用户名: 密码: 验证码:
基于氧化锌纳米材料的光电气敏性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Studying of Photoelectric Gas Sensing Properties on Nano-material ZnO
  • 作者:彭亮
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2009
  • 导师:王德军
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2009-06-01
  • 答辩委员会主席:黄宗浩
摘要
半导体气体传感器在工业生产,生活的各个方面广泛使用,具有广阔的市场开发前景。由于ZnO具有优异的光电性能和气敏性质,本论文以ZnO纳米材料为基础,通过形貌控制、掺杂和表面修饰等方法制备了具有高灵敏性和选择性的光电气敏传感器材料。通过测量不同形貌的ZnO纳米材料的气敏性质,分析影响光电气敏响应强度的各种因素,证明材料的比表面积和光生电荷效率是影响光电气敏响应强度的两个关键。通过掺杂过渡金属促进有机物挥发性气体分子的吸附,分别制备了对水蒸气、乙醇和丙酮敏感的光电气敏材料。利用电子给体型有机物联苯偶氮修饰氧化锌提高其光生电荷浓度,促进其对氧气的吸附,获得了对氧气高灵敏的气敏传感器。将联吡啶钌修饰在氧化锌上,利用联吡啶钌中产生的光生激子容易和C=O基团产生振动耦合的作用,从而制备出对C=O基团具有选择性的光电气敏传感器。
The gas sensor based on semiconductor materials has been extensively used to detect and monitor a huge variety of gases and vapors. However, owing to the high activation energy of reaction with gas molecules, appropriate high temperature was needed for the gas sensor to get good sensitivity. The high temperature operation of gas sensor with many defects restricts its application. The first defect is its high-energy comsume, which restricts this kind of gas sensor cann’t intergrate in portable device. The seconed defet is its high-danger, cann’t applicate in explosive environment. Therefore, the light irradiation is introduced, to get gas sensors to work at room temperature. The photoelectric gas sensor has been fabricated with the ZnO nano-materials, owing to its distinguished photoelectric performance and surfaced properties. The various kinds of nanomaterials based on ZnO have been prepared, and the relation between gas sensing performance and the structure of materials have been explored in order to understand: how to enhance the gas sensitivity, how to obtain the selectivity of photoelectric gas sensor. This study would supply the theory to fabricate the new generation of gas sensor operating at room temperature. In this paper, the doping and surface modifaction etc. were applied to mediate the properties of materials, in order to fabracte the photoelectric gas sensor with high sensitivity and high selectivity.
     The main results are illuminated as follows:
     1. The key factors on influencing the gas sensivity have been analysed about photoelectric gas sensor. The ZnO nanorods of different sizes (40, 100, 300 nm) and nanoparticles (6 nm in diameter) were prepared, and their sensing properties to formaldehyde at room temperature with and without the UV light irradiation (0.155 mW/cm2) were measured. The transient photovoltage and photoluminescence technology were used to investigate the dependence of photo-generated charge efficiency on the size of ZnO. The results demonstrated that the gas response of the samples without UV light irradiation is dominated by the surface-to-volume ratio of the materials; while under the illumination of UV light, it was controlled by both the surface-to-volume ratio and the photo-generated charge efficiency. Furthermore, the dependent of material morphology on gas sensitivity have been studied. The one-dimensional materials can support enough space for the separation of electron-hole pairs, and increase delocalization of charge carriers, because the charge is free to move throughout the length of the crystal. What is more, the one-dimensional materials own high surface-to-volume ratio. The NR-40 own high sensitivity to formaldehyde, and the detect limit lower than 0.8 ppm. It is the appropriate nanostructure for fabricating the UV light-assisted gas sensor.
     2. The doping of transition metal is used to improve the gas molecules adsorption and then increase the activation of gas sensor. The cobalt ion and copper ion have been doped into the ZnO. The decrease of photoconductivity in ambient air or in water vapor atmosphere has been observed when the cobalt-doped zinc oxide nanobelts are irradiated with 630 nm light. This kind of negative photoconductivity is attributed to the photodesorption of water molecules from nanobelts’surface. This result supplies a potential method to detect water vapor with a low concentration in environment. Copper-doped ZnO (1mol %) nanocrystals were synthesized using sol-gel method. The high sensing to ethanol and acetone in air have been achieved when the copper-doped ZnO was irradiated with UV light. The detection limit of gas sensor to ethanol and acetone is as low as 40 ppm and 10 ppm, respectively.
     3. Azo-ZnO hybrid films were prepared by functionalizing the ZnO macropore films with azo pigment (1,1'- (biphenyl-4,4'-diylbis (diazene-2,1-diyl)) dinaphthalen-2-ol). The oxygen sensing characteristics of hybrid films and pure ZnO film were measured under the irradiation of UV light. Because the functionalization promotes the photo-generation-charge, the results show that the sensitivity of hybrid film is about 520 times higher than that of pure ZnO film. Our results demonstrate that the functionalization with azo pigment is a promising approach for enhancing the oxygen sensitivity of ZnO under the irradiation of UV light.
     4. The photoelectric gas sensor with selectivity were fabricated based on the RuN3 because of its selectivity to C=O group. The RuN3/ZnO was prepared, under the irradiation of visible, the electrons were been filled into ZnO from the photo-generation exctions in RuN3 and induced the photocurrent. Because of the vibration coupling between the exciton and formaldehyde molecules, the energy of exctions transfers into formaldehyde molecules when it was adsorbed ZnO/RuN3, which decreases the photocurrent intensity. Therefore, the photocurrent intensity of ZnO/RuN3 is negative response to formaldehyde or acetone (decreased as increasing the formaldehyde concentron (<40 ppm)), however, the photocurrent intensity is positive response (increased as increasing the concentration) to other gas: water, ethanol, ether, ethyl acetate. It is demonstrated that the selectivity to formaldehyde can be obtained in ZnO/RuN3 when illuminated with visible light.
