, Schnaper HW, Kibbey MC, Yamamura K, Grant D S. The larninins: a family of basement membrane glycoproteins important in cell differentiation and tumor metastases. Vit Hor1993; 47:161-186.
    1.Pierec GF , Mustor TA .Pharmacologic enhancement of wound healing. Annu Rev Med 1995;46:467-469.
    2.Matsuda T, Okamura K, Sato Y, etal. Decreased response to epidermal growth factor during cellular senescence in cultured human microvascular endothelial cells. J Cell Physiol1992 ;150: 510-516.
    3.Sato Y, Okamura K, Morimoto A, et al. Indispensable role of tissue-type plasminogen activator in growth factor-dependent tube formation of human microvascular endothelial cells in vitro. Exp Cell Res 204: 223-229,1993.
    4.Yi Hao Shen, Molly S. Shoichet, Milica Radisic. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomaterial2008;( 4) 3: 477-489
    5.Semenza GR.Hypoxia-inducible factor 1: master regulator of O2 homeostasis [J]. Curr Opin Genet Dev 1998;8:588-594.
    6.Anderson JM,Rodriguez A,Chang DT.Foreign body reaction to biomaterials.Seminars in Immunology 2008;20(2):86–100.
    7.Yan Hu,Kaiyong Cai,,Zhong Luo,Rui Zhang,Li Yang,Linhong Deng,Klaus D.Jandt. Surface mediated in situ differentiation of mesenchymal stem cells on gene functionalized titanium films fabricated by layer-by-layer technique. Biomaterials 2009;30:3626–3635.
    8. Cohen S and Carpenter G. Human epidermal growth factor:isolation and chemical and biological properties.Proc Natl Acad Sci1975;72(4):1317-1321.
    9.Esch F ,Baird A,Ling N,etal .Primary structure of bovine pituitary basic fibroblastgrowth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA1985;82(19):6507-6511.
    10.Wang HJ,WanHL,Yang TS etal.Acceleration of skin graft healing by growth factors .Buren1996;22(1):10-14.
    11.周建清,王永忠,胡治国,万苏春,毛坤云.大鼠创伤皮肤内血管内皮生长因子表达的免疫组化研究.江苏大学学报(医学版) 2003,13(5):421-424.
    12.邓辰亮;杨光辉;曹谊林,生长因子促皮肤创面愈合的研究进展。组织工程与重建外科200;2(3):174-176.
    13. Buckley A, Davidson JM, Kamerath CD, et al. Epidermal growth factor increases granulation tissue formation dose dependently. J Surg Res1987; 43(4):322-328.
    14. Beatriz De la Riva, Esther Sánchez, Antonio Hernández, Ricardo Reyes, Faleh Tamimi, Enrique López-Cabarcos, Araceli Delgado, Carmenévora. Local controlled release of VEGF and PDGF from a combined brushite–chitosan system enhances bone regeneration. Journal of Controlled Release2009, In Press, Corrected Proof.
    15.Yamakawa M,Liu LX,Date T,Belanger AJ,Vincent KA,Akita GY,etal.Hypoxia inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors.Circ Res 2003;93:664–73.
    16. Albina JE,Mastrofrancesco B,Vessella JA,Louis CA,Henry Jr WL,Reichner JS.HIF-1expression in healing wounds:HIF-1alpha induction in primary inflammatory cells by TNF-alpha.Am J Physiol Cell Physiol 2001;281:C1971–7.
    17.Daniel P.Gale,Patrick H.Maxwell .The role of HIF in immunity. The International Journal of Biochemistry&Cell Biology 2010;42:486–494.
    18 .Zagorska A, Dulak J.HIF-1: the knowns and unknowns of hypoxia sensing [J].Acta Biochim Pol2004; 51(3):563-585.
    19.Morisada T,Kubota Y,Urano T,Suda T,Oike Y.Angiopoietins and angiopoietinlike proteins in angiogenesis.Endothelium 2006;13:71–9.
    20. Eliceiri BP,Puente XS,Hood JD,etal.Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling[J].J Cell Biol2002;157 (1):149-160.
    21.商玮.整合素和血管内皮生长因子在血管新生中的作用.医学研究生学报2008;21(8):881-884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700