用户名: 密码: 验证码:
柴油机燃用F-T柴油的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
F-T柴油作为柴油机的一种优良替代燃料成为近年来关注的热点。论文针对F-T柴油应用中相关的基础问题,开展了其喷雾和燃烧特性的研究,并系统分析了F-T柴油对发动机性能和排气污染物的影响;此外,对F-T柴油发动机排气微粒的生物毒理作了全面的评价。研究工作对今后F-T柴油的推广应用具有重要的指导意义。论文研究工作和取得主要研究成果如下:
     1.研究了喷油压力、环境背景压力等因素对F-T柴油喷雾贯穿距离、喷雾锥角等宏观特性的影响。F-T柴油的喷雾贯穿距离随喷油压力的升高而增大,环境背压的升高而减小;喷雾锥角随喷油压力和环境背压的升高均增大。在同等条件下,F-T柴油的贯穿距离小于国Ⅲ柴油,而喷雾锥角大于国Ⅲ柴油。另外,对比研究了F-T柴油与国Ⅲ柴油的燃烧特性。F-T柴油预喷射着火滞燃期较国Ⅲ柴油缩短约14%,且放热峰值低,燃烧持续期大约为国Ⅲ柴油的50%;主喷射时两种燃料燃烧特性相近。
     2.基于现代电控高压共轨柴油机,进行了F-T柴油对发动机性能及法规排放物影响的研究。研究结果表明:与国Ⅲ柴油相比,F-T柴油发动机标定功率降低1.1%,外特性燃油消耗率降低7.1%,热效率提高4.5%。在欧洲稳态工况试验(European steady state cycle,ESC)条件下,F-T柴油较国Ⅲ柴油微粒(PM)、一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOx)分别降低了25.5%、33.9%、39.3%、11.7%。F-T柴油对发动机排放微粒数浓度影响不大,但粒径较国Ⅲ柴油小。
     3.采用先进的化学分析方法,对燃用F-T柴油发动机排气中羰基污染物和微粒中多环芳香烃进行了定性及定量分析。与国Ⅲ柴油相比,F-T柴油的总羰基污染物排放量较大,其中含量最高的为甲醛和乙醛,其次为丙酮,三者之和约占羰基污染物总量的70%以上,且三者均随负荷的升高呈现降低的趋势。F-T柴油排气微粒中多环芳香烃排放量较国Ⅲ柴油大幅降低,其中含量最高的为菲、荧蒽和芘,三者之和约占总量的80%以上,且三者均随负荷的升高大体呈降低的趋势。
     4.针对燃用F-T柴油、国Ⅲ柴油以及两者混合燃料生成的微粒,采用了人支气管上皮细胞(HBE)的增殖活性、细胞周期、细胞凋亡、体外迁移、蛋白表达、酶联免疫吸附(ELISA)等方法表征了柴油机微粒的毒理特性。研究结果表明,F-T柴油、国Ⅲ柴油及两者混合燃料三组微粒之间的毒理特性无明显差别,而这些微粒物抑制细胞的生长,影响细胞DNA的形成,促进细胞早期凋亡,并使得细胞向营养区侵袭的能力减弱。
In recent years, Fischer-Tropsch diesel fuel (F-T) as an excellent alternative fuel for diesel engine has attracted considerable attention. To shed light of the main drawbacks in F-T application, series of investigations have been carried out in this work, which cover the spray and combustion characteristics of F-T diesel, the effects of F-T on the engine performance and exhaust pollutants in detail and the comprehensive evaluations of F-T particle matter toxicity. The data derived from this study will provide the scientific fundamentals for the acceptance of F-T in the future, and the main contributions are listed as follows:
     1. The effects of the fuel injection pressure and ambient pressure have been studied on the spray characteristics of F-T, such as spray angle and spray tip penetration etc.. F-T spray distance increases with an enhancement of injection pressure, and drops with an increase of ambient pressure. The incremental fuel injection pressure and ambient pressure results in an increase of spray angle. Under the same conditions, the spray tip penetration of F-T is shorter than that of low sulfur diesel (LSD), while the spray angle of F-T is larger than that of LSD. Moreover, the differences of combustion characteristics between F-T and LSD have been compared. During the pilot injection period, except for a lower heat release peak for F-T, the ignition delay and combustion duration period of F-T are shorter than those of SLD by 14% and 50%, respectively. However, the similar combustion characteristics for both F-T and SLD can be observed during the main injection period.
