用户名: 密码: 验证码:
黄土高原农牧交错带土壤-人工植被-大气系统水量转化规律及模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原农牧交错带以干旱和半干旱气候类型为主,降水稀少,植被生物量普遍偏小、冠幅不大,大多数植被呈斑块状分布。研究黄土高原稀疏人工植被覆盖下土壤-植被-大气系统水分运动和转化规律,可揭示该区代表性生态系统植被的耗水特性,对合理规划、布局和重建可持续发展的生态系统有重要意义。本文通过调查典型乔灌木树种和草种的细根空间分布特征,监测SVAT系统水分平衡分量,系统掌握了不同植被类型水分转化特征和规律;并应用SHAW模型模拟不同植被覆盖下水分和能量在SVAT系统各层次间的传输特征,分析典型植被长期耗水过程,初步探讨该区坡面适宜的植被覆盖度。本研究的主要结论如下:
     (1)六道沟流域主要乔灌木树种0-100 cm土层中细根分布较多,100 cm以下逐渐减少。刺槐细根分布主要集中在0-340 cm;沙黄土柠条和沙柳细根分布主要集中在0-300 cm,而沙地柠条和沙蒿细根分布相对较浅,主要集中在200 cm以内。就0-100 cm土层中细根分布的比例而言,沙地柠条>沙蒿>黄土柠条>沙柳>刺槐。
     (2)不同土地利用方式对剖面土壤水分有重要影响。油松和沙蒿的土壤水分状况较好,刺槐、小叶杨、沙柳、柠条和沙柳-柠条-沙蒿混交林土壤含水量较低,其中以0-200 cm土层较为明显。不同土质上生长的20多龄柠条均大量消耗了0-200 cm土层的土壤水分,但对200 cm以下土壤水分影响不尽相同,硬黄土深层土壤水分条件相对较好,其次为披沙地和风沙土,沙黄土深层土壤水分被大量消耗,水分状况最差。3-5年生的苜蓿大量消耗0-280 cm土层土壤水分,第3年土壤储水量只有农地的一半。
     (3)不同植被覆盖下水量平衡分析表明,整个观测期沙黄土上生长的油松和柠条土壤水分变化基本保持平衡,平均蒸散量/降水量(ET/P)之比分别为97.6%和98.3%;而3-5年生的苜蓿土壤储水呈负平衡,平均ET/P高达107.5%。风沙土上生长的柠条、沙柳和沙蒿土壤储水也基本保持平衡,平均ET/P变化在95.7%-98.8%;刺槐、小叶杨和沙柳-柠条-沙蒿混交林蒸散量略高于同期降水量,平均ET/P分别为103%、101.6%和101.1%。
     (4)通过验证SHAW模型可以很好地模拟黄土高原农牧交错带人工植被水分和能量动态变化。对苜蓿、柠条和油松小区剖面土壤水分模拟效率(ME)在0.54-0.82,相对平均绝对误差(RMAE)在9.2%-12.9%;对短波辐射、地表净长波辐射和净辐射模拟值与实测值的相对平均绝对误差(RMAE)分别为11.3%、18.4%和20.2%。能量平衡组成分析表明,阴坡苜蓿地、短花针茅地和谷子地能量主要消耗于蒸散发的潜热,而阳坡柠条林地和油松林地能量的消耗主要是感热。
     (5)根据土壤允许流失量和植物对土壤水分的适度消耗与盖度的关系,对该区代表性灌草植物适宜生长冠层盖度进行了初步研究,确定六道沟流域坡地适宜的苜蓿和柠条盖度分别为33%-40%和25%-32%。
In the farming-pastoral zone of the Loess Plateau, with arid and semi-arid climate and scarce precipitation, the majority of vegetation distribution is patchy with lower biomass and relatively small canopy. Research on the water movement and transformation of soil- vegetation-atmosphere-transfer can reveal the water consumption characteristics of the representative sparse vegetation in the region, and it will help to establish sustainable development ecosystem. In this study, in order to understand the water consumption and movement in different SVATs, the spatial distribution of fine roots of typical trees, shrubs and grasses species were investigated, the components of SVAT system water balance were monitored. In addition, SHAW model was used to simulate energy and water transmission among the components of SVAT system under different land use patterns, long-term water consumption process of typical vegetation were also simulated, and the suitable vegetation coverage were determined by the relationship between vegetation and soil water in this area. The main conclusions of this study are as follows:
     (1)More fine roots of representative arbors and shrubs in the Liudaogou Basin occurred in the upper 100 cm soil layer and fewer were below 100 cm. The majority of fine roots of Robinia pseudoacacia concentrated in 0-340 cm; for Caragana korshinkii which grown in loess soil and Salix psammophila were both 0-300 cm; the fine roots of C. korshinkii in sandy soil and Artemisia ordosica mainly concentrated in 0-200 cm. The proportion of fine roots in 0-100 cm of total fine roots was C. korshinkii in sandy soil>A. ordosica>C. korshinkii in loess soil> S. psammophila>R. pseudoacacia.