引文
[1] GOPEL W, HESSE J, ZEME J N, [M] 1995. Sensors: A Comprehensive Survey, pp. 1–7. New York: VCH
    [2] MOSELEY P T, TOFIELD B C, [M] 1987. Solid-State Gas Sensors. Bristol/Philadelphia: Hilger
    [3] SBERVEGLIERI G, [M] 1992. Gas Sensors: Principles, Operation and Developments.Boston: Kluwer
    [4] MANDELIS A, CHRISTOFIDES C. [M] 1993. Physics, Chemistry and Technology of Solid State Gas Sensor Devices. New York: Wiley-Interscience
    [5] NITTA M, HARADOME M. CO gas detection by ThO2-doped SnO2 [J]. J Electron Mater, 1979, 8: 571-575.
    [6]全宝富,赵智勇,张彤等. In2O3纳米材料的制备及其气敏特性的研究[J].仪表技术及传感器, 2001, 1: 12-14.
    [7] BARSAN N, WEIMAR U. Understanding the fundamental principles of metal oxide based gas sensor [J]. Journal of Physics: Condensed Matter, 2003, 15: 813-839.
    [8] KOROTCENKOV G, BRIZARI V, GOLOVANOV V. Acceptor like behavior of reducing gases on the surface of N-TypeIn2O3 [J]. Applied Surface Science, 2004, 227: 122-131.
    [9] CHOI Y J, SEELEY Z, BANDYOPADHYAY A, et al. Aluminum doped TiO2 nano-powders for gas sensors [J]. Sensors and Actuators B: Chemical, 2007, 124: 111-117.
    [10] JUN Y, KUS HIDAJAT, SIBUDJING KAWI. Synthesis of Nano-SnO2/SBA-15 composite as a highly sensitive semiconductor oxide gas sensor [J]. Materials Letters, 2008, 62: 1441-1443.
    [11] SI S H, FUNG Y S, ZHU D R. Improvement of piezoelectric crystal sensor for the detection of organic vapors using nanocrystalline TiO2 films [J]. Sensors and Actuators B: Chemical, 2005, 180: 165-171.
    [12] YOO K S, PARK S H, KANG J H. Nano-grained Thin-film indium tin oxide gas sensors for H2 detection [J]. Sensors and Actuators B: Chemical, 2005, 108: 159-164.
    [13] HAN C H, HAN S D, SINGH I, et al. Micro-bead of Nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor [J]. Sensors and Actuators B: Chemical, 2005, 109: 264-269.
    [14] CHANG S C, STETTER J R, CHA C S. Amperometric Gas Sensors [J]. Oxford: Talanta, 1993, 40: 44, 461-477.
    [15] KNAKE R, JACQUINOT P, HAUSER P C. Amperometric detection of gaseous formaldehyde in the ppb range [J]. Electroanalysis, 2001, 13(8-9) : 631-634.
    [16] SAITO Y, MARUYAMA T, MATSUMOTO Y, et al. Applicability of sodium sulfate as a solid electrolyte for a sulfur oxides sensor [J]. Solid State Ionics, 1984, 14, 273-281.
    [17] MARUYAMA T, SASAKI S, SAITO Y. Potentiometric gas sensor for carbon dioxide using solid electrolyte [J]. Solid State Ionics, 1987, 23:107-112.
    [18] YAO S, SHIMIZU Y, MIURA N, et al. Solid electrolyte CO2 sensor using binary carbonate electrode [J]. Chemistry Letters. 1990, 19: 2033-2037.
    [19] MIURA N, YAO S, SHIMIZU Y, et al.Carbon dioxide sensor using sodium ion conductor and binary carbonate auxiliary phase [J]. Journal of the Electrochemical Society, 1992, 139: 1384-1388.
    [20]周桂江,叶成,有机/聚合物场效应管[J],化学通报,2002,4:227-233.
    [21] COVINGTON A,GARDNER J W, BRIARD D, et al.Apolymer gate FET sensor array for detecting organic Vapours [J].Sensors and Actuators B: Chemical, 2001, 77:155-162.
    [22]HODGE-MILLER A, PERKINS FK, PECKERAR M, et al. Gateless Depletion Mode Field Effect Transistor For Macromolecule Sensing [A]. 2003. 918-921
    [23] ARNOLD M S, AVOURIS P, PAN Z W, et al. Field-effect transistors based onsingle semiconducting oxide nanobelts [J].The Joural of Phsical Chenistry B, 2003,107:659-663.
    [24] ZHANG D J, LI C, LIU X L, et al. Doping dependent NH3 sensing of indium oxide nanowires [J]. Applied Physics Letters, 2003, 83:1845-1847.
    [25] CUIY,WEI Q Q, PARK H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science,2003, 293: 1289-1292.
    [26] DUAN X F, HUANG Y, LIEBER C M. Nonvolatile memory and programmable logic from molecule-gated nanowires [J]. Nano Letters, 2002, 2:487-490.
    [27]王洪,冯金垣,彭玉成. CO2气体浓度光纤传感器研究[J].仪表技术与传感器,2001,6: 4-6.
    [28]孙宝元,杨宝清主编.传感器及其应用手册[M].北京:机械工业出版社, 2004: 332-360.
    [29] RUZICKA, HANSEN E H. Optosensing at active surfaces-a new detection principle in flow injection analysis [J]. Analytica Chimica Acta, 1985, 173:3-21.
    [30] DASGUPTA P K, ZHANG G. PORUTHOOR S K, et al. Highsensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection[J]. Analytica Chimica Acta, 1998, 70: 46-61.
    [31] YOUNGHO LEE B. Review of the present status of optical fiber sensors [J]. Optical Fiber Technology, 2003, 9: 57-79.
    [32]于海,何苗,蔡强等.检测水中急性毒性污染物的发光细菌光纤传感器的研究[J].环境科学, 2008, 2: 375-379.