     2. Using a high-pressure common rail diesel engine, the influences of F-T on the engine properties and regulated exhaust pollutants have been investigated. Compared with SLD, F-T leads to a decrease by 1.1% in engine rated power, a decrease by 7.1% in full-load specific fuel consumption, and an increase by 4.5% in thermal efficiency respectively. At European steady state cycle (ESC), the particle matter (PM)、carbon monoxide (CO)、hydrocarbon (HC) and nitrogen oxide (NOx) emissions for F-T are lower than those for SLD by 25.5%, 33.9%, 39.3% and 11.7%, respectively. The use of F-T hardly affects the number concentration of PM, but the particle size for F-T is smaller than that for SLD.
     3. Carbonyl compounds (CBCs) and polycyclic aromatic hydrocarbons (PAHs) from the exhaust emissions of F-T diesel engine are analyzed qualitatively and quantitatively with advanced chemical analysis approaches. The total amount of CBCs yielded by F-T is higher than that by LSD. Among all of the CBCs arising from F-T, formaldehyde, acetaldehyde and acetone are found to be the most abundant carbonyl, and the sum of the three carbonyls accounts for over 70% of the total CBCs. Individual emission of the three carbonyls decreases with the increase of engine load. The total amount of PAHs produced by F-T is lower than that by LSD. Among all of PAHs for F-T, phenanthrene, fluoranthene and pyrene are found to be the most abundant. The sum of the three constitutes over 80% of the total PAHs. On the whole, each of the three gives a dropping trend with the increase of engine load.
     4. Toxicities of particulate materials (PMs), resulting from the combustion of F-T, LSD and the mixture of both in diesel engine, have been evaluated by the containing cell proliferation, cycle and apoptosis, migration in vitro, protein expression, as well as the enzyme-linked immunosorbant assay (ELISA) of human bronchial epithelial cells (HBE). The results obtained show that there are no significant differences in toxicities among three kinds of PMs. Nevertheless, these PMs inhibit the cell growth, influence the formation of cell DNA, promote the cell early apoptosis, and impair the ability of the cell invading the nutrition region.
引文
[1]钱伯章,2001年世界石油天然气工业统计,能源技术,2002,23(6):234~235.
    [2]黄震,国家能源安全与汽车清洁代用燃料技术,世界科技,2002,(3): 24~25.
    [3]葛增华,刘增洁,2002年中国石油进出口状况,中国能源,2003,(3):34~36.
    [4]汪卫东,国外绿色汽车的发展现状及未来趋势,汽车研究与开发,2005,(11):11~14.
    [5]李大东,蒋福康.清洁燃料生产技术的新进展.中国工程科学.2003,5(03): 6-14.
    [6] Hackney J, De N R. Life Cycle Model of Alternative Fuel Vehicles: Emissions, Energy, and Cost Trade-Offs. Transportation Research Part A-Policy and Practice. 2001, 35(3): 243-266.
    [7]郭瑞莲,宋作军.车用柴油机微粒排放法规与控制技术,重型汽车,2002,(6):35~37.
    [8] H.Burtscher, Physical Characterization of Particulate Emissions From Diesel Engines, Aerosol Science, 2005, (36):896~932.
    [9]袭著革,戴树桂,孙咏梅.典型醛类污染物与细胞DNA分子的结合作用,环境科学,2001,22(1): 19~22.
    [10]崔心存.车用替代燃料与生物质能.北京:中国石化出版社,2007.
    [11]黄勇成,周龙保,潘克煜等.柴油机燃用F-T柴油与0号柴油混合燃料的燃烧特性.燃烧科学与技术,2006,12(4):330~331.
    [12]周玉鑫,邓蜀平,相宏伟等. F-T合成粗油品的加工.煤炭转化,2005,28(4): 79~81.
    [13]蒋德明,一种超清洁柴油机代用燃料—F-T柴油,柴油机, 2003(5): 1~4.
    [14]王建昕,傅立新,黎维彬.汽车排气污染治理及催化转化器.北京:化学工业出版社, 2000: 55-65.
    [15] http://www.in-en.com/coal/html/coal-1607160773155473.htm.
    [16]吴春来.煤炭间接液化技术及其在中国的产业化前景.煤炭转化,2003,21(2):17-33.