     (2)The soil water in profile was greatly affected by different land use patterns. The soil water condition was better in P. tabulaeformis and A. ordosica land, but R. pseudoacacia, P. simonii, S. psammophila, C. korshinkii and S. psammophila-C. korshinkii- A. ordosica were suffered different levels of water stress, especially the soil moisture content was very low in 0-200 cm soil layer. 20 years old C. korshinkii grown in different soils all strongly consumed the soil water in 0-200 cm, but they had different effect on the soil water below 200 cm. The soil water condition was relatively good in red clay soil and hard loess soil, followed by aeolian soil and sandy soil, the lower soil water occurred in sandy loess soil. 3-5 years old M. sativa used more water in 0-280 cm soil layer, the soil water storage was only half of the farmland at the 3th year.
     (3)The water balance of different land use patterns indicated that the soil water kept balance for the P. tabulaeformis and C. korshinkii which grown in silt loam soil over the whole study period, the average evapotranspiration/precipitation (ET/P) was 97.6% and 98.3%, respectively; but the soil water storage was deficit for 3-5 years old M. sativa land, and the average ET/P was 107.5%. The soil water also remained balance for the S. psammophila, A. ordosica and C. korshinkii which grown in sandy soil during the same period, the average ET/P changed from 95.7% to 98.8%; the average evapotranspiration for R. pseudoacacia, P. simonii and S. psammophila-C. korshinkii-A. ordosica lands slightly exceeded precipitation, the average ET/P were 103%, 101.6%and 101.1%, respectively.
     (4)SHAW model could be used to simulate the dynamics of solar radiation and soil water. The simulated net solar radiation was in good agreement with the measured values, and the relative mean absolute error (RMAE) was around 21%. The soil water model efficiency (ME) for P. tabulaeformis, C. korshinkii and M. sativa land over two growing seasons was from 0.54 to 0.82, RMAE changed between 9.2% and 12.9%. Energy balance showed that, the major consumption of energy was the latent heat of evapotranspiration for M. sativa, S. breviflora and Millet at the shade slope, but the energy consumption was mainly sensible heat for P. tabulaeformis and C. korshinkii at the sunny slope.
     (5)Considered the relationship between the suitable amount of soil erosion and moderate soil water consumption by plants and the vegetation coverage, the suitable coverage for M. sativa and C. korshinkii in hillslope was 33%-40% and 25%-32%, respectively.
引文
[1]穆兴民,徐学选,陈霁巍,等.黄土高原生态水文研究[M].北京:中国林业出版社, 2001
    [2]刘树华,蔺洪涛,胡非,等.土壤-植被-大气系统水分散失机理的数值模拟[J].干旱气象, 2004, 22(3):1-10
    [3]赵文智,程国栋.干旱区生态水文过程研究若干问题评述[J].科学通报, 2001,46(22): 1851-1857
    [4]刘昌明,孙睿.水循环的生物学方面:土壤-植被-大气系统水分能量平衡研究进展[J].水科学进展, 1999, 10(3):251-259
    [5]康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及应用[M].北京:水利电力出版社, 1994
    [6]刘昌明,王会肖.土壤-作物-大气界面水分过程与节水调控[M].北京:科学出版社.1999
    [7]李保国,龚元石,左强,等.农田土壤水动态模型及应用[M].北京:科学出版社. 2000
    [8]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社. 1998
    [9]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社. 2000
    [10]康尔泗,程国栋,宋克超,等.河西走廊黑河山区土壤-植被-大气系统能水平衡模拟研究[J].中国科学D辑. 2004,34 (6): 544-551
    [11] Shuttleworth W. J. and Wallace J. S. Evaporation from sparse crops: an energy combination theory [J]. Quarterly Journal of the Royal Meteorological Society. 1985, 111:839-855
    [12] Pelgrum, H., Bastiaanssen W.G. M.. An intercomparison of techniques to determine the area-averaged latent heat flux from individual in-situ observations: A remote sensing approach using the European Field Experiment in a Desertification- Threatened Area data [J]. Water Resources Research, 1996, 32(9): 2775-2786
    [13] Noilhan J, Lacarrere P, Dolman B, et al. Defining area-average parameters in meterological models for land surfaces with meso-scale heterogeneity. Journal of Hydrology [J]. 1997, 190: 3-4: 302-316
    [14] Sene, K. J.. Meteorological estimates for the water balance of a sparse vine cropgrowing in semiarid conditions [J]. Journal of Hydrology, 1996:179, 259–280
    [15] EUROFLUX-Long term CO2 and water vapour fluxes of European forests and interactions with the climate system. http://www.unitus.it/eflux/euro.html.
