用户名: 密码: 验证码:
外圆磨削表面强化技术的试验研究与理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨削表面强化技术利用磨削过程中生成的磨削热使工件表层温度瞬间升高到Ac3以上,然后迅速冷却,以使表层材料马氏体化。该技术集成了磨削加工工艺与表面热处理工艺,可以有效缩短产品生产周期、提高生产效率、降低制造成本,具有显著的经济价值和社会效益。
     本文采用了40Cr钢与45号钢两种材料进行了外圆单程切入式磨削表面强化技术的试验研究,并对强化试件进行了金相组织观测与硬度分布测量。结果表明工件表层材料的金相组织由外至内依次分为强化层、过渡层与基体三部分,组织成分分别为马氏体、马氏体与铁素体混合物、铁素体与珠光体混合物。在本试验条件下,工件表面硬度值最高为HV824.1,硬化厚度最高为1.1mm,达到了与高频淬火相同的强化效果。采用了不同的磨削深度、工件速度和砂轮特性进行外圆磨削表面强化效果的正交试验,并对硬化厚度和表面硬度两项指标进行了分析,以研究各因素对强化效果的影响程度及影响规律。结果表明,对于硬化层厚度,三项因素的影响显著程度依次为磨削深度、工件速度、砂轮特性,硬化厚度值随磨削深度增加而增大、随工件速度增加先增大后减小、采用白刚玉砂轮的硬化厚度大于铬刚玉而且小磨粒粒度号砂轮的硬化厚度大于大磨粒粒度号砂轮。对于表面硬度,仅磨削深度具有较显著影响,硬度值随磨削深度的增加而增大。在本文试验条件下采用0.4mm的磨削深度、0.5m/s的工件速度、WA46L8V砂轮进行外圆磨削表面强化,可以兼顾较深的硬化层厚度与较高的表面硬度,获得最佳的试件表面综合强化效果。
     对比40Cr钢与45号钢两种不同材料工件的强化效果,发现两种材料在同等的磨削参数与条件下,外圆磨削的表面强化效果与各因素的影响规律相似。但40Cr钢硬化厚度大于45号钢;45号钢的表面硬度高于40Cr钢。这种差异源于材料特性。对外圆磨削表面强化过程中砂轮二次经过的重叠强化区进行了金相观测与硬度分布测量。结果表明,该区域内经历的重叠强化过程实质上为二次淬火,其金相组织与硬度分布没有发生明显变化。砂轮退刀后工件表面上的残留热量沿砂轮移动方向继续传递,造成了重叠强化区尾部的工件表面硬度下降并伴随少量的回火索氏体出现。但由于其尺寸较小(1.0mm)而且最低硬度值HV479.6仍满足工件的硬度要求,因此对整体强化效果没有显著影响。
     对已强化试件进行了精磨以满足表面粗糙度与加工质量要求,并对精磨结果进行研究。结果表明,试件的金相组织与表层硬度分布并没有受到精磨过程的影响,通过合理选取磨削参数与条件,外圆磨削表面强化技术可以同时满足工件表面的硬度要求与加工精度要求。
     采用测力顶尖与红外测温仪,在强化试验过程中采集了磨削力与磨削温度数据,为后续的理论分析提供了依据。在此基础上,针对磨削力与磨削温度的变化规律与影响因素进行了研究。研究表明,外圆磨削表面强化中的磨削力与工件速度、磨削深度均呈现正比关系,法向分力与切向分力之比远大于普通磨削情况;而磨削温度的影响因素按显著程度依次为磨削深度、砂轮特性、工件速度,影响规律均与对硬化厚度的影响规律相同。
     深入研究了强化过程的切削机理,利用切削过程中的单颗磨粒能量消耗,并结合磨粒分布情况,提出了外圆磨削表面强化过程中磨削力的计算方法。在此基础上考虑了磨粒对材料的耕犁作用,以及磨粒对材料的大切深情况,使得计算结果更加准确。将磨削力的计算结果与试验中的实测值对比,发现二者具有较好的一致性。
     充分考虑了磨除工件材料的不同阶段,建立了外圆磨削表面强化过程的复合型热源模型与热量分配比模型。并进一步研究了磨削条件对热量分配比的影响规律。研究表明,在诸多因素中,磨粒粒度与砂轮线速度对工件表面的热量分配比影响最为显著。磨粒粒度号增大,传入工件表面的热量减少;砂轮线速度增加,传入工件表面的热量增加。
     采用ANSYS软件对外圆磨削表面强化过程进行了仿真。研究了强化过程中温度场的动态分布与时变情况,以及工件模型中不同位置点的温度变化情况。研究表明,磨削温度的仿真结果与测量值有较好的一致性,表明仿真结果有效可靠、建立的热源模型准确合理。在试验不便进行时,可以利用仿真方法进行研究分析。
Grind-hardening is a new technology which utilizes grinding heat to induce martensitic phase transformation and strengthen workpiece surface in gringding process by raising surface temperature above Ac3 instantaneously and cooling quickly. The application of this new technology can reduce production cycle, improve working efficiency, and decrease manufacturing cost by integrating the two operations of grinding and surface heat treatment into one, which has the great social and economical benefits.
