用户名: 密码: 验证码:
新SansalvamideA环肽衍生物抗肿瘤活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤的发病率和死亡率呈逐年上升的趋势,严重危胁人类健康。目前,药物抗肿瘤治疗疗效仍不理想,主要原因在于传统的抗肿瘤药物在杀伤患者体内肿瘤细胞的同时,其巨大的毒副作用不可避免。因此,寻找新型高效且低毒的抗肿瘤药物是生物医药领域的重大课题。天然产物化学研究一直是制药业新药研制的重要途径和主要来源,天然产物成分具有结构新颖、疗效高、毒副作用小等优点,所以目前天然产物化学及其研究成果已广泛应用于医药业。
     Sansalvamide A是1999年被报道的从海洋真菌中分离出的一种天然环五肽酯,具有很高的亲脂性及显著的抗肿瘤能力。Sansalvamide A环肽是由Sansalvamide A改造所得到的一类化合物。经过多年的研究,新报道的Sansalvamide A环肽具有200余种,其中很多衍生物的活性明显提高。在本课题中,由河北科技大学药用分子化学重点实验室提供了9种新合成Sansalvamide A环肽衍生物,选取小鼠恶性黑色素瘤B16细胞,人乳腺癌MCF-7细胞和人乳腺癌MDA-MB-231细胞三种细胞模型做体外抗肿瘤活性研究,观察这9种新化合物的抗肿瘤活性。同时,应用细胞培养技术原代培养人外周血淋巴细胞和SD大鼠主动脉血管平滑肌细胞,用于研究9种新化合物对这两种正常细胞模型生长的抑制作用。通过抗肿瘤活性筛选,选择活性较好的化合物5(H-10)和化合物9(H-15)为研究重点,用小鼠恶性黑色素瘤B16细胞为模型,对化合物H-10和化合物H-15抑制肿瘤细胞增殖的机制做进一步研究。
     具体研究内容和结果如下:第一部分Sansalvamide A环肽衍生物抗肿瘤活性及对正常细胞毒性的研
     究
     目的:9种新型SansalvamideA环肽衍生物抗肿瘤活性筛选及其对正常细胞毒性的研究。
     方法:应用细胞培养技术培养小鼠恶性黑色素瘤B16细胞,人乳腺癌MCF-7细胞和人乳腺癌MDA-MB-231细胞,做为肿瘤细胞模型用于9种新型SansalvamideA环肽衍生物抗肿瘤活性筛选。原代培养人外周血淋巴细胞和SD大鼠主动脉血管平滑肌细胞,用于研究9种新化合物对这两种正常细胞模型生长的抑制作用。磺酰罗丹明B(SRB)比色分析法分析结果。到置相差显微镜观察化合物作用不同时间后B16细胞,淋巴细胞和大鼠平滑肌细胞(VSMC)形态,数量及生长状态的变化情况。
     结果:
     19种Sansalvamide A环肽衍生物对小鼠恶性黑色素瘤B16细胞,人乳腺癌MCF-7细胞和人乳腺癌MDA-MB-231细胞的增殖具有抑制作用,用SRB比色法测定空白组以及1%DMSO组48h后吸光度(OD)值,通过比较发现1%DMSO(溶解化合物溶剂的最大量)对B16,MCF-7和MDA-MB-231三种细胞的增殖无影响,P>0.05。除化合物6,8和9在50μM对MDA-MB-231增殖无抑制作用外,9种化合物对这三种细胞都显示出了抗肿瘤活性。对于B16细胞,化合物2,5和6抑制率最强,分别为82.43%,81.79%和83.19%;对于MCF-7细胞,抑制率最强的三种化合物分别为化合物5,64.19%,化合物9,51.08%和化合物4,50.89%;对于MDA-MB-231细胞,化合物4和5作用最强,抑制率分别为68.04%和66.56%。
     29种化合物对人外周血淋巴细胞和SD大鼠主动脉血管平滑肌细胞的增殖无明显抑制作用。
     3化合物H-10可使B16细胞出现凋亡和分化的形态学改变;化合物H-15可使B16细胞出现明显的分化形态改变。
     结论:9种SansalvamideA环肽衍生物具有抗肿瘤活性且对正常细胞毒性较小;化合物H-10对多种肿瘤细胞具有活性,考虑具有诱导B16细胞凋亡的作用;化合物H-15可能通过诱导B16细胞分化抑制其增殖。
     第二部分新型环五肽H-10抑制B16细胞增殖机制的研究
     目的:研究化合物H-10抑制B16细胞增殖的机制。
     方法:磺酰罗丹明B比色分析法研究化合物H-10抑制B16细胞增殖的浓度依赖性,细胞计数法绘制生长曲线研究化合物H-10抑制B16增殖的时间依赖性。流式细胞学技术分析B16细胞经化合物H-10作用后凋亡细胞DNA含量。Western Blot检测凋亡相关蛋白caspase-3,caspase-8和caspase-9表达的情况。
     结果:
     1化合物H-10抑制B16细胞生长具有浓度依赖性:1%DMSO组与空白组相比,增殖率无明显变化,P>0.05。经不同浓度化合物H-10(0.1、1、10、50和100μM)处理48h后,B16细胞增殖率逐渐降低。与对照组相比,100μM组P<0.01,50μM组P<0.01,10μM组P<0.05,其增值率均明显降低。同时在光学显微镜下可以明显观察到B16经化合物H-10作用后呈现的凋亡形态。经公式计算得到化合物H-10作用B16细胞48h的IC50(半抑制浓度)为39.68μM。
     2化合物H-10抑制B16细胞生长具有时间依赖性:经浓度为50μM的化合物H-10作用B16细胞24h、48h、72h、96h、120h和144h后计数细胞数,与对照组相比,细胞生长受到明显抑制。
     3化合物H-10具有诱导B16细胞凋亡的作用:流式细胞学结果显示,经浓度为50μM的化合物H-10作用B16细胞24h后,出现明显DNA亚二倍体峰,凋亡细胞比例为(9.21±4.62)%,与对照组凋亡比例(0.96±0.22)%相比,P<0.05,结果具有统计学意义。Western Blot结果显示,经10、30和50μM化合物H-10作用后,caspase-3随药物浓度升高其表达量上升。
     4化合物H-10诱导B16细胞凋亡通过线粒体途径:经10、30和50μM化合物H-10作用后,通过线粒体途径诱导细胞凋亡的caspase-9随药物浓度升高其表达量上升,而与外源性凋亡相关的caspase-8没有明显变化。