    [16] NOPEX-Northern Hemisphere Climate-Processes Land-Surface Experiment; http://www.hyd.uu.se/nopex/.
    [17] Aber, J. D., Ollinger, S.V., Federer, C. A. and Driscoll, C. Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition [J]. Ecological Modelling, 1997, 101:61-78
    [18] Bouten, W., and Witter, J. V. Modeling soil water dynamics in a forested ecosystem II: evaluation of spatial variation of soil profiles [J]. Hydrological Process. 1992, 6:435-444
    [19] Flerchinger, G.N. and F.B. Pierson. Modeling plant canopy effects on variability of soil temperature and water [J]. Agricultural and Forest Meteorology, 1991, 56: 227-246
    [20] Flerchinger, G.N. Sensitivity of soil freezing simulated by the SHAW Model [J]. Transaction of Asae 1991, 34(6): 2381-2389
    [21] Flerchinger, G.N., Baker J.M. and Spaans E.J.A.. A test of the radiative energy balance of the SHAW model for snowcover [J]. Hydrological Process, 1996, 10: 1359-1367
    [22] Flerchinger, G.N., Hanson C.L., Kustas W.P., et al. Modeling Evapotranspiration on Semi-Arid Rangelands. On: compact disk, C.T. Bathala (ed.), North American Water and Environment Congress. June 22-28, 1996, Anaheim, CA.ASCE, New York, New York
    [23] Flerchinger G.N., Hanson C.L., Wight J.R. Modeling evapotranspiration and surface energy budgets across a watershed. Water Resource Research. 1996,32(8):2539-2548
    [24] Flerchinger, G.N., Pierson F.B.. Modeling plant canopy effects on variability of soil temperature and water: Model calibration and validation [J]. Journal of Arid Environment. 1997, 35: 641-653
    [25] Flerchinger G N, Kustas W P, Weltz M A. Simulating surface energy and radiometric surface temperatures for two arid vegetation communities using the SHAW model [J].Journal of Applied Meteorology, 1998, 37(5): 449-460
    [26]姚德良,沈卫明,李家春.塔里木盆地陆气水热交换数值模拟[J].水利学报, 1994, 5: 31-37
    [27]刘树华,黄子琛,刘立超,等.植被对近地面层水热交换影响的参数化模型[J].应用生态学报,1995, 6 (2):149-154.
    [28]刘树华,黄子琛,刘立超.土壤-植被-大气连续体中蒸散过程的数值模拟[J].地理学报, 1996,51 (2) : 118-126
    [29]莫兴国.土壤-植被-大气系统水分能量传输模拟和验证[J].气象学报, 1998, 56 (3):323-332
    [30] Corinna Moehrlen. Literature review of current used SVAT models UCC. Department of Civil & Environmental Engineering Internal Report:04-1999
    [31] Deardorff, J.W. Efficient prediction of Ground-Surface Temperature and Moisture, with inclusion of a Layer of Vegetation [J]. Journal of Geophysics Research., 1978, 83 (C4), 1889-1903
    [32] Noilhan, J., Planton, S., A simple parameterization of land surface processes for meteorological models [J]. Monthly Weather Review, 1989,117, 536-549
    [33] Lohman, D., Dennis P. Lettenmaier, Xu Liang, et al., The project for intercomparison of land-surface parameterization schemes (PILPS) phase 2(c): Red--Arkansas River basin experiment: Global and Planetary Change1998, (19)1-4, 161-179
    [34] Wood, E.F., Dennis P. Lettenmaier, Xu Liang, et al. The Project for Intercomparison of Land-surface Parameterization Schemes(PILPS) Phase 2(c) Red--Arkansas River basin experiment , Global and Planetary Change, 1998, (19)1-4, 115-135,
    [35] Henderson-Sellers, A., Soil moisture simulation: Achievements of the RICE and PILPS intercomparison workshop and future directions, Global and Planetary Change, 1996 , (13)1-4, 99-115
    [36] Beljaars A C M, Bosveld F C. Cabauw data for the validation of land surface parameterization schemes [J]. Journal of Climate. 1997. 10:1172–1193
    [37]刘家冈,万国良,张学培,等.林冠对降雨截留的半理论模型[J].林业科学, 2000,36(2):2-5
    [38] Dunkerley, D. Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies [J]. HydrologicalJournal of Applied Meteorology, 1998, 37(5): 449-460
    [26]姚德良,沈卫明,李家春.塔里木盆地陆气水热交换数值模拟[J].水利学报, 1994, 5: 31-37
    [27]刘树华,黄子琛,刘立超,等.植被对近地面层水热交换影响的参数化模型[J].应用生态学报,1995, 6 (2):149-154.