     Grind-hardening experiments for external grinding mode are carried out. The results indicate that the hardened workpiece surface consists of three parts of hardened layer, transition layer, and body. The metallurgical structures of the parts are martensite, mixture of martensite and ferrite, and mixture of ferrite and pearlite respectively. Under the experiment condition, the top value of hardness and hardened depth is HV824.1 and 1.1mm respectively, which achieves the effect of high-frequency hardening.
     The orthogonal experiments with different cut depths, workpiece speeds and wheel characteristic are performed, contribution and pattern of the factors’influence to hardening effect are analyzed. The results show that hardened layer thickness rises with increasing cut depth, and rises and falls with increasing workpiece speed. White alundum wheel increased more hardened layer thickness than pink alundum, while small grain granularity products more hardened layer thickness than big one. The order of factors is cut depth, workpiece speed, and wheel characteristic according to the contribution. The results also indicate that surface hardness is only affected by cut depth, and the hardness value rises with increasing cut depth. Under the present experiment condition, the adoption of 0.4mm cut depth, 0.5m/s workpiece speed and wheel WA46L8V may achieve good comprehensive grind-hardening results of both hardened layer thickness and surface hardness.
     40Cr steel and 45 steel are adopted simultaneously in the experiments to research hardening effects with different materials. The results show good hardened effectiveness of both materials as well as the similar pattern of metallurgical structure and hardness distribution. It has been found that 40Cr steel has more hardened layer thickness while 45 steel has higher surface hardness. The difference derives from the material property.
     The obsevation of the metallurgical structure and test of hardness distribution for the overlap hardened zone demonstrate the rehardening is occurred and the metallurgical structure or hardness distribution changes little. Due to the inertance of conductivity, the residual heat in the zone tempered the material at its end part. A little tempered sorbite appears while the hardness value drops accordingly. However, because the tempered area is small in size (1.0mm) and even the bottom value (HV479.6) can satisfy the hardness requirement, it has little influence to the total hardened effectiveness.
     Fine grinding stage is taken for the surface roughness and quality after the hardened layer is obtained in the coarse grinding stage, and the fine grinded sample is analyzed. The result indicates the same metallurgical structures and surface hardness to the sample of coarse stage. Therefore, with rational choiced grinding parameters and condition, requirement of surface hardness and machining precision may be met simultaneously.
     Grinding force and temperature are measured in the experiments by adopting elastic core clampers and infrared thermometer, which provides data for theory study. Moreover, the variation regularity and influence factors are analyzed. The results indicate that grindng force is proportional to workpiece speed and cut depth in external grind-hardening process, and the ratio of normal force to tangential force is more than that of common grinding. Grinding temperature is influenced by cut depth, wheel characteristics and workpiece speed in the contribution order, and has the same change regularity of hardened layer thickness.
     Calculation equations of grinding force for external grind-hardening are derived through the study of grain cutting mechanism and the utilization of grain energy cost and distribution. Plough stage and large cut depth of grain are considered for accurate results. It has been shown that the calculation results have consistency with measurment results.