    [33] BUERCK J, ROTH S, KRAEMER K, et al. OTDR fiber-optical chemical sensor system for detection and location of hydrocarbon leakage[J]. Journal of Hazardous Materials, 2003, 102: 13-28.
    [34] KATHRYN L BROGAN, DAVID R Walt. Optical fiber-based sensors: application to chemical biology [J]. Current Opinion in Chemical Biology, 2005, 9: 494-500.
    [35] Grattan K T V, Sun T. Fiber optic sens or technology: an overview [J]. Sensors and Actuators A: Physical, 2000, 82: 40-61.
    [36] MOSELAY P T. Materials selection for semiconductor gas sensors [J]. Sensors and Actuators B: Chemical, 1992, 6: 149-156
    [37] YAMAZOE N, KUROKAWA Y, SEIYAMA T. Effects of additives on semiconductor gas sensors [J] Sensors and Actuators, 1983, 4: 283-289.
    [38] MORRISON S R. Selectivity in semiconductor gas sensors [J] Sensors andActuators, 1987, 12:425-440.
    [39] AZAD A M, AKBAT S A.Solid-State Gas Sensor: A Review [J]. Journal of The Electrochemical Society, 1992, 139:3690-3701.
    [40] SBERVEGLIERI G. Classical and novel techniques for the preparation of SnO2 thin-film gas sensors. [J] Sensors and Actuators B: Chemical, 1992,6 : 239-247.
    [41] M SCHWEIZER-BERBERICH. [M] Tubingen, 1998
    [42] LENAERTS S, ROGGEN J, MAES G. FT-IR characterization of tin dioxide gas sensor materials under working conditions. [J].Spectrochimica Acta Part A-Molecular Spectroscopy, 1995, 51: 883-894.
    [43] S R MORRISON. The Chemical Physics of Surfaces, 2nd edn. (Plenum Press, New York, 1990).
    [44] D. KOHL, in Gas Sensors edited by, G. Sberveglieri (Kluwer, Dordrecht,1992)
    [45] G. HEILAND, D. KOHL, in Chemical Sensor Technology, Vol. 1, edited by T. Seiyama (Kodansha, Tokyo), Ch. 2, pp. 15–38.
    [46] S.R. MORRISON, The Chemical Physics of Surfaces, 2nd edn (Plenum Press, New York, 1990).
    [47] HENRICH V A, COX P A .The Surface Science of Metal Oxid s [M] (University Press, Cambridge, 1994), pp. 312-316
    [48] M. EGASHIRA, M. NAKASHIMA, S. KAWASUMI. Change of thermal desorption behaviour of adsorbed oxygen with water coadsorption on Ag+-doped tin (IV) oxide [J]. Journal of the Chemical Society Chemical Communications. 1981, 20: 1047-1049.
    [49]孙建平,惠春,徐爱兰,等.紫外光辐照下金属氧化物薄膜气敏特性研究进展[J].电子元件与材料, 2005, 24: 65-69.
    [50] MISHRA S, RAM C G N. Detection mechanism of metal oxide gas sensor under UV radiation [J]. Sensors and Actuators B: Chemical, 2004, 97: 387-390.
    [51] ZAKRZEWSKA K. Mixed oxide as gas sensors [J]. Thin solid films, 2001, 391: 229-238.
    [52]徐毓龙, HEILAND G.金属氧化物气敏传感器(I) [J].传感技术学报, 1995, 4: 59-64.
    [53] CAMAGNI P, FAGLIA Q, GALINETTO P, et al. Photosensitivity activation of SnO2 thin film gas sensors at room temperature [J]. Sensors and Actuators B: Chemical, 1996, 3l: 99-103.
    [54] COMINI E, FAGLIA G,SBERVEGLIERI G. UV light activation of tin oxide thin films for NO2 sensing at low temperatures [J]. Sensors and Actuators B:Chemical, 2001, 78: 73-77.
    [55] KIND H, YAN H, MESSER B, LAW M, et al. Nanowire Ultraviolet Photodetectors and Optical Switches [J]. Advanced Materials, 2002, 14: 158-160.
    [56] COMINI E, FAGLIA G, SBERVEGLIERI G. UV light activation of tin oxide thin films for NO2 sensing at low temperatures [J]. Sensors and Actuators B: Chemical, 2001, 78: 73-77.
    [57] ANOTHAINART K, BURGMAIR M, KARTHIGEYAN A, et al. Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work functionmeasurements [J]. Sensors and Actuators B: Chemical, 2003, 93: 580-584.
    [58] BASAK D, AMIN Q, MALLIK B, et al. Photoconductive UV detectors on sol-gel synthesized ZnO films [J]. Journal of Crystal Growth , 2003, 256: 73-77.
    [59]桂阳海,张勇,王焕新,等.气敏元件室温光激发气敏性能研究[J].电子元件与材料, 2008, 27: 13-16.
    [60]李金艳,胡木林,谢长生.紫光激发提高ZnO基半导体气敏传感器的敏感性能[J].传感技术学报, 2006, 19: 293-296.
    [61]刘宏伟,孙建平,惠春,等.紫外光照下ZnO基薄膜的光电和气敏特性研究[J].电子元件与材料, 2005, 24: 13-15.
    [62] DE LACY COSTELLO B P J , EWEN R J, RATCLIFFE N M, RICHARDS M. Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles [J]. Sensors and Actuators B: Chemical, 2008, 134: 945-952.
    [63] RUIZ A, CORNET A, SAKAI G, et al. Preparation of Cr-doped TiO2 thin film of p-type conduction for gas sensor application [J]. Chemistry Letters, 2002, 9: 892-893.
    [64] ZHU B L, XIE C S, WANG W Y, et al. Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2 [J]. Materials Letters, 2004, 58: 624-629.