    [28]刘树华,黄子琛,刘立超.土壤-植被-大气连续体中蒸散过程的数值模拟[J].地理学报, 1996,51 (2) : 118-126
    [29]莫兴国.土壤-植被-大气系统水分能量传输模拟和验证[J].气象学报, 1998, 56 (3):323-332
    [30] Corinna Moehrlen. Literature review of current used SVAT models UCC. Department of Civil & Environmental Engineering Internal Report:04-1999
    [31] Deardorff, J.W. Efficient prediction of Ground-Surface Temperature and Moisture, with inclusion of a Layer of Vegetation [J]. Journal of Geophysics Research., 1978, 83 (C4), 1889-1903
    [32] Noilhan, J., Planton, S., A simple parameterization of land surface processes for meteorological models [J]. Monthly Weather Review, 1989,117, 536-549
    [33] Lohman, D., Dennis P. Lettenmaier, Xu Liang, et al., The project for intercomparison of land-surface parameterization schemes (PILPS) phase 2(c): Red--Arkansas River basin experiment: Global and Planetary Change1998, (19)1-4, 161-179
    [34] Wood, E.F., Dennis P. Lettenmaier, Xu Liang, et al. The Project for Intercomparison of Land-surface Parameterization Schemes(PILPS) Phase 2(c) Red--Arkansas River basin experiment , Global and Planetary Change, 1998, (19)1-4, 115-135,
    [35] Henderson-Sellers, A., Soil moisture simulation: Achievements of the RICE and PILPS intercomparison workshop and future directions, Global and Planetary Change, 1996 , (13)1-4, 99-115
    [36] Beljaars A C M, Bosveld F C. Cabauw data for the validation of land surface parameterization schemes [J]. Journal of Climate. 1997. 10:1172–1193
    [37]刘家冈,万国良,张学培,等.林冠对降雨截留的半理论模型[J].林业科学, 2000,36(2):2-5
    [38] Dunkerley, D. Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies [J]. Hydrological
    [54] Rutter AJ, Kershaw K A, Robins P C , et al. A predictive model of rainfall interception in forests I. Derivation of the model from observations in a plantation of Corsican pine [J]. Agricultural Meteorology, 1971, 9 :367-384
    [55] Gash J HC. An analytical model of rainfall interception in forests [J]. Q J R Meteorol Soc, 1979, 105:43-55
    [56] Gash J H C, Lloyd C R, Lachaud G. Estimation sparse forest rainfall interception with an analytical model [J]. Journal of Hydrology,1995,1 70,7 9-86.
    [57]崔启武.边履刚,史继德等.林冠对降水的截留作用[J].林业科学,1980,16(2): 141-146
    [58]王彦辉,于澎涛,徐德应,等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报.1998, 20(6):25-30
    [59]刘贤赵,康绍忠.林冠截留模型评述[J].西北林学院学报.1998,13(1):26-30
    [60]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报.2000,24(1):63-67
    [61] Valente, F., David, J. J. M., Gash, J. H. C.: Modeling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models[J]. Journal of Hydrology, 1997,190, 141–162
    [62]程根伟.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社,2004
    [63]王礼先,解明曙.山地防护林水土保持水文生态效益及其信息系统[M].北京:中国林业出版社,1997
    [64]吴钦孝,陈云民,刘向东.森林保持水土机理及功能调控技术[M].北京:科学出版社,2005
    [65]刘向东,吴钦孝,赵鸿雁.森林植被垂直截留作用与水土保持[J].水土保持研究, 1994, 1(3): 8-13
    [66]汪有科,吴钦孝,韩冰,等.森林植被水土保持功能评价[J].水土保持研究,1994, 1(3):24-30
    [67]杨新民.黄土高原灌木林地水分环境特性研究[J].干旱区研究. 2001, 18(1): 8-13
    [68] Saxton, K. E. Soil water characteristics-Hydraulic properties calculator.