    [17] T.L. Alleman, R.L. McCornmick, Fischer-Tropsch diesel fuels properties and exhaust emissions, SAE Paper 2003-01-0763.
    [18] M.H McMillian M.Gautans, Combustion and emission characteriseics of fischer-tropsch and standard diesel fuel in a single-cylinder diesel engine, SAE paper 2001-01-0357.
    [19] Atkinson C M, Thompson G J, Traver M L. In-cylinde rcombustion pressure characteristics of fischer-tropsch and conventional diesel fuels in a heavy duty CI engine, SAE paper 1999-01-1472.
    [20]黄勇成,王尚学,周龙保.F-T柴油对直喷式柴油机燃烧和排放的影响,内燃机工程,2007,28(2).
    [21] Schaberg P W, MyburghIS, Botha J J,Diesel exhaust emission using Sasol Slurry phase distillate processfuels, SAE paper 1997-972898.
    [22] KidoguchiY,Yang C,KatoR.Effects of fuel cetane number and aromatics on combustion process and emissions of a direct injection diesel engine, SAE review 2000,(21):469~475.
    [23] Schaberg P W, Myburgh I S, Botha J J etal. Comparative emissions performance of Sasol Fischer-Tropsch diesel fuel in current and older technology heavy-duty engines, SAE paper 2000-01-1912.
    [24] May M P, VertinK. Development of truck engine technologies for use with Fischer-Tropsch fuels, SAE paper 2001-01-3520.
    [25] Sappok AG Emissions and in-cylinder combustion characteristics of Fischer-Tropsch and conventional diesel fuels in a modern CI engine. BS, Mechanical Engineering Kansas State University, 2004.
    [26]黄勇成,李永旺,任杰等.F-T柴油在直喷式柴油机中燃烧与排放特性的研究.燃料化学学报,2005,33(4).
    [27]胡准庆,张欣,刘建华.煤合成柴油( F - T柴油)在柴油机上的试验研究.石家庄铁道学院学报(自然科学版),2007,20(4).
    [28] Kittelson D B. Engines and Nanoparticles: A Review. Journal of Aerosol Science. 1998, 29(5-6): 575-588.
    [29] Morin J P, Leprieur E. The Influence of a Particulate Trap on the Invitro Lung Toxicity Response to Continuous Exposure to Diesel Exhausts Emissions. SAE paper 1999-01-2710 1999.
    [30] Nisbet I C, Lagoy P K. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic-Hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology. 1992, 16(3): 290-300.
    [31] Wagner T, Wyszynski M L. Aldehydes and Ketones in Engine Exhaust Emissions - A Review. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering. 1996, 210(2): 109-122.
    [32] RichterH, Howard J B. Formation of PolyCyclic Aromatic Hydrocarbons and Their Growth to Soot: A Review of Chemical Reaction Pathways. Progress in Energy and Combus tion Science, 2000, 26 (4/6): 565-608.
    [33]蒋德明.内燃机燃烧与排放学.西安:西安交通大学出版社, 2002: 569-571.
    [34] Schubert P F, Russell B J, Freerks R L.Impactofultra-clean fischer-Tropsch diesel fuel on emissions in light-duty passenger car diesel engine, SAE paper 2002-01-2725.
    [35] BallJC, GonzalezD, Manuel A, etal. Dimethoxy methanein diesel fuel, part2: the effect of fuels on emissions of toxic air pollutants and gas/solid phase PAH using a composite of engine operating modes, SAE paper 2001-01-3628.
    [36] Herchel E., Health effect of exposure to diesel exhaust,Washington DC;National Academy Press,1981,13~15.
    [37] Kobayashi, Takahiro, Ito, Tsuyoshi, Diesel Exhaust Particulates Induce Nasal Mucosal Hyperresponsiveness to Inhaled Histamine Aerosol, Fundamental and Applied Toxicology, eptember, 1995, 27 (2): 195~202.
    [38] Neeft, John P.A., Makkee, Michiel, Moulijn, Jacob A., Diesel particulate emission control,Fuel Processing Technology, April, 1996, 47 (1): 1~69.
    [39] Stamatelos, A. M.,A review of the effect of particulate traps on the efficiency of vehicle diesel engines,Fuel and Energy Abstracts, November, 1997, 38 (6): 428~456.
    [40] Dennis S, Frank S Lee, Thomas J Prater., The identification of polynuclear aromatic hydrocarbon.(PAH) derivatives in mutagenic fractions of diesel paticulate extractst., Intern.J.Environ.Anal.Chem,1981,9: 93~144.