    [65] TAURINO A M, CAPONE S, BOSCHETTI A. Titanium dioxide thin films prepared by seeded supersonic beams for gas sensing applications [J]. Sensors and Actuators B: Chemical, 2004, 100: 177-184.
    [66]翟琳,仲飞,刘彭义. TiO2气敏传感器研究进展[J].传感世界, 2005, 2: 6-9.
    [67]ZHANG D, LI C, HAN S, et al. Ultraviolet photodetection properties of indium oxide nanowires [J]. Applied Physics A, 2003, 77: 163-166.
    [68]FENG P, XUE X Y,LIU Y G, et al. Achieving fast oxygen response in individualβ-Ga2O3 nanowires by ultraviolet illumination [J]. Appied Physics Letters, 2006,89: 112114-112116.
    [69] LI Q H, GAO T, WANG Y G, WANGT H.Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements [J].Appied Physics Letters, 2005, 86:123117-123119.
    [70]WAN Q, LI Q H, CHEN Y J, et.al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Appied Physics Letters, 2004, 84: 3654-3662.
    [71]HAN C H, HONG D W, HANA S D, et al. Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED [J]. Sensors and Actuators B, 2007, 125: 224-228.
    [72]张宏,林志东,艾华.纳米氧化物薄膜紫外光照下气敏性能研究进展[J].电子元件与材料,2008,27: 8-11.
    [73]林志东,吕进玉,曾文.纳米TiO2薄膜微阵列电极的制备与紫外光电阻特性表征[J].功能材料, 2007, 38 : 364-365.
    [1] WANDER A, SCHEDIN F, STEADMAN P, et al. Stability of polar oxide surfaces[J]. Physical Review Letters, 2001, 86:3811-3814.
    [2] LAGOWSKI J, SPROLES JR E S, GATOS H C. Quantitative study of the charge transfer in chemisorption; oxygen chemisorption on ZnO [J]. Journal of Applied Physics, 1977, 48: 3566-3575.
    [3] HENRICH V E, COX P A, The surface science of metal oxides 1994, Cambridge University Press, Cambridge.
    [4] PARK C H, ZHANG S B, WEI S H. Origin of p-type doping difficulty in ZnO: The impurity perspective [J]. Physical Review B, 2002, 66:073202-073204.
    [5] YAN Y, ZHANG S B, PANTELIDES S T. Control of doping by impurity chemical potentials: predictions for p-type ZnO [J]. Physical Review Letters, 2001, 86:5723-5726.
    [6] BAE S H, LEE S Y, JIN B J, et al. Pulsed laser deposition of ZnO thin films for applications of light emission [J]. Applied Surface Science, 2000, 154:458-461.
    [7] YOON K N, CHO J Y. Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique [J]. Materials Research Bulletin, 2000, 35:39-46.
    [8] STUDENIKIN S A, GOLEGO N, COCIVERA M. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis [J]. Journal of Applied Physics, 1998, 84: 2287-2294.
    [9] VANHEUSDEN K, SEAGER C H, WARREN W L, et al. Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis [J]. Journal of Luminescence, 1997, 75:11-16.
    [10] CHEN Y, BAGNALL D M, KOH H, et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization [J]. Journal of Applied Physics, 1998, 84:3912-3918.
    [11] WOLLENSTEIN J, PLAZA J A, CANE C, et al. A novel single chip thin film metal oxide array [J]. Sensors and Actuators B: Chemical, 2003, 93:350-355.
    [12] JIAQUIANG X, YUPING C, YADONG L, et al. Gas sensing properties of ZnO nanorods prepared by hydrothermal method [J]. Journal of Materials Science, 2005, 40:2919-2921.
    [13] WANG H T, KANG B S, REN F, et al. Hydrogen-selective sensing at room temperature with ZnO nanorods [J]. Applied Physics Letters, 2005, 86:243503-243505.
    [14] MOSELEY P T. Materials selection for semiconductor gas sensors [J]. Sensors and Actuators B: Chemical, 1992, 6:149-156.
    [15] WHITE N M, TURNER J D. Thick-film sensors: past, present and future [J].Measurement Science and Technology, 1997, 8:1-20.
    [16] KOHL D. Function and applications of gas sensors [J]. Journal of Physics D: Applied Physics, 2001, 34:R125-R149.
    [17] LIU X, LI C, HAN S, et al. Synthesis and electronic transport studies of CdO nanoneedles [J]. Applied Physics Letters, 2003, 82:1950-1952.
    [18] KOLMAKOV A, ZHANG Y, CHENG G, et al. Detection of CO and oxygen using tin oxide nanowire sensors [J]. Advanced Materials, 2003,15:997-1000.
    [19] KASUGA T, HIRAMATSU M, HOSON A, et al. Titania nanotubes prepared by chemical processing [J]. Advanced Materials, 1999, 11:1307-1311.
    [20] KASUGA T, HIRAMATSU M, HOSON A, et al. Formation of titanium oxide nanotube [J]. Langmuir, 1998, 14:3160-3163.
    [21] TAKASHI TACHIKAWA, MAMORU FUJITSUKA, TETSURO MAJIMA. Insight into the TiO2 Photocatalytic reactions: design of new photocatalysts [J]. The Journal of Physical Chemistry C, 2007, 111:5259-5275.
    [22] GUI Z, LIU J, WANG Z, et al. From muticomponent precursor to nanoparticle nanoribbons of ZnO [J]. The Journal of Physical Chemistry B, 2005, 109:1113-1117.
    [23] LIN C C, CHEN S Y, CHENG S Y, et al. Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering [J]. Journal of Applied Physics, 2004, 84:5040-5042.
    [24] MADOU M J S, MORRISON R. Chemical sensing with solid state devices, Academic Press, NewYork, 1989.
    [25] LIAO L, LU H, LI J, et al. Size dependence of gas sensitivity of ZnO nanorods [J]. The Journal of Physical Chemistry C, 2007, 111:1900-1903.