    [69]樊军.水蚀风蚀交错带土壤水分运动与数值模拟研究[D].中国科学院教育部水土保持与生态环境中心, 2005
    [70] de Willigen, P. Nitrogen turnover in the soil–crop system comparison of fourteensimulation models [J]. Fertilizer Research, 1991, 27:141–149
    [71] Canton Y,Sole-Benet A,Domingo F.Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain [J]. Journal of Hydrology, 2004 (285) : 199-214
    [72] Dunne T, Zhang W and Aubry B.1991. Effects of rainfall, vegetation, and microtop- ography on infiltration and runoff. Water Resource Research, 27(9): 2271-2285
    [73] Hewlett, J. D., Hibbert A. R. Moisture and energy conditions within a sloping soil mass during drainage [J]. J. Geophysics Research, 1963, 68(4),1081–1087
    [74] Weyman, D. R.. Throughflow on hillslopes and its relation to the stream hydrograph, Bull. Int. Assoc [J]. Science of Hydrology, 1970,15, 25–33
    [75] Pilgrim, D. H., D. D. Huff, and T. D. Steele, A field evaluation of subsurface and surface runoff, II, Runoff processes [J]. Journal of Hydrology, 1978, 38, 319-341
    [76] Mosely, M. P. Streamflow generation in a forested watershed, New Zealand [J]. Water Resource Research, 1979,15, 795– 806,
    [77] Kirkby M J. Hillslope Hydrology [M], Awiley-interscience Publications. New York: John wiley and Sons, 1978
    [78] Hewlett, J. D., Hibbert R. A.1965: Factors affecting the response of small watersheds to precipitation in humid areas. Proc., Int.Symp. on Forest Hydrology, University Park, PA, Pennsylvania State University
    [79]于维忠.论流域产流[J].水利学报,1985,(2):1-11
    [80]芮孝芳.产汇流理论[M].北京:水利电力出版社.1995, 34-105, 125-168
    [81]芮孝芳.关于降雨产流机制的几个问题的讨论[J].水利学报.1996,9:22-26
    [82]芮孝芳,姜广斌.流域汇流理论与计算方法的若干进展与评论[J].水利水电技术.1997,28(9):43-45
    [83] Mein R G, Larson C L. Modeling infiltration during a steady rain [J]. Water Resource Research, 1973, 9(2):384-394
    [84] Chu, S. T. Infiltration during an unsteady rain [J]. Water Resource Research, 1978,14, (3): 461-466
    [85]范荣生,李长兴,李占斌.考虑降雨空间变化的流域产流模型[J].水利学报,1994, (3):33-39
    [86]刘贤赵,康绍忠.降雨入渗和产流问题研究的若干进展及评述[J].水土保持通报.1999,19(2):57-62
    [87]闺俊华.森林水文学研究进展[J].热带亚热带植物学报.1999.7(4):347-356
    [88] Allen, R. G., Pereira, L. S., Raes, D. and Smith, M.: 1998, Crop Evapotranspiration– Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainge Paper 56, FAO, 1998, ISBN92-5-104219-5
    [89]刘钰,蔡林根.参照腾发量的新定义及计算方法的对比[J].水利学报,1997,(6):27-33
    [90]毛飞,张光智,徐祥德.参考作物蒸散量的多种计算方法及其结果的比较[J].应用气象学报,2000,11(增刊):128-136
    [91]刘晓英,林而达,刘培军.干旱气候条件下Priestly-Taylor方法应用探讨[J].水利学报,2003,(9):31-37
    [92]于贵瑞.不同冠层类型的陆地植被蒸发散模型研究进展[J].资源科学.2001, 23(6): 72-84
    [93] Dickson R E , Henderson - Sellers. A Kennedy P J . Biosphere-Atmosphere Transfer Scheme (BATs) version l eas coupled to the NCAR community climate model. NCAR/ TN - 387 + STR, Boulder (Colorado). 72. 5 ,1986
    [94] Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmosphere GC-Ms. Part 1: Model formulation [J]. Journal of Climate. 1996, 9: 676-705
    [95]李玉山.黄土区土壤水循环特征及其对陆地水文循环的影响[J].生态学报,1983,3(2):91-101
    [96]李玉山.黄土高原森林植被对陆地水分循环影响的研究[J].自然资源学报,2001,16(5):427-432
    [97]杨文治,韩仕峰.黄土丘陵区人工林草地的土壤水分生态环境[J].中国科学院西北水土保持研究所季刊,1985, 2: 18-28
    [98]杨文治,邵明安.黄土高原环境旱化与黄土中水分的关系[J].中国科学(D辑),1998,28(4): 357-365
    [99]倪文进.黄土高原南部人工植被SPAC系统水分循环模式和利用效率研究[D].中国水利水电科学研究院, 2004.