    [41] Huisingh.J., Bradow. R., and Jungers,R., et al, Application of Bioassay to the Characterization of Diesel Particulate Emissions: PartsⅠ&Ⅱ, In application of short-term bioassay in the fractionation and analysis of complex environmental mixtures, US EPA 600, 1978.9, 027 (9): 46~75.
    [42] Claxton, L.D., Characterization of automotive emissions by bacterial mutagenesis bioassay: a review, Environ. Mutagen., 1983. 5, 609~631.
    [43] Schuetzle, D, J.A. Frazier, Factors influencing the emission of vapor and particulate phase components from diesel engines, in: N. Ishinishi, A. Koizumi, R.O. McClellan and W. Stobe (Eds.),“Carcinogenic and Mutagenic Effects of Diesel Engine Exhausts”, Elsevier, Amsterdam, 1986.
    [44] Clark, C.R., J.S. Dutcher, T.R. Henderson, R.O. McClellan, W.F. Marshall, T.M. Naman and D.E. Seizinger, Mutagenicity of automotive particulate exhaust: influence of fuel extenders, additives, and aromatic content, Adv. Mod. Environ. Toxicol., 1984.6, 109~122.
    [45] Riccardo Crebelli, Luigi Conti, The effect of fuel composition on the mutagenicity of diesel engine exhaust, Mutation Research Letters, 1995, 346: 167~172.
    [46] Thomas J. Hughes, Joellen Lewtas, Development of a standard reference material for diesel mutagenicity in the Salmonella plate incorporation assay, Genelic Toxicology and Environmental Mutagenesis, 1997, 391, 243~258.
    [47] Berube K A, et al. Physicochemical Characterosation of Diesel Exhaust Particles: Factors for Assessing Biological Acigvity. Atmospheric Environment, 1999, 33(10):1599~1614.
    [48]孟玲、王焕校、谭德勇.六种金属对大肠杆菌体内质粒DNA一级结构的影响.中国环境科学,1999,19(2):169~171.
    [49] Morawska, L., Neville, D.B., Ladislav, K., Submicrometer and supermicrometer particles from diesel vehicle emissions. Environmental Science and Technology, 1998,32: 2033~2042.
    [50] Sagai, M., Furuyama, A., Ichinose, T., Biological effects of diesel exhaust particles (DEP). III. Pathogenesis of asthma like symptoms in mice. Free Radical Biology and Medicine, 1996, 21: 199~209.
    [51] Valavanidis, A., Salika, A., Theodoropoulou, A., Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions. Atmospheric Environment, 2000, 34: 2379~2386.
    [52] Ya-Fen Wang, Kuo-Lin Huang, Emissions of fuel metals content from a diesel vehicle engine, Atmospheric Environment, 2003, 37: 4637~4643.
    [53] Ken-ichi Ohyama, Takaaki Ito, The roles of diesel exhaust particle extracts and the promotive effects of NO2 and/or SO2 exposure on rat lung tumorigenesis, Cancer Letters, 1999, 139: 189~197.
    [54]白亮,刘利军,李小蓓等.工业固定床Fe-Cu-K催化剂浆态床F-T合成适应性研究.燃料化学学报,2005,33(2):211-217.
    [55] AllemanT L,M c C ornmickR L.Fischer-tropschd ieself uelspropertiesand exhaust emissions. a literature review. SAE paper 2003-01-0763.
    [56] Stavinoda L L, Alfaro E S, Dobbs H H, et al. Alternative fuels:gas to liquids as potential 21st century truck fuels SAE 2000-02-3422.
    [57]黄勇成,潘克爆,李永旺等.直喷式柴油机燃用F-T柴油时的性能与排放,内燃机学报,2005,23(6): 498~502.
    [58] Heywood J. Internal Combustion Fundamentals. New York: McGraw-Hill, 1988.
    [59]汪海清,刘永长,贺萍等.喷雾贯穿距离对柴油机性能的影响.内燃机1995,(2):8~9.
    [60]李云清,关大友,铃木胜义等.柴油机静态喷雾特性的实验研究.汽车工程,2003 (4):344~345.
    [61] Hiro H,Masataka A.Structures of fuel sprays in diesel engines.SAE 900475.
    [62]梁荣光.柴油机喷雾贯穿距离的研究,内燃机工程.1991,12(3):24~26.