     Process of material remove is considered to consist of various stages. The compound heat and heat distribution ratio are modelled for the whole process. Moreover, the influence pattern of grinding condition to distribution of heat is evaluated. The results demonstrate that grain granularity and wheel velocity are the major factors. Both increasing grain granularity number and decreasing wheel velocity may reduce the heat conducted into workpiece surface.
     A computational finite element method software, ANSYS, is introduced to simulate the process of external grind-hardening. The dynamic states of temperature field and temperature history of points in various model placements are investigated by simulation. It has been demonstrated that the simulation results are in accordance with measurment results due to the reliable simulation method and the accurate heat model. Therefore the simulation may be studied instead of experiment.
引文
[1] 蔡光起.磨削技术现状与新进展[J].制造技术与机床,2000,(5):10-11.
    [2] 张念淮,张承红.磨削技术的发展[J].精密制造与自动化,2001,(3):21-22.
    [3] 刘海江,宋德朝.磨削新技术的发展及我国现状和存在问题[J].精密制造与自动化,2001,(1):13-14.
    [4] 曲贵龙.磨削加工技术的发展趋势[J].磨床与磨削,2000,(4):24-27.
    [5] 周志雄,邓朝晖.磨削技术的发展及关键技术[J].中国机械工程,2000,11(1):186-189.
    [6] 张树森.机械制造工程学[M].沈阳:东北大学出版社,2001:38-39.
    [7] 戴曙.金属切削机床[M].北京:机械工业出版社,1997:5-8.
    [8] 焦振学.先进制造技术[M].北京:北京理工大学出版社,1997:16-18.
    [9] Arul, S.N., Vijayaraghavan, L., Krishnamurthy, R. Significance of grinding burn on high speed steel tool performance[J]. Journal of materials processing technology. 2003,134(2):166-173.
    [10] Zhang, B., Zheng, X.L., Tokura, H. Grinding induced damage in ceramics[J]. Journal of materials processing technology. 2003,132(1):353-364.
    [11] 武志斌,徐鸿钧.高效磨削时磨削热问题的研究[J].农业机械学报,2001,32(4):99-101.
    [12] 徐鸿钧,徐西鹏.缓磨时工件烧伤过程的计算机仿真研究[J].南京航空航天大学学报,1994,26(5):642-650.
    [13] Liu, X., Zhang, B. Grinding of nano-structural ceramic coatings damage evaluation[J]. International journal of machine tools and manufacture. 2003,43(12):161-167.
    [14] Kakazey, M., Sanchez, J., Gonzalez, G., et al. Aannealing effects in ZnO and ZnO—SnO2 powders during grinding[J]. Materials science and engineering. 2002,94(1):8-13.
    [15] Ge, P.Q., Liu, W.P., et al. Fuzzy clustering analyses of the grinding burn damage level or a workpiece surface layer[J]. Journal of materials processing technology. 2002,129(1):373-376.
    [16] Tsai, H.H., Hocheng, H. Prediction of a thermally induced concave ground surface of the workpiece in surface grinding[J]. Journal of materials processing technology. 2002,122(2):148-159.
    [17] 孙方宏.缓进给磨削时磨削弧区径向射流冲击强化换热技术的应用[J].上海交通大学学报,2000,34(10):1320-1324.
    [18] Yeo, S.H., Ramesh, K., Zhong, Z.W. Ultra-high-speed grinding spindles characteristics upon using Oil/air mist lubrication[J]. International journal of machine tools and manufacture. 2002,42(7):815-823.
    [19] Shaji, S., Radhakrishnan, V. An investigation on surface grinding using graphite as lubricant[J].International journal of machine tools and manufacture. 2002,42(6):733-740.
    [20] 孙方宏,傅玉灿.磨削液的加注方式对冷却效果的影响及其对策[J].机械设计与制造工程,1998,27(6):51-53.
    [21] Gao, Y., Tse, S., Mak, H. An active coolant cooling system for applications in surface grinding[J]. Applied Thermal Engineering. 2003,23(5):523-537.