    [100]杨文治,马玉玺,韩仕峰,等.黄土高原地区造林土壤水分生态分区研究[J].水土保持学报, 1994, 8(1):1-9
    [101]杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32 (1) :78-85
    [102]候庆春,韩蕊莲,韩仕峰.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持, 1999,(5) : 1-14
    [103]赵景波,周旗,侯甬坚.黄土高原土壤干层对生态环境建设的影响[J].陕西师范大学学报(自然科学版),2003,13(4):93-97
    [104]王力,邵明安,张青峰.陕北黄土高原土壤干层的分布和分异特征[J].应用生态学报,2004,15(3):436-442
    [105]郭正刚,张自和,肖金玉,等.黄土高原丘陵沟壑区紫花苜蓿品种间根系发育能力的初步研究[J].应用生态学报, 2002 ,13 (8):1007-1012
    [106]牛西午,丁玉川,张强,等.柠条根系发育特征及有关生理特性研究[J].西北植物学报,2003,23(5)860-865
    [107]单长卷,梁宗锁.黄土高原刺槐人工林根系分布与土壤水分的关系[J].中南林学院学报. 2006,26(1):19-22
    [108]赵忠,成向荣,薛文鹏,等.黄土高原不同水分生态区刺槐细根垂直分布的差异[J].林业科学, 2006,42(11):1-7
    [109]韦兰英,上官周平.黄土高原白羊草、沙棘和辽东栎细根比根长特性[J].生态学报, 2006,26(12):4164-4170
    [110]成向荣,黄明斌,邵明安.神木水蚀风蚀交错带主要人工植物细根垂直分布研究[J].西北植物学报,2007,27 (2) :0321-0327
    [111]杨新民,杨文治.黄土丘陵区人工林地土壤水分平衡初探[J].林业科学,1989,25 (6):549-552
    [112]陈一鹗,刘康.渭北旱塬紫花苜蓿的蒸腾强度与水量平衡研究[J].水土保持通报,1990,10(6):108-112
    [113]杨海军,孙立达,等.晋西黄土区水土保持林水量平衡的研究[J].北京林业大学学报,1993,15(3):42-50
    [114]余新晓,陈丽华.黄土地区防护林生态系统水量平衡研究[J].生态学报.1996, 16(3):238-245
    [115]杨新民,杨文治.灌木林地的水分平衡研究[J].水土保持研究, 1998,5(1): 109-118
    [116]吴钦孝.森林保持水土机理及功能调控技术[M].北京:科学出版社,2005
    [117]黄明斌,邵明安,李玉山.一个改进的随机动力学水平衡模型及其应用研究:I.模型[J].水利学报,2000, 6: 20-26
    [118]黄明斌,邵明安,李玉山.一个改进的随机动力学水平衡模型及其应用研究:II.应用[J].水利学报,2000, (6): 27-33
    [119]李细元,陈国良.人工草地土壤水系统动力学模型与过耗恢复预测[J].水土保持研究, 1996,3(1): 166-178.
    [120]陈洪松,邵明安,王克林.黄土区荒草地土壤水平衡的数值模拟[J].土壤学报. 2005, 42(3): 353-35
    [121]朱桂林,山仑,刘国彬.黄土高原农牧交错带植被恢复途径[J].中国水利, 2004, 8:30-32.
    [122]李世奎.中国农业气候区划[J].自然资源学报,1987,2(1):71-83
    [123]穆兴民.神木县农业气候资源及灾害天气分析[A].中国科学院水利部西北水土保持研究所集刊,1993,18:24-35
    [124]张平仓,王斌科,唐克丽.神木试区环境特征[A].中国科学院水利部西北水土保持研究所集刊,1993,18:16-22
    [125]贾恒义,雍绍萍,王富乾.神木试区的土壤资源[A].中国科学院水利部西北水土保持研究所集刊,1993,18:36-46
    [126]杨勤科,郑粉莉,张竹梅.神木试区土地资源与利用[A].中国科学院水利部西北水土保持研究所集刊,1993,18:47-56
    [127]侯庆春.神木试区自然条件及环境整治综合分析[A].中国科学院水利部西北水土保持研究所集刊,1993,18:136-137
    [128]唐克丽,侯庆春,王斌科等.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向[A].中国科学院水利部西北水土保持研究所集刊,1993, 18:1-15
    [129]胡顺军,田长彦,周宏飞.中子水分倪土壤墒情监槲方法研究[J].干旱地区农业研究, 2000,18(2) 70-74
    [130]伍维模,吕双庆,王冀平.中子水分仪在棉田土壤上的标定研究[J].干旱地区农业研究, 2002, 20(1):84-87
    [131] van Genuchten M Th, Leij F J, Yates S R. The RETC code for quantifying the hydraulic functions of unsaturated soils. Version1.0. EPA Report 600/2-91/065. US Salinity Laboratory, USDA, ARS, Riverside, CA, 1991
    [132] Tomlinson H, Traore A, Teklehaimanot Z. An investigation of the root distribution of Parkia biglobosa in Burkina Faso, West Africa, using a logarithmic spiral trench [J].Forest Ecology and Management, 1998,107:173-182
    [133] Rytter R M, Hansson A C. Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilized Salix viminalis L. plantation [J]. Biomass and Bioenergy, 1996, 11(2-3): 129-137
    [134] Fischer S, Brienza S JR, Vielhauer K, et al. Root distribution in enriched fallow vegetations in NE Amazonia, Brazil Proceedings of the Third SHIFT-Workshop Manaus, March 15-19, 1998, Hans- Hermann Wulff GKSS- Forschungszentrum Geesthacht GmbH [C],181-184.