     结论:化合物H-10对B16细胞的增殖具有很强的抑制作用,且作用效应具有显著的浓度依赖性和时间依赖性。化合物H-10作用B16细胞48h的IC50为39.68μM。化合物H-10具有诱导B16细胞凋亡的作用,化合物H-10诱导B16细胞凋亡通过线粒体途径。
     第三部分新型环五肽H-15抑制B16细胞增殖机制的研究
     目的:研究化合物H-15抑制B16细胞增殖的机制。
     方法:磺酰罗丹明B比色分析法研究化合物H-15抑制B16细胞增殖的浓度依赖性,细胞计数法绘制生长曲线研究化合物H-15抑制B16增殖的时间依赖性。检测B16细胞经化合物H-15作用后黑色素分泌量的变化。RT-PCR检测B16细胞经化合物H-15作用后干细胞基因Foxd3,Klf4,Sox2和Nanog的表达。Western Blot检测酪氨酸酶,Sox2和Foxd3表达的情况。
     结果:
     1化合物H-15抑制B16细胞生长具有浓度依赖性:1%DMSO组与空白组相比,增殖率无明显变化,P>0.05。经不同浓度化合物H-15(0.1、1、10、50和100μM)处理48h后,B16细胞增殖率逐渐降低。化合物H-15作用B16细胞与对照组相比,50μM组和10μM组P<0.01,其增值率均明显降低。经公式计算得到化合物H-15作用B16细胞48h的IC50为69.44μM。
     2化合物H-15抑制B16细胞生长具有时间依赖性:经浓度为50μM的化合物H-15作用B16细胞24h、48h、72h、96h、120h和144h后计数细胞数,与对照组相比,细胞生长受到明显抑制。
     350μM化合物H-15作用B16细胞48h后细胞黑色素含量较对照组增高:经酶标仪测定50μM化合物H-15作用B16细胞48h后吸光度值为0.1743±0.0227,对照组吸光度值为0.0788±0.0039,两组间比较P<0.01,差异具有统计学意义,说明经化合物H-15作用后的B16细胞分泌黑色素含量明显增加。
     450μM化合物H-15作用B16细胞48h后酪氨酸酶(TYR)的表达增加:经浓度为50μM的化合物H-15作用B16细胞48后,酪氨酸酶(TYR)的表达较空白组增高。
     5化合物H-15具有抑制Sox2, Foxd3基因表达的作用:RT-PCR结果显示,经10、30和50μM化合物H-15作用24h后,Sox2和Foxd3的表达呈下降趋势,Klf4的表达没有明显变化,Nanog的表达没有规律性。Western-blot结果显示,经10、30和50μM化合物H-15作用24h后,Sox2和Foxd3的表达呈下降趋势。说明化合物H-15具有抑制B16细胞干细胞特性的作用。
     结论:化合物H-15对B16细胞的增殖具抑制作用,且作用效应具有显著的浓度依赖性和时间依赖性。化合物H-15作用B16细胞48h的IC50为69.44μM。化合物H-15具有诱导B16细胞分化的作用,经化合物H-15作用过的B16细胞分泌黑色素的能力增强。化合物H-15抑制了B16细胞Sox2和Foxd3的表达,使其肿瘤干细胞的特性受到抑制。
As there is an upward trend in the incidence and mortality, tumorbecomes a serious threat to human health. At present, the efficacy ofchemotherapy is not ideal. The main reason is the side effects of traditionalantitumor drugs in the clinical treatment. Therefore, looking for new highefficiency and low toxicity of antitumor drugs is a major subject in the field ofbiomedicine. Natural product chemistry has been the important way indevelopment of new pharmaceutical industry. Natural products have theadvantages of novel structure, high curative effect and side effects, so thenatural products chemistry and its research results have been widely used inpharmaceutical.
     Sansalvamide A is a cyclic depsipeptide produced by a marine fungus,and it is first reported in1999. It is a natural part of five peptides has the veryhigh lipotropy and significant anti-tumor ability. Sansalvamide A cyclicpeptides are compounds by the transformation of Sansalvamide A. After yearsof research, more than200new derivatives of Sansalvamide A cyclic peptideshave been reported. The activity of any derivatives has been improvedsignificantly. In this study,9new synthetic Sansalvamide