    [22] Wang, S.B., Kou, H.S. Cooling effectiveness of cutting fluid in creep feed grinding[J]. Int. Comm. Heat mass transfer. 1997,24(6):77l—783.
    [23] 任敬心,华定安.磨削原理[M].西安:西北工业大学出版社,1988:68-69.
    [24] Jin, T., Cai, G.Q., Jeong, H.D., et al. Study on heat transfer in super-high-speed grinding energy partition to the workpiece in HEDG[J]. Journal of materials processing technology. 2001,111(1):261-264.
    [25] 吴小玲,任敬心,康仁科 等.300M 超高强度钢磨削烧伤的试验研究[J].航空工艺技术,1996,(2):21-22.
    [26] 傅玉灿,徐鸿钧.开槽砂轮缓磨时射流冲击强化换热的研究[J].航空学报,2001,22(3):222-226.
    [27] 王从曾.激光淬火技术的应用现状及发展[J].机械工人,2004,(7):14-17.
    [28] 张洁.金属热处理及检验[M].北京:化学工业出版社,2005:27-30.
    [29] 甘建蓉.表面热处理的常见缺陷及补救办法[J].材料热处理,2006,35(12):59-60.
    [30] E.G Ng, D.K. Aspinwall, D.Brazil, J Monaghan. Modeling of temperature and forces when orthogonally machining hardened steel international[J] Journal of Machine Tools & Manufacture.1999,39(6):885-903.
    [31] Ozcatalbas, Y., Fevzi E. The effects of heat treatment on the machinability of mild steels[J]. Journal of materials processing technology. 2003,136(1):227-238.
    [32] Fiseher, J., Fleetwood, P.W. Improving the processing of high-gold metal-ceramic frameworks by a pre-firing heat treatment[J]. Dental Materials, 2000,16(2):109-113.
    [33] 葛培琪,孙建国,刘慎昌.磨削淬硬一磨削加工与表面淬火集成制造技术[J].工具技术,2001,35(1):7-10.
    [34] 张宁菊.磨削加工与表面淬火集成技术[J].机械制造,2005,43(486):53-54.
    [35] 张宁菊,赵美林.40Cr 磨削淬硬的研究方法[J].现代机械,2005,(02):81-82.
    [36] 张金煜,王贵成,张春燕 等.一种绿色的表面淬火工艺——磨削淬硬[J].机械设计与制造,2007,(7):206-208.
    [37] 王宗英,肖楠,吕淑萍.40Cr 钢表面改性处理及磨损性能研究[J].沈阳建筑大学学报,2005,21(3):281-284.
    [38] 李志义,李晓澎.渗碳淬火件磨削裂纹形成的原因和防止措施[J].国外金属热处理,2005,26(1):46-47.
    [39] 魏飞,马世榜.渗碳淬火钢齿轮磨削裂纹的产生及预防[J].科技咨询,2006,(22):40.
    [40] 马素媛,徐建辉,贺笑春 等.硬状态钢铁材料磨削影响层硬化的表征[J].金属学报,2003,39(2):168-171.
    [41] Brinksmeier, E., Brockhoff, T. Randschicht-W?rmebehandlung durch Schleifen[J]. H?rterei-Techn Mitt, 1994, 49(5):327-330.
    [42] Brinksmeier, E., Brockhoff, E. Utilization of grinding heat as a new heat treatment process[J]. Annals of the CIRP. 1996,45(1): 283-286.
    [43] Brockhoff, T. Grind-hardenig:A comprehensive view[J].Annals of the CIRP. 1999,48(1): 255-260.
    [44] Tsirbas K, Mourtzis D, Zannis S, Chryssolouris G Grindhardening modeling with the use of neural networks[J]. ProcAMST’99 Int Conf on Advanced Manufacturing. 2004,25(10):13–18.
    [45] Zarudi, L. C.Zhang. Mechanical property improvement of quenchable steel by grinding[J]. Journal of materials science .2002,37(18):3935-3943
    [46] Zarudi, I., Zhang, L.C. Modelling the structure changes in quenchable steel subjected to grinding[J]. Journal of material science.2002,37(20):4333-4341.