    [135]李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报,1998, 9(4): 337-340
    [136] Lawson, G J. Roots in tropical agroforestry system, In : Cannell M G R , Crout N MJ , Dewar R C et al (eds. ) , Annual Report June 1993- June 1994 of Agroforestry Modelling and Research Coordination, ODA Forestry Research Programme RS651[R], 1995, 1-25.
    [137] Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area and nutrient contents [J]. Proceedings of Natural Science. USA, 1997, 94:7362-7366.
    [138] Tryon P R, Chapin F S. Temperature control over root growth and root biomass in taiga forest trees [J]. Canadian Journal of Forest Research, 1983, 13: 827-833.
    [139] Steele S J, Gower S T, Vogel J G, et al. Root mass, net primary production and turnover in Aspen , Jack pine and Black spruce forests in Saskatchewan and Manitoba, Canada [J]. Tree Physiology, 1997, 17: 577-587.
    [140] Ruijter F J, Veen B W, van Oijen M. A comparison of soil core sampling and minirhizotrons to quantify root development of field-grown potatoes [J]. Plant and Soil, 1996, 182:301-312.
    [141] Persson H, Fircks YV, Majdi H, et al. Root distribution in a Norway spruce ( Pinus abies (L. ) Karst.) stank subjected to drought and ammonium-sulphate application [J]. Plant and Soil, 1995, 169:161-165.
    [142] Laclau J P, Arnaud M, Bouillet J P, et al. Spatial distribution of Eucalyptus roots in a deep sandy soil in Congo: relationships with the ability of the stand to take up water and nutrients [J]. Tree Physiology, 2001,21, 129-136.
    [143]成向荣,赵忠,郭满才,等.刺槐人工林细根垂直分布模型的研究[J].林业科学,2006,42(6):41-48
    [144] Tiarks A, Nambiar E K S, Cossalter C. Site management and productivity in tropical forest plantations[R]. CIFOR Occasional Paper, 1998, 16, 11
    [145]张志山,樊恒文,赵金龙,等.沙漠人工植物群落的根系分布及动态[J].中国沙漠, 2006, 26(4):637-643
    [146]程积民,万惠娥,王静,等.半干旱区柠条生长与土壤水分消耗过程研究[J].林业科学.2005, 4l(2): 37-41
    [147]徐文铎,邹春静.中国沙地森林生态系统[M].北京:中国林业出版社,1998,55-56
    [148]吕文,杨自湘,王燕,等.中国北方小叶杨资源与发展[J].防护林科技,2001, 4: 33-36.
    [149]万素梅,胡守林,黄勤慧,等.不同紫花苜蓿品种根系发育能力的研究[J].西北植物学报, 2004,24(11):2048-2052
    [150]焦树英,韩国栋.若干禾本科牧草在荒漠草原区的适应性及其生产性能和营养价值评价[J].草地学报,2007,15(4):327-334
    [151] Luo Y, Meyerhoff P A, Loomis R S. Seasonal patterns and vertical distributions of fine roots of alfalfa [J].Field Crops Research,1995,40:119-127
    [152]郭正刚,刘慧霞,王彦荣.刈割对紫花苜蓿根系生长影响的初步分析[J].西北植物学报,2004,24(2):215-220
    [153]董世仁,郭景唐,满荣洲.华北油松人工林的透流、干流和树冠截留[J ].北京林业大学学报, 1987, 9 (1) : 58-67.