    [26] HALPERIN W P. Quantum size effects in metal particles [J]. Reviews of Modern Physics, 1986, 58:533-606.
    [27] LI Q H, GAO T, WANG Y G, et al. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements [J]. Applied Physics Letters, 2005, 86:123117-123119.
    [28] AO C H, LEE S C, YU J Z, et al. Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs [J]. Applied Catalysis B: Environmental, 2004, 54:41-50.
    [29] YANG J, LI D, ZHANG Z, et al. A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2 [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 137:197-202.
    [30] TACHIKAWA T, FUJITSUKA M, MAJIMA T, et al. Mechanistic insight into theTiO2 photocatalytic reactions: design of new photocatalysts [J]. The Journal of Physical Chemistry C, 2007, 111:5259-5275.
    [31] KIND H, YAN H, MESSER B, et al. Nanowire ultraviolet photodetectors and optical switches [J]. Advanced Materials, 2002, 14:158-160.
    [32] LI Q H, GAO T, WANG Y G, et al. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements [J]. Applied Physics Letters, 2005, 86:123117-123119.
    [33] ZHANG. D H. Adsorption and photodesorption of oxygen on the surface and crystallite interfaces of sputtered ZnO films [J]. Materials Chemistry and Physics, 1996, 45:248-252.
    [34] QI X, OSTERLOH F E. Chemical Sensing with LiMo3Se3 nanowire films [J]. Journal of The American Chemical Society, 2005,127:7666-7667.
    [35] HEIN M, SCHUMACHER D. Changes of the DC resistivity and the broadband IR reflectivity of thin metal films due to coverage [J]. Journal of Physics D: Applied Physics J. Phys, 1995, 28:1937-1941.
    [36] YAMAZOE N. Toward innovations of gas sensor technology [J]. Sensors and Actuators B: Chemical, 2005, 108:2-14.
    [37] TACHIKAWA T, FUJITSUKA M, MAJIMA T, et al. Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts [J]. The Journal of Physical Chemistry C, 2007, 111:5259-5275.
    [38] SHUTTLE C G, O’REGAN B, M BALLANTYNE, et al. Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell [J]. Applied Physics Letters, 2008, 92:093311-093313.
    [39] IVAN M, THOMAS D, GERMA G B, et al. Determination of spatial charge separation of diffusing electrons by transient photovoltage measurements [J]. Journal of Applied Physics, 2006, 100:103705-103710.
    [40] ORTON J W, POWELL M J. The Hall effect in polycrystalline and powdered semiconductors [J]. Reports on Progress in Physics, 1980, 43:1263-1307.
    [41] CANHAM L T. Properties of porous silicion, INSPEC Press: London, 1997.
    [42] NEUWALD U, FELTZ A, MEMMERT U,et al. Chemical oxidation of hydrogen passivated Si (111) surfaces in H2O2 [J]. Journal of Applied Physics, 1995, 78:4131-4136.
    [43] HU J W, BANDO Y. Growth and optical properties of single-crystal tubular ZnO whiskers [J]. Applied Physics Letters, 2003, 82:1401-1403.
    [44] GRELA M, COLUSSI A J. Kinetics of Stochastic Charge Transfer and Recombination Events in Semiconductor Colloids. Relevance to PhotocatalysisEfficiency [J]. The Journal of Physical Chemistry, 1996, 100:18214-18221.
    [45] ALMQUIST C B, BISWAS P. Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity [J]. Journal of Catalysis, 2002, 212:145-156.
    [46] DODD1 A C, MCKINLEY A J, SAUNDERS M, et al. Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide [J]. Journal of Nanoparticle Research, 2006, 8:43-51.
    [47] APRILE C, CORMA A, GARCIA H. Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: from subnanometric to submillimetric length scale [J]. Physical Chemistry Chemical Physics, 2008, 10:769-783.
    [48] COMINI E, CRISTALLI A, FAGLIA G, et al. Light enhanced gas sensing properties of indium oxide and tin dioxide sensors [J]. Sensors and Actuators B: Chemical, 2000, 65:260-263.
    [49] WAN Q, LI Q H, CHEN Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Applied Physics Letters, 2005, 84:3654-3656.
    [50] COMINI E, FAGLIA G, SBERVEGLIERI G. UV light activation of tin oxide thin films for NO2 sensing at low temperatures [J]. Sensors and Actuators B: Chemical, 2001, 78:73-77.
    [51] LAW M, KIND H, MESSER B, et al. Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature [J]. Angewandte Chemie International Edition, 2002, 41:2405-2408.
    [52] FENG P, XUE X Y, LIU Y G, et al. Achieving fast oxygen response in individualβ-Ga2O3 nanowires by ultraviolet illumination [J]. Applied Physics Letters, 2006, 89:112114-112116.
    [53] DONG L, BUSH J, CHIRAYOS V, et al. Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects [J]. Nano Letters, 2005, 10:2112-2115.
    [54] LI Q H, GAO T, WANG Y G, et al. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements [J]. Applied Physics Letters, 2005, 86:123117-123119.
    [55] DONG L, BUSH J, CHIRAYOS V, et al. Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects [J]. Nano Letters, 2005, 10:2112-2115.
    [1] MAUGER A, GODART C, et al. Recent progress in the magnetism theory of ZnO-based diluted magnetic semiconductors [J]. Physics Reports, 1986, 141:51-157.
    [2] TREITINGER L, G¨OBEL H, PINK H, et al. Magnetic semiconducting spinels in the mixed system Co1?xFexCr2S4 [J]. Materials Research Bulletin, 1976, 11: 1375-1379.
    [3] STEIGMEIER E, HARBEKE G, et al. [J]. Physics Condens Materials, 1970, 12: 1.
    [4] MATSUMOTO Y, MURAKAMI M, SHONO T, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide [J]. Science, 2001, 291: 854-856.