    [47] Zarudi,I.,Zhang, L.C. A revisit to some wheel-workpiece interaction problems in surface grinding[J]. International journal of machine tools and manufacture. 2002,42(8):905-913.
    [48] Stohr, R., Heinzel, C. Grind-hardening with CBN[J]. Abrasives magazine. 2002,19(6):22-30.
    [49] Tsirbas, K. An analytical and experimental investigation of the grind-hardening process[D]. University of Patras Editions, Patras Greece,2002.
    [50] Brinksmeier, E., Heinzel, C., B?hm, C. Simulation of the temperature distribution and metallurgical transformation in grinding by using the finite-element method[J]. Annals of WGP, 2003,10(1):9-14.
    [51] Fricker, D.C., Pearce, T., Harrison, A Predicting the occurrence of grind hardening in cubic boron nitride grinding of crankshaft steel[J]. Journal of engineering Manufacture, 2004,218(10):1339-1356.
    [52] Chryssolouris, G., Tsirbas, K., Salonitis, K. An analytical, numerical and experimental approach to grind hardening[J]. Journal of Manufacturing Process, 2005,7(1): 1–9.
    [53] Konstantios, S., George, T., Stavros, D., et al. Environmental impact assessment of grind-hardening process[J]. The international journal of advanced manufacturing technology, 2007,12(5): 338-345.
    [54] Chryssolouris, G., Salonitis, K. Theoretical investigation of the grinding wheel effect on grind hardening process[J]. Proc IFAC Conf on Manufacturing, Modelling, Management and Control. 2004,9(5): 13–18.
    [55] Brinksmeier, E., Minke, E., Wilke, T. Investigations of surface layer impact and grinding wheel performance for industrial grindhardening applications[J]. Production Engineering, 2005, 12(1): 35–40.
    [56] Salonitis, K., Tsoukantas, G., Stavropoulos, P., et al. Process forces modelling in Grind hardening[J]. Proc 9th CIRP Int. 2006,13 (9):295–302.
    [57] Salonitis, K., Chryssolouris, G. Cooling in grind-hardening operations[J]. Int J Adv Manuf Tech. 2007, 33(3):285-297.
    [58] Nguyen, T., Zarudi, I., Zhang, L.C. Grinding-hardening with liquid nitrogen: Mechanisms and technology[J]. International journal of machine tools and manufacture. 2007,47(1):97-106.
    [59] Salonitis, K., Chryssolouris, G. Thermal analysis of grindhardening process[J]. Int J Manuf Tech Manage. 2007,12(1):72–92.
    [60] Salonitis, K., Chondros, T., Chryssolouris, G. Grinding wheel effect in the grind-hardening process[J]. Int J Adv Manuf Tech. 2007,12(3): 83-93.
    [61] 刘菊东,王贵成.磨削淬硬工艺的研究现状与发展趋势[J].现代制造工程.2003,(11):81-83.
    [62] 刘菊东,王贵成.基于磨削加工的表面形变淬火工艺-磨削淬硬[J].工具技术.2004,38(7):11-14.
    [63] 刘菊东,王贵成.原始组织对 40Cr 钢磨削硬化层的影响研究[J].金属热处理.2004,29(12):61-65.
    [64] 刘菊东,王贵成.65Mn 钢磨削硬化层组织的研究[J].中国机械工程.2004,15(17):1573-1576.
    [65] 刘菊东,王贵成.冷却条件对 65Mn 钢磨削硬化层组织与性能的影响[J].工具技术.2004,38(9):67-69.
    [66] 刘菊东,王贵成.磨削深度对 65Mn 钢磨削硬化层的影响研究[J].农业机械学报.2005,36(8):135-138.
    [67] 刘菊东,王贵成,陈康敏 等.非淬硬钢磨削表面硬化层的试验研究[J].中国机械工程.2005,16(11):1013-1017.
    [68] 刘菊东,王贵成,陈康敏 等.基于缓进给湿磨的表面硬化研究[J].兵工学报.2006,27(3):506-509.