    [154]杨立文,张理宏.林冠对降雨截留过程的研究.见:李昌哲主编.太行山水土保持林营造技术及效益研究.北京:中国科学技术出版社,1991.76-84.
    [155]张建军,贺康宁,朱金兆.晋西黄土区水土保持林林冠截留的研究[J].北京林业大学学报, 1995,17(2):27-31.
    [156]曾杰,郭景唐.太岳山油松人工林生态系统降雨的第一次分配[J].北京林业大学学报,1997, 19(3):21-27.
    [157]王佑民,刘秉正.黄土高原防护林生态特征[M ].北京:中国林业出版社, 1994. 228-233.
    [158]张志山,张景光,刘立超,等.沙漠人工植被降水截留特征研究[J].冰川冻土,2005,27(5):761-766
    [159]范世香,高雁,程银才,等.林草植被对径流影响的小区实验研究[J].山东农业大学学报(自然科学版),2006, 37 (1),43– 47
    [160]程积民,万惠娥,王静.黄土丘陵区小叶杨林地土壤水分过耗动态[J].水土保持学报,2003,17(3): 70-73
    [161] Flerchinger G. N., Hardegree S.P.. Modeling near-surface soil temperature and moisture for germination response predictions of post-wildfire seedbeds [J]. Journal of Arid Environments, 2004, 59, 369-385.
    [162]王建群,卢志华.土地利用变化对水文系统的影响研究[J].地球科学进展,2003,18(2):292-297.
    [163]代俊峰,陈家宙,崔远来,等.不同林草系统对集水区水量平衡的影响研究[J].水科学进展,2006,17(4):435-443
    [164] Wilcox B P, Dowhower S L, Teague W R, et al. Long-Term Water Balance in a Semiarid Shrubland [J]. Rangeland and Ecology Management, 2006, 59:600–606
    [165] Chen L D, Huang Z L, Gong J, et al. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China [J]. Catena, 2007, 70: 200–208
    [166] Oliveira R S, Bezerra L, Davidson E A, et al. Deep root function in soil water dynamics in cerrado savannas of central Brazil [J]. Function Ecology,2005,19: 574–581
    [167] Ansley R J, Dugas W A, Heuer M L, et al. Stem flow and porometer measurements of transpiration from honey mesquite (Prosopis glandulosa Torr.) trees [J]. Journal of Experimental Botany, 1994, 45:847–856
    [168] Ansley R J, Jacoby P W, Hicks R. Leaf and whole plant transpiration in honey mesquite following severing of lateral roots [J]. Journal of Range Management, 1991, 44: 577–583
    [169] Ansley R J, Trevino B A, Jacoby P W. Intraspecific competition in honey mesquite: Leaf and whole plant responses [J]. Journal of Range Management,1998,51:345–352
    [170]王幼奇,樊军,邵明安. LARS-WG天气发生器在黄土高原的适应性研究[J].中国水土保持科学, 2007,5 (3) :24-27
    [171]李裕元,邵明安.黄土高原北部紫花苜蓿草地退化过程与植物多样性研究[J].应用生态学报, 2005,16 (12)∶2321–2327
    [172]李裕元,邵明安,上官周平,等.黄土高原北部紫花苜蓿草地退化过程与植被演替研究[J].草业学报, 2006,15(2) 85– 92
    [173]罗伟祥,白立强.不同覆盖度林地和草地的径流量与冲刷量[J].水土保持学报,1990,5(4):30–35
    [174]唐克丽,周佩华.黄土高原土壤侵蚀若干问题的讨论[A].中国科学院西北水土保持研究所集刊, 1988, 7, 1–4
    [175]刘秉正.渭北黄土高原水土流失降低土壤肥力与生产力的初步研究[A].见:黄土高原沟壑区综合治理及其效益研究,北京:中国林业出版社, 1990
    [176]刘昌明.黄河中游黄土高原森林减沙效应研究的梗概[J].地理研究,1982,1–13
    [177]王秋生.植被控制土壤侵蚀的数学模型及其应用[J].水土保持学报,1991,5(4): 68–72
    [178]江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报, 1996,2(1):1–9
    [179]王力,邵明安,王全九,等.黄土区土壤干化研究进展[J].农业工程学报,2004, 20(5):27–31
    [180]杨劼,高清竹,李国强,等.皇甫川流域主要人工灌木水分生态的研究[J].自然资源学报,2002,17(1):87–94
    [181]贾海坤,刘颖慧,徐霞,等.皇甫川流域柠条林地水分动态模拟-坡度、坡向、植被密度与土壤水分的关系[J].植物生态学报,2005,29(6):910–917

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700