    [5] DIETL T, OHNO H, MATSUKURA F, et al Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J]. Science, 2000, 287:1019-1022.
    [6] SHARMA P, GUPTA A, RAOK, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO [J]. Natural Materials, 2003, 2: 673-677.
    [7] THEODOROPOULOU N, MISRA V, PHILIP J, LECLAIR P, BERERA G P, MOODERA J S, SATPATI B, Som T 2004 Preprintcond-mat, 0408294
    [8] LIMS W, JEONG M C, HAM M H, ET AL. Hole-mediated ferromagnetic properties in Zn1-xMnxO thin films [J]. Japanese Journal of Applied Physics, 2004, 43: L280-L283.
    [9] KOLESNIK S, DABROWSKI B, MAIS J,et al. Structural and magnetic properties of transition metal substituted ZnO [J]. Journal of Applied Physics, 2004, 95: 2582-2586.
    [10] MAKINO T, SEGAWA Y, KAWASAKI M, et al. Band gap engineering based on MgxZn1–xO and CdyZn1–yO ternary alloy films [J]. Applied Physics Letters, 2001, 78: 1237-12379.
    [11] OHTOMO A, KAWASAKI M, KOIDA , et al. MgxZn1– xO as a II–VI widegap semiconductor alloy [J]. Applied Physics Letters, 1998, 72: 2466-2468.
    [12] KENJI U, HITOSHI T, TOMOJI K, et al. Magnetic and electric properties of transition-metal-doped ZnO films [J]. Applied Physics Letters, 2001, 79: 988-990.
    [13] RODE K, ANANE A, MATTANA R, et al. Magnetic semiconductors based on cobalt substituted ZnO [J]. Journal of Applied Physics, 2003, 93: 7676-7678.
    [14] JAKANI M, CAMPET G, CLAVERIE J, et al. Sub nanosecond transient photocurrents in a-Si:H: A probe of thermalization within shallow band-tail states [J]. Solid State Communications, 1985, 56: 256-269.
    [15] BAHADUR L , RAO T N, et al. Photoelectrochemical studies of cobalt-doped ZnO sprayed thin film semiconductor electrodes in acetonitrile medium [J]. Solar Energy Materials and Solar Cells, 1992, 27: 347-360.
    [16] WU J R, SUN Y L, LIN C C, et al. Composite of TiO2 nanowires and nafion as humidity sensor material [J]. Sensors and Actuators B: Chemical, 2006, 115:198-204.
    [17] GUI Z, LIU J, WANG Z, et al. From Muticomponent Precursor to Nanoparticle Nanoribbons of ZnO [J]. Journal of Physical Chemistry B, 2005, 109:1113-1117.
    [18] LAW J B, THONG K J T L, et al. Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time [J]. Applied Physics Letters, 2006, 88: 133114-133116.
    [19] PENG L., WANG D., YANG M., et al. The characteristic of photoelectric gas sensing to oxygen and water based on ZnO nanoribbons at room temperature [J]. Applied Surface Science. 2008, 254: 2856-2860.
    [20] FENG P, ZHANG J Y, LI Q H, et al. Nonlinear characteristics of the Fowler–Nordheim plot for field emission from In2O3 nanowires grown on InAs substrate [J]. Applied Physics Letters, 2006, 88: 053107-053109.
    [21] JIE J S, ZHANG W J, JIANG Y, et al. Photoconductive characteristics of single-crystal CdS nanoribbons [J]. Nano Letters, 2006, 6: 1887-1892.
    [22] HOPFEL R A, et al. Extremely high negative photoconductivity in p-modulation-doped GaAs quantum wells [J]. Applied Physics Letters, 1988, 52: 801.
    [23] PENCHINA C M, MOORE J S, HOLONYAK N, et al. Observations on the fermi surface of aluminum by neutron spectrometry [J]. Physical Review Letters, 1965, 143:634-637.
    [24] SREEKUMAR R, JAYAKRISHNAN R, KARTHA C S, et al. Anomalous photoconductivity in gamma In2Se3 [J]. Journal of Applied Physics, 2006,100:033707-0337075.
    [25] YANG M, XIE T F, PENG L, et al. Fabrication and photoelectric oxygen sensing characteristics of electrospun Co doped ZnO nanofibres [J]. Applied Physics A, 2007, 89: 427-430.
    [26] OZGUR U, ALIVOV Y I, LIU C, et al. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics, 2005, 98: 041301-041301103.
    [27] HUANG P, WU F, ZHU B, et al. CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst [J]. Journal of Physical Chemistry B, 2005, 109:19169-19174.
    [28] QU W, MEYER J, et al. Thick-film humidity sensor based on porous MnWO4 material [J]. Measurement Science and Technology, 1997, 8:593-600.
    [29] CHEN Z, LU C, et al. Humidity sensors: a review of materials and mechanisms [J]. Sensor Letters, 2005, 3: 274-295.
    [30] TAI W, OH J, et al. Humidity sensing behaviors of nanocrystalline Al-doped ZnO thin films prepared by sol-gel process [J]. Journal of Materials Science: Materials in Electronics, 2002, 13: 391-394.
    [31] CHIBA K, SATO R, YONEOKA T, et al. Desorption of tritiated water on materials by photon and electron irradiation [J]. Fusion Engineering Design, 2002, 61: 775-781.
    [32] FU X Q, WANG C, FENG P, et al. Anomalous photoconductivity of CeO2 nanowires in air [J]. Applied Physics Letters, 2007, 91: 073104-0731106.
    [33] KWIET S, STARR D E, GRUJIC A, et al. Femtosecond laser induced desorption of water from silver nanoparticles [J]. Applied Physics B, 2005, 80:115-123.
    [34] LIU W K, SALLEY G. M, DANIEL R, et al. Spectroscopy of photovoltaic and photoconductive nanocrystalline Co2+-doped ZnO electrodes [J]. Journal of Physical Chemistry B, 2005,109:14486-14495.