    [69] 刘菊东,王贵成,陈康敏.磨削用量对 40Cr 钢磨削淬硬层的影响[J].中国机械工程.2006,17(17):1842-1845.
    [70] 刘菊东,王贵成,陈康敏 等.砂轮特性对 40Cr 钢磨削淬硬层的影响[J].金属热处理.2006,31(12):56-58.
    [71] 刘菊东,侯达盘,王大镇.40Cr 钢磨削淬硬层组织形成机理的研究[J].材料热处理学报.2007,28(8):40-44.
    [72] 张宁菊.钢件表面的磨削强化处理技术的基础研究[D].徐州:中国矿业大学机电工程学院,2005.
    [73] 张宁菊.非调质钢的磨削淬硬研究[J].机械工程师.2005,(4):32-33.
    [74] 韩正铜,张宁菊.非调质钢的磨削强化试验[J].制造技术与机床.2006,(11):21-24.
    [75] 张宁菊.非调质钢磨削强化效果的研究[J].现代制造工程.2006,(7):82-84.
    [76] 韩正铜,张宁菊.非调质钢磨削淬硬表面强化试验[J].重庆大学学报.2007,30(3):19-22.
    [77] 王珉.基于改进 BP 网络的磨削淬火数值仿真及实验研究[D].济南:山东大学机械工程学院,2005.
    [78] 张磊.单程平面磨削淬硬技术的理论分析和试验研究[D].济南:山东大学机械工程学院,2006.
    [79] 张建华,葛培琪,张磊.磨削淬火技术中的温度场的理论研究[J].工具技术,2007,41(1):14-16.
    [80] 龚欢.40Cr 钢磨削强化工艺试验与温度场仿真研究[D].南京:南京航空航天大学机电学院,2007.
    [81] 费振华.微合金钢 48MnV 磨削强化工艺试验研究[D].南京:南京航空航天大学机电学院,2007.
    [82] 王健石.工业用热电偶及补偿导线技术手册[M].北京:中国计量出版社,2003:23-26.
    [83] 王西彬,任敬心.磨削温度及热电偶测量的动态分析[J].中国机械工程,1997,8(6):77-80.
    [84] 曲波.工业常用传感器选型指南[M].北京:清华大学出版社,2002:32-33.
    [85] 福州大学磨削科研组.磨削时不同热电偶测温方法的探讨[J].福州大学学报,1981,12(3)1-3.
    [86] 吕树滨,杨旭磊,付立民.外圆磨床磨削力的测定[J].机械设计与制造,1996,(6):38-39.
    [87] 贺长生,石玉祥,丁宁.外圆纵向磨削力的研究[J].煤矿机械,2006,27(2):239-241.
    [88] 林士龙,刘云龙.磨削力的实时采集和数据处理[J].沈阳航空工业学院学报,2004,21(5):23-24.
    [89] 柳昌庆,王启广.测试技术与实验方法[M].徐州:中国矿业大学出版社,2001:86-89.
    [90] Ueda, T., Yamada, K., Sugita, T. Measurement of Grinding Temperature of Ceramics Using Infrared Radiation Pyrometer with Optical Fiber[J].Journal of Engineering for Industry, 1992,114(3):317-322.
    [91] 刘迎春,叶湘滨.传感器原理、设计及应用[M].长沙:国防科技大学出版社,1997:46-48.
    [92] 尤芳怡,徐西鹏.红外测温技术及其在磨削温度测量中的应用[J].华侨大学学报,2005,26(4):338-342.
    [93] Hwang, J., Kompella, S., Chandrasekar S. Measurement of temperature field in surface grinding using infrared imaging system[J]. Journal of Tribology,2003,125(2):377-383.
    [94] 陈继述,胡变荣,徐平茂.红外探测器[M].北京:国防工业出版社,1986:3-7.
    [95] 中国机械工程学会.中国机械设计大典第二卷[M].南昌:江西科学技术出版社,2002:466-468.
    [96] 王德泉.砂轮特性与磨削加工[M].北京:中国标准出版社,2001:99-103.