A cyclic peptidederivatives were provided by the State Key Laboratory Breeding Base-HebeiProvince Key Laboratory of Molecular Chemistry for Drug (Hebei Universityof Science and Technology). Malignant melanoma B16cells in mice, humanbreast cancer MCF-7cells and human breast cancer MDA-MB-231cells wereselected to observe the antitumor activity of these new compounds. At thesame time, peripheral blood mononuclear cells and SD rat aortic vascularsmooth muscle cells were prepared by primitive culture for experiment. B16cell was selected as the tumor model and the compound H-10and H-15werein further research on the mechanism of inhibition of cell proliferation.
     The research contents and results are as follows:
     Part I The study of antitumor activity and the toxicity of normal cell onSansalvamide A cyclic peptide derivatives
     Objective: to observe the activity and toxicity of the nine new cyclicpeptide derivatives of Sansalvamide A.
     Methods: malignant melanoma B16cells in mice, human breast cancerMCF-7cells and human breast cancer MDA-MB-231cells were cultured astumor cell models for antitumor activity screening. Peripheral bloodmononuclear cells and SD rat aortic vascular smooth muscle cells wereprepared by primitive culture for observing the toxicity of these compounds.The results were measured by sulforhodamine B (SRB) colorimetric assay.The changes and the growth states of B16cells, lymphocytes, and smoothmuscle cells (VSMC) of rats were observed by inverted phase contrastmicroscope.
     Results:
     1Nine Sansalvamide A cyclic peptide derivatives have inhibiting effecton malignant melanoma B16cells in mice, human breast cancer MCF7cellsand human breast cancer MDA-MB-231cells. After treated48h, blank groupand1%DMSO group didn’t reach statistical significance, P>0.05. Except thecompound6,8and9in50μM for MDA-MB-231, all compounds showedantitumor activity on the three kinds of tumor cells. For B16cells, compound2,5, and6have the strongest inhibition rate,82.43%,81.79%and83.19%, forMCF-7cell, the strongest inhibition rate of three kinds of compounds werecompound5,64.19%, compound9,51.08%and compound4,50.89%, forMDA-MB-231, strongest were compound4and5, and the inhibition rate were68.04%and66.56%.
     29compounds on human peripheral blood mononuclear cells and SD rataortic vascular smooth muscle cell proliferation did have inhibitory effect.
     3Compound H-10have the function to make B16cells apoptosis anddifferentiation of morphology change, compound H-15can make B16cellsappear obvious differentiation changes.