    [63]马志豪,黄佐华,李冲霄等.柴油丙烷混合燃料的喷雾特性的试验研究.内燃机工程,2007(10):28—5.
    [64] Hiroyasu H, Arai M. Structures of Fuel Sprays in Diesel Engines. SAE Paper 900475 1990.
    [65]袁兆成,方华,王天灵等.车用柴油机气缸压力升高率与燃烧噪声的关系.燃烧科学与技术,2006,12(1):11~14.
    [66]周龙保,刘巽俊,高宗英.内燃机学.2版.北京:机械工业出版社,2004.
    [67]黄勇成,周龙保,王尚学等.柴油机燃用F-T柴油与0号柴油混合燃料时的性能与排放,内燃机工程,2007,28(3):72~75.
    [68]何学良.内燃机燃料,北京:中国石化出版社,1999,233~236.
    [69] GB/T1105-1987,内燃机台架性能试验方法,中国:中国标准出版社, 1987.
    [70] GB17691-2005,车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国III、IV、ⅴ阶段).中国:中国环境出版社, 2005.
    [71] Abdul-khalek I, Kittelson D, Brear F. The Influence of Dilution Conditions On Diesel Exhaust Particle Size Distribution Measurements. SAE Paper 1999-01-1142 1999.
    [72]刘巽俊.内燃机的排放与控制.北京:机械工业出版社,2002.11.
    [73] On-road and laboratory evaluation of combustion aerosols-Part1: summary of diesel engine results.
    [74] Engines and nanoparticles:a review.
    [75] Kayes D, Hochgreb S. Mechanisms of Particulate Matter Formation in Spark-Ignition Engines. 1. Effect of Engine Operating Conditions. environmental Science and Technology. 1999, 33(22): 3957-3967.
    [76] Chemical characterization of particulate emissions from diesel engines: A review.
    [77] U.s. E.Federal Register 40 CFR Parts 80, and 86,Control of Emissions of Hazardous Air Pollutants From Mobile Sources, Final Rule. 2001.
    [78] CARB.California Exhaust Emission Standards and Test Procedures for 1988-2000 Model Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles. 1999.
    [79] CARB.California Exhaust Emission Standards and Test Procedures for 2004 and Subsequent Model Heavy-Duty Diesel-Engines and Vehicles. 2002.
    [80]中国环境优先监测研究课题组编,优先控制污染物.北京:中国环境出版社,1989.
    [81] EPA Bulleton.Draft Technical Support Document:Control of Emissions of Hazardous Air Pollutants from Motor Vehicles and Motor Vehicles Fuels. EPA420-D-00-003, 2000.
    [82] Yang H H, Chen C M. Emission Inventory and Sources of Polycyclic Aromatic Hydrocarbons in the Atmosphere at a Suburban Area in Taiwan.Chemosphere. 2004, 56(10): 879-887.
    [83] Albinet A, Leoz-garziandia E, Budzinskih, et al. Polycyclic Aromatic Hydrocarbons (Pahs), Nitrated Pahs and Oxygenated Pahs in Ambient Air of the Marseilles Area (South of France): Concentrations and Sources.Science of the Total Environment. 2007, 384(1-3): 280-292.
    [84] Sharma H, Jain V K, Khan Z H. Characterization and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) in the Urban Environment of Delhi. Chemosphere.2007, 66(2): 302-310.
    [85]赵瑞芬.乙醇/柴油混合燃料羰基化合物的检测及排放特性的研究,[硕士学位论文] ,天津,天津大学;2007.
    [86]涂险峰,内燃机排气中多环芳烃的测量及排放特性的研究,[硕士毕业论文],长春,吉林工业大学;1999.
    [87]王甲凡,史重九,车用发动机排放中的醛和酮,环保法规,1999,(2):31~32.
    [88]李约上,内燃机排放与净化,大连:大连理工大学出版社,1990,7~15.
    [89] Wagner T, Wyszynski M L. Aldehydes and Ketones in Engine Exhaust Emissions - A Review.Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering. 1996, 210(2): 109-122.
    [90] Wang, M. Frenklach, A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames, Combust and Flame, 1997(110): 173~221.
    [91]朱广艳.PTV用于柴油机燃烧过程中气/颗粒相多环芳香烃分布研究, [硕士学位论文] ,天津,天津大学;2010.06.