    [97] (日)庄司克雄著,郭隐彪,王振忠 译.磨削加工技术[M].北京:机械工业出版社,2007:27-29.
    [98] 钟新辉,费逸伟,李华强.磨粒厚度的测量研究[J].润滑与密封,2006,(1):132-133.
    [99] 方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001:11-18.
    [100] 汪荣鑫.数理统计[M].西安:西安交通大学出版社,2006:37-43.
    [101] 王长生,罗美华. 用于光镜下观察表面显微组织的金相试样制备法[J]. 热加工工艺,2002,(6):59.
    [102] 谢希文.金相试样制备技术[M].西安:西安交通大学,2006:21-27.
    [103] 白新房,张小明,陈绍楷.试验力选择对维氏硬度值的影响[J].理化检验,2007,(11):15-17.
    [104] 张伟,高晓蓉.金属维氏硬度试验方法探讨[J].机械传动,2007,31(5):107-109.
    [105] 吴黎明,周曲,邓耀华.维氏硬度试验压痕图的小波分析与自动计算硬度[J].中国机械工程,2004,15(6):498-500.
    [106] 邢思明.硬度标度的统一与维氏硬度试验的数字化[J].武汉理工大学学报,2000,22(6):43-45.
    [107] 李伯民,赵波等.实用磨削技术[M].北京:机械工业出版社,1996:79-81.
    [108] 诸兴华.磨削原理[M].北京:机械工业出版社,1988:62-66.
    [109] Shaw, M.C. A new theory of grinding[D]. Int.Conf.Proc. Science in India,Monash University. Australia,1971.
    [110] Jaeger, C. Moving Source of Heat and the Temperature at Sliding Contacts[J]. Proc.Roy.Soc.of New South Wales,1942,76:203-224.
    [111] 贝季瑶.磨削温度的分析与研究[J].上海交通大学学报,1964,28(3):45-49.
    [112] 孟庆国,李文卓.磨削温度场的数值计算[J].机械工艺师,1996,(10):25-27.
    [113] 李伟.钛合金切削磨削冷却润滑理论与技术研究[D].南京:南京航空航天大学,1992.
    [114] Anderson.S.A. A Technique for determing the transient heat flux at a Solid Interface Using the Measured Transient Interfacial Temperature[J]. Heat Transfer. 1973,95(2):236-248.
    [115] 杜长龙,赵继云,储祥辉.仿真技术及其应用[M].徐州:中国矿业大学出版社,2000:16-21.
    [116] T?nshoff, H.K., Peters, J., Inasaki, I., Paul, T. Modelling and Simulation of Grinding Processes[J]. Annals of the CIRP,1992,41(2):677-688.
    [117] 张一飞,于怡青,徐西鹏.仿真技术及其在磨削加工中的应用[J].金刚石与磨料磨具工程, 2002,132(4):40-44.
    [118] Chiu, N., Malkin, S. Computer Simulation for Cylindrical Plunge Grinding[J].Annals of the CIRP,1993,42(1):383-387.
    [119] 曹玉璋.传热学[M].北京:北京航空航天大学出版社,2001:13-17.
    [120] 孔样谦,王传薄.有限单元法在传热学中的应用[M].北京:科学出版社,1998:22-27.
    [121] 王国强.实用工程数值模拟技术及其在 ANSYS 上的应用[M].西安:西北工业大学出版社,1999:95-97.
    [122] 李亚智,赵美英,万小朋.有限元法基础与程序设计[M].北京:科学出版社,2004:40-45.
    [123] 王冒成,邵敏.有限元法基本原理和数值方法[M].北京:清华大学出版社,1997:23-26.
    [124] ANSYS,Inc. ANSYS Modeling and Meshing Guide-Release 5.5[M]. SASIP.Inc.,1998:223-225.
    [125] 谭真,郭广文.工程合金热特性[M].北京:冶金工业出版社,1994:31-33.
    [126] 马庆芳等. 实用热物理性质手册[M]. 北京:中国农业机械出版社,1986:76-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700