     Conclusion:9Sansalvamide A cyclic peptide derivatives have antitumoractivity and less toxicity to normal cells, Compound H-10have a wide varietyof tumor cells with activity, and have the function to induce apoptosis of B16cells, compound H-15could induce differentiation of B16cells and inhibit theproliferation.
     Part II The mechanism of H-10inhibit proliferation of B16cells
     Objective: to study the mechanism of H-10on inhibiting proliferation ofB16cells.
     Methods: sulforhodamine B (SRB) colorimetric method was used tocalculate Percentage Growth (PG) of different concentration of H-10treatedB16cells for48h and cell counting method to draw growth curve study H-10inhibit the proliferation of B16dependencies. Flow cytometric analysis todetect the apoptotic cell death. The expression of caspase-8, caspase-9andcaspase-3were detected by western-blot.
     Results:
     1H-10has concentration-dependent effect on B16cell growth:Compared with blank group, the proliferation rate of1%DMSO group has nosignificant change, P>0.05. After the treatment of different concentrations ofH-10(0.1,1,10,50and100μM) for48h, proliferation rate of B16cell weregradually decreased. Compared with control group, the proliferation rate of100μM,50μM and10μM were significantly decreased (100μM P<0.01,50μMP<0.01and10μM P<0.05). The morphological changes could be seen throughlight microscopy.
     2H-10has time-dependent effect on B-16cell growth: Time-dependenteffect of H-10on cell proliferation was measured by cell number. After treatedby50μM H-10for24h,48h,72h,96h,120h and144h, cell numbers werecounted and compared with control group. H-10caused time-dependentinhibition of B-16cell lines.
     3H-10induced apoptosis of B16cells: Flow cytometric analysis of cellsamples has demonstrated the ability of H-10induce apoptosis. Apoptoticcells were defined as those with subdiploid DNA content and presented as the percentage of all counted cells per sample. The proportion of apoptotic cells ofuntreated B-16cells was (0.96±0.22)%. Treated with50uM H-10for24h, thepercentage of apoptotic cells was (9.21±4.62)%and the difference wasstatistically significant. Caspase-3plays a key role in cell apoptosis and is theimportant molecular in apoptosis initiation. In this study, the expression ofcaspase-3was determined by Western Blot and this further confirmed thatH-10has the function of inducing apoptosis. After treated by10,25and50μMH-10, the expression of caspase-3increased with the concentration.
     4H-10induced apoptosis of B16cells via mitochondrial pathway: Theresults of western blot showed ascendant trend of the expression of caspase-3and capsase-9. And the expression of caspase-8didn’t change significantlyamong the control and the test group. These results suggest H-10inducedapoptosis of B16cells via mitochondrial pathway.
     Conclusion: H-10has strong inhibition on the proliferation of B16cells,and the effect has significant concentration dependence and time dependence.The IC50of H-10on B16cells in48hours is39.68μM. H-10has the functionof induce apoptosis of B16cells, and H-10induces B16cells apoptosis bymitochondrial pathway.
     Part III The mechanism of H-15inhibit proliferation of B16cells
     Objective: to study the mechanism of H-15on inhibiting proliferation ofB16cells.
     Methods: sulforhodamine B (SRB) colorimetric method was used tocalculate Percentage Growth (PG) of different concentration of H-15treatedB16cells for48h and cell counting method to draw growth curve study H-15inhibit the proliferation of B16dependencies. Detect melanin production ofB16cells after treated by H-15. The expression of stem cell gene Foxd3, Klf4,Sox2and Nanog were detected by RT-PCR. The expression of TYR, Sox2and Foxd3were detected by Western Blot.
     Results:
     1H-15has concentration-dependent effect on B16cell growth:Compared with blank group, the proliferation rate of1%DMSO group has nosignificant change, P>0.05. After the treatment of different concentrations of H-15(0.1,1,10,50and100μM) for48h, proliferation rate of B16cell weregradually decreased. Compared with control group, the proliferation rate of50uM and10uM were significantly decreased, P<0.05. The morphologicalchanges could be seen through light microscopy. The IC50of H-15on B16cells in48hours is69.44μM.
     2H-15has time-dependent effect on B-16cell growth: Time-dependenteffect of H-15on cell proliferation was measured by cell number. After treatedby50μM H-15for24h,48h,72h,96h,120h and144h, cell numbers werecounted and compared with control group. H-15caused time-dependentinhibition of B16cell lines.