    [35] INOUE Y, MIYAUCHI Y, KIMURA A, et al. Photoacoustic spectra from Co doped ZnO with different grain or cluster sizes [J]. Japanese Journal of Applied Physics, 2004, 43: 2936-2939.
    [36] AHN S E, JI H J, KIM K, et al. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire [J]. Applied Physics Letters, 2007, 90: 153106-153108.
    [37] BERGER T, STERRER M, DIWALD O, et al. Light-induced charge separation in anatase TiO2 particles [J]. Journal of Physical Chemistry B, 2005,109: 6061-6068.
    [38] LIU W, SALLEY G M, GAMELIN D R, et al. Spectroscopy of photovoltaic and photoconductive nanocrystalline Co2+-doped ZnO electrodes [J]. Journal of Physical Chemistry B, 2005, 109:14486-14495.
    [39] LIN Y, WANG D, ZHAO Q, et al. A study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy [J]. Journal of Physical Chemistry B, 2004, 108: 3202-3206.
    [40] Avraham I, Danon A, Koresh J E, et al. Water coadsorption effect on the physical adsorption of N2 and O2 at room temperature on carbon molecular sieve fibers [J]. Physical Chemistry Chemical Physics, 1999, 1: 479-484.
    [41] OHEDA H, et al. Phase-shift analysis of modulated photocurrent: Its application to the determination of the energetic distribution of gap states [J]. Journal of Applied Physics, 1981, 52: 6693-6670.
    [42] PENG L, WANG D J, YANG M, et al. The characteristic of photoelectric gas sensing to oxygen and water based on ZnO nanoribbons at room temperature [J]. Applied surface science, 2008, 254: 2856-2860.
    [43] ARANA J, RODRIGUEZ J M D, DIAZ O G., et al. Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu [J]. Journal of Molecular Catalysis A: Chemical, 2004, 215: 153-160.
    [44] Martins H, Naes T, Calibration M, [M] Wiley & Sons, New York, 1998.
    [45] LIN Y, WANG D J, ZHAO Q D, et al. Influence of adsorbed oxygen on the surface photovoltage and photoluminescence of ZnO nanorods [J]. Nanotechnology, 2006, 17: 2110-2115.
    [46] Tobin, R. Mechanisms of adsorbate-induced surface resistivity-experimental and theoretical developments [J] Surface Science, 2002, 502-503: 374-387.
    [47] HEIN M, SCHUMACHER D, et al. Changes of the DC resistivity and the broadband IR reflectivity of thin metal films due to coverage [J]. Journal of Physics D: Applied Physics, 1995, 28: 1937-1941.
    [48] Tobin, R. Mechanisms of adsorbate-induced surface resistivity-experimental and theoretical developments [J] Surface Science, 2002, 502-503: 374-387.
    [49] ZHANG Y, TERRILL R, BOHN P, et al. Chemisorption and chemical reaction effects on the resistivity of ultrathin gold films at the liquid-solid interface [J]. Analytical Chemistry, 1999, 71:119-125.
    [50] SARUWATARI K, SATO H, KOGURE T, et al. Humidity-sensitive electrical conductivity of a langmuir-blodgett film of titania nanosheets: surface modification as induced by light irradiation under humid conditions [J]. Langmuir, 2006, 22: 10066-10071
    [51] SASAKI T, EBINA Y,FUKUDA K, et al. Titania nanostructured films derived from a titania nanosheet/polycation multilayer assembly via heat treatment and UV irradiation [J].Chemistry of Materials, 2002, 14: 3524-3530.
    [52] MAENSIRI S, SREESONGMUANG J, THOMAS C, et al. Magnetic behavior of nanocrystalline powders of Co-doped ZnO diluted magnetic semiconductors synthesized by polymerizable precursor method [J]. Journal of Magnetism and Magnetic Materials, 2006, 301: 422-432.
    [53] NOBORU Y, et al. Toward innovations of gas sensor technology [J]. Sensors and Actuators B: Chemical, 2005, 108: 2-14.
    [54] IZU N, SHIN W, MURAYAMA N, et al. Numerical analysis of response time for resistive oxygen gas sensors [J]. Sensors and Actuators B: Chemical, 2002, 87: 99-104.
    [55] SETKUS A, et al. Heterogeneous reaction rate based description of the response kinetics in metal oxide gas sensors [J]. Sensors and Actuators, B, 2002, 87: 346-357.
    [56] TETSUYA S, YOSHIHIRO Y, HIROYUKI M, et al. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol [J]. Applied Catalysis A, 2004, 263: 249–253
    [57] RANJANI V, CHAKRABORTY S, BASU S, et al. Blue-emitting copper-doped zinc oxide nanocrystals [J]. Journal of Physical Chemistry B, 2006, 110, No. 45, 2006: 22310-22312.
    [58] Gong H, Hu J Q, Wang J H, et al. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO [J]. Sensors and Actuators B: Chemical, 2006, 115: 247-251.