    [92]宋景景.柴油机燃烧过程中多环芳香烃生成机理的研究, [硕士学位论文] ,天津,天津大学;2007.
    [93] Sarnat J A, Marmur A, Klein M, et al. Fine Particle Sources and Cardiorespiratory Morbidity: An Application of Chemical Mass Balance and Factor Analytical Source-Apportionment Methods.Environmental Health Perspectives. 2008, 116(4): 459-466.
    [94] Zheng M, Cass G R, Schauer J J, et al. Source Apportionment of Pm2.5 in the Southeastern United States Using Solvent-Extractable Organic Compounds as Tracers. Environmental Science & Technology. 2002, 36(11): 2361-2371.
    [95] Dockery D W, Pope C A, Xu X P, et al. An Association Between Air-Pollution and Mortality in 6 United-States Cities.New England Journal of Medicine. 1993, 329(24): 1753-1759.
    [96] Oberdorster G, Sharp Z, Atudorei V, et al. Translocation of Inhaled Ultrafine Particles to the Brain.Inhalation Toxicology. 2004, 16(6-7): 437-445.
    [97] Su D S, Muller J O, Jentoft R E, et al. Fullerene-Like Soot From Euroiv Diesel Engine: Consequences for Catalytic Automotive Pollution Control.Topics in Catalysis. 2004, 30-31(1-4): 241-245.
    [98] Bertram B, Doris B.Diesel Exhaust Particle-Exposed Human Bronchial Epithelial Cells Induce Dendritic Cell Maturation. The American Association of Immunologists,Inc.2006,176:7431-7437.
    [99] Heuff G,Steenbergen JJ,Van de Loosdrecht AA,et al.Isolation of cytotoxic Kupffer cells by a modified enzymatic assay:a methodological study.Jlmmunol Methods. 1993;159(1-2):115-123.
    [100] Webster T J, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials.1999;20(13):1221-1227.
    [101]沈晓君,何航.葛根素对HCY诱导的血管内皮细胞凋亡及GRP78表达的影响.中药药理与临床,2009,25(4):12-15.
    [102] Vermes I, Haanen C,Stefens-Nakken H,et a1.A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluoresce in labeled Annexin V.Immuno1.Methods,1995,l84(1):39-51.
    [103] Zhao M,Beauregard DA,Loiz0u L,et a1.N0n-invasive detecti0n of apoptosis using magnetic resonance imaging and a targeted contrast agent.Nat Med,2001, 7(11): 1241-1244.
    [104] Nolph KD,Mi11er F,Rubin J,et a1.New directions in peritoneal dialysis concepts and applications.Kidney Int Suppi.1980.10:S111-116.
    [105]周云飞,范晓艳,张莉等.Transwel1模拟腹膜透析屏障及相关研究进展.中国血液净化,2010,(9)03.
    [106] Wang A Z,Chert JM,Fisher GW,et a1.Improved in vitro models for assay of rheumatoid Synoviocyte chemotaxis.Clin Exp Rheumatol,1994,12(3):293-299.
    [107]刘斌,王为,薛辉等. Western blot及分析.见:司徒镇强,吴军正主编.细胞培养.西安:世界图书出版公司,2000:256~258.
    [108]林枫译.Western blot印迹法.见: Sambrook J,Fritsch. EF,Maniatis T.主编(金冬雁,黎孟枫等主译).分子克隆实验指南.北京:科学出版社,1999:88-98.
    [109] Hayakawa T, Yamashita K, Tanzawa K, et al.Assaying Growth Factor Activity of Tissue Inhibitors of Metalloproteinases.FEBS Lett,1992,29(8):29-32.
    [110] Docherty A J,Lyons A,Smith BJ, et al.Sequence of human tissue inhibitor of metalloproteinasesand its identity to erythroid-potentiating activity.Nature, 1985, 3(18):66-69.
    [111]张莉萍,蒋纪恺,Joe Tam. Western-blot检测蛋白表达的方法改进及初步应用.第三军医大学学报,2001,(23),10.
    [112]叶应妩,王毓三.全国临床检验操作规程.2版.南京:东南大学出版社,1997:410-414.
    [113]张玲,杨茂.室温对抗-HIV ELISA试验结果的影响.中国输血杂志,2003,16(3): 196.
    [114]刘祖勇.增加洗板次数对HBsAg ELISA检测结果的影响.中国输血杂志,2006, 19(2):135-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700