    [1] UMEDA M, NIIMI T, IMAG J,[P].Sci &Tech 1991, 38:281
    [2] HRAU B, BUNSEN G. Azo-hydrazone tautomerism in azo dyes. IV. Colour and tautomeric structure of adsorbed 1-phenylazo-2-naphthylamine and 1-phenylazo-2-naphthol dyes [J]. Physical Chemistry, 1969, 73:810-813
    [3] CHAMP R B, SHUTTUCH M D,[J]. U.S.Pat.Offen.3.898, 084,1975
    [4] TODOROV T, TOMORA N, NIKOLORA L, High Sensitivity Material with Reversible Photoinduced Anisotropy [J]. Optics Communications, 1983, 47:1231-1235
    [5] ERICHM, WENDORFF J H. [J].Mackromolchem Rapid Commun, 1987, 8: 4671
    [6] ERICHM, WENDORFF J H, RECK B, et al. [J].Mackromol chem Rapid Commun, 1987, 8: 591-593
    [7]AOSHIMA Y, EGAMI C, KAWATA Y, et al.[J]. Advanced Technology, 2000, 11 (8-12), 575-598
    [8] XU G, YANG Q GUANG, SI J H, et al. Application of all-optical poling in reversible optical storage in azopolymer films [J]. Optics Communications, 1999, 159 (1-3), 88-92
    [9] YOSHI K, KOCHO S, [P]. Eur Pat.Offen, 1992, 480: 821
    [10] HIDEKI N, TAKSUYA K, [P]. JP.Pat.Offen.1997, 9, 311: 478
    [11] EIICHI M, [P]. JP Pat Offen, 1993, 5, 142: 831
    [12] YASUO H, HIROYUKI. K, MINORU U, [J]. JP Pat. Offen 2,000,242,001 2000
    [13] LAW K Y, TARNAWSKYJ I W, POPOVIC Z D, [J]. J. Imag. Sci&Tech. 1994,38: 118-120
    [14] WANG C Y, CIMALLA V, KUPS T, etal. Integration of In2O3 nanoparticle based ozone sensors with GaInN/GaN light emitting diodes [J]. Applied Physics Letters, 2007, 91:1035091-1035093
    [15] ZHANG D, LI C, HAN S, et al. Ultraviolet photodetection properties of indium oxide nanowires, [J].Applied. Physics A: Materials Science&Processing, 2003, 77: 163-166
    [16] LAO C S, LI Y, WONG C P, et al. Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization, [J]. Nano Letters, 2007, 7, 5: 1323-1328
    [17] LIU Z F, JIN Z G, LIU X X, etal.Preparation and characteristics of ordered porous ZnO films by an electrodeposition method using PS array templates [J]. Semiconductor Science and Technology, 2006, 21: 60-68
    [18] FENG Q S, CAI W P, LI Y, et al, Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors[J]. Advanced Materials, 2005, 17: 2872-2877
    [19] ZHOU X Q, PAN P D, CHEN H Z etal. Synthesis and photoconductivity study of new bisazos containing hydrazone groups [J].Journal of Photochemistry and Photobiology A 1998, 115: 207-212
    [20] XIE T F, WANG D J, ZHU L J, et al. Application of surface photovoltage technique to the determination of conduction types of azo pigment films [J]. The Journal of Physical Chemistry B, 2000, 104(34): 8177-8181.
    [21] SPADAVECCHIA J, CICCARELLA G., SICILIANO P, et al. Spin-coated thin films of metal porphyrin-phthalocyanine blend for an optochemical sensor of alcohol vapours [J]. Sensors and Actuators B, 2004, 100: 88-93.
    [22] OPREA A, WEIMAR U, High sensitivity polyacrylic acid films for ammonia detection with field effect devices [J]. Sensors and Actuators B, 2005, 111-112: 572-576.
    [23] PATRICE T, JOSOWICZ M. Characterization of the interaction between poly(pyrrole) films and methanol vapor [J]. The Journal of Physical Chemistry, 1992, 96: 7824-7830
    [1] NAZEERUDDIN M K, KAY A, RODICIO I, HUMPHRY-BAKER R, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. [J] Journal of the American Chemical Society 1993, 115: 6382-6390.
    [2] NAZEERUDDIN M K, PéCHY P, RENOUARD T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-Based sloar cells [J] Journal of the American Chemical Society 2001, 123:1613-1624.
    [3] WANG P, ZAKEERUDDIN S M, MOSER J E, et al. Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells [J] Advanced Materials 2004, 16:1806-1811.
    [4] SHKLOVER V, OVCHINNIKOV Y E, BRAGINSKY L S, et al. Structure of organic/inorganic interface in assembled materials comprising molecular components. crystal Structure of the sensitizer bis [(4,4‘-carboxy-2,2‘-bipyridine) (thiocyanato)] ruthenium(II) [J] Chemistry of Materials 1998, 10: 2533-2541.
    [5] BRAGINSKY L, SCHKLOVER V J, Influence of interface structure on transversal electron transport [J] Solid State Communications 1998, 105, 701-704.
    [6] WENG Y, LI L, LIU Y, et al. Surface-binding forms of carboxylic groups on nanoparticulate TiO2 surface studied by the interface-sensitive transient triplet-state molecular probe [J] Journal of Physical Chemistry B 2003, 107, 4356-4363.
    [7] BENK? G, KALLIOINEN J, KORPPI-TOMMOLA J E I, et al. Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states [J] Journal of the American Chemical Society 2002, 124, 489-493.
    [8] ELLINGSON R J, ASBURY J B, FERRERE S, et al. Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru(4,4‘-dicarboxy-2,2‘-bipyridine)2(NCS)2] by infrared transient absorption [J] Journal of Physical Chemistry B 1998, 102, 6455-6458.
    [9] ASBURY JB, HAO E, WANG Y, et al. Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films [J] Journal of Physical Chemistry B 2001, 105, 4545-4557.
    [10] TACHIBANA Y, MOSER J E, GR?TZEL M, et al. Subpicosecond interfacial charge separation in dye-Sensitized nanocrystalline titanium dioxide films [J] Journal of Physical Chemistry 1996, 100, 20056-20062.
    [11] BURFEINDT B, HANNAPPEL T, STORCK W, et al. Measurement of temperature-independent femtosecond interfacial electron transfer from an anchored molecular electron donor to a semiconductor as Acceptor [J] Journal of Physical Chemistry 1996, 100, 16463-16465.
    [12]姜月顺,杨文胜,化学中的电子过程,[M]北京:科学出版社, 2004.
    [13] HAASE M, WELLER H, HENGLEIN A, Electron storage on zinc oxide particles and size quantization [J] Journal of Physical Chemistry 1988, 92, 482-487

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700