     3The melanin content is higher than control after treated by50μM H-15for48hours: the OD value of B16cells after treated by50μM H-15for48hours was0.1743±0.0227compared with the control0.0788±0.0039, therewas statistically significant between the two groups, P<0.01.
     4The expression of tyrosine (TYR) enzyme was increased after treatedby50μM H-15for48hours: detected by Western Blot, the expression of TYRwas increased.
     5H-15has the function of inhibit the expression of Sox2and Foxd3:according to the results of RT-PCR, after treated by H-15for24h, theexpression of Sox2and Foxd3had a downward trend, Klf4expression was notsignificantly change, and Nanog expression was not regularity. It suggestedthat H-15has the function of inhibit the stem cell properties of B16cells.
     Conclusion: H-15has strong inhibition on the proliferation of B16cells,and the effect has significant concentration dependence and time dependence.The IC50of H-15on B16cells in48hours is69.44μM. H-15may have thefunction of the induced differentiation of B16cells, and the ability of secretionmelanin in B16cells treated by H-15was stronger than control. H-15couldinhibit the expression of Sox2and Foxd3, and inhibit the stem cell propertiesof B16cells.
引文
1S. Liu, W. Gu, D. Lo. N-methylsansalvamide A peptide analogues. Potentnew antitumor agents, J. Med. Chem.48(2005)3630~3638
    2P. Pan, R.C. Vasko, S.A. Lapera, et al. Acomprehensive study ofSansalvamide A derivatives: The structure-activity relationships of78derivatives in two pancreatic caner cell lines. Bioorganic&MedicinalChemistry17(2009)5806~5825
    3R. Rodriguez, P. Pan, C. Pan, et al. Synthesis of Second-GenerationSansalvamide A Derivatives: Novel Templates as Potential AntitumorAgents. J. org. Chem.72(2007)1980~2002
    4T.J. Styers, A. Kekec, R. Rodriguez, et al. Synthesis of Sansalvamide ADerivatives and their cytotoxicity in the MSS colon cancer cell line HT-29.Bioorganic&Medicinal Chemistry14(2006)5625~5631
    5K. otrubova, G. Lushington, D.V. Velde, K.L. McGuire, et al.Comprehensive Study of Sansalvamide A Derivatives and theirStructure-Activity Relationships against Drug-Resistant Colon Cancer CellLines. J. Med. Chem.51(2008)530~544
    6M. Ujiki, B. Milam, X.Z. Ding, et al. A novel peptide sansalvamideanalogue inhibits pancreatic cancer cell growth through G0/G1cell-cyclearrest. Biochemical and Biophysical Research Communications340(2006)1224~1228
    7Wang Q, He W, Lu C, et al. Oct3/4and Sox2are significantly associatedwith an unfavorable clinical outcome in human esophageal squamous cellcarcinoma[J]. Anticancer Res,2009,29(4):1233~1241
    8Sanada Y, Yoshida K, Ohara M, et al. Histopathologic evaluation ofstepwise progression of pancreatic carcinoma with immuno-histochemicalanalysis of gastric epithelial transcription factor Sox2: comparison ofexpression patterns between invasive components and cancerous ornonneoplastic intraductal components [J]. Pancreas,2006,32(2):164~170
    9Saigusa S, Tanaka K, Toiyama Y, et al. Correlation of CD133, Oct4andSox2in rectal cancer and their association with distant recurrence afterchemoradiotherapy [J]. Ann Surg Oncol,2009,16(12):3488
    10Otsubo T, Akiyama Y, Yanagihara K, et al. Sox2is frequentlydownregulated in gastric cancers and inhibits cell growth throughcell-cycle arrest and apoptosis [J]. BrJ Cancer,2008,98(4):824~831
    11Leszczyniecka M, Roberts T, Dent P, et al. Differentiation therapy ofhuman cancer: basic science and clinical applications [J]. Pharmacology&Therapeutics,2001,90(2-3):105~156
    12Serra JM, Gutierrez A, Alemany R, et al. Inhibition of c-MycDown-Regulation by Sustained Extracellular Signal-Regulated KinaseActivation Prevents the Antimetabolite Methotrexate-andGemcitabine-Induced Differentiation in Non-Small-Cell Lung Cancer
    Cells[J]. Mol Pharmacol,2008,73(6):1679~1687
    1M. Ujiki, B. Milam, X.Z. Ding, A. Roginsky, M. Talamonti, et al. A novelpeptide sansalvamide analogue inhibits pancreatic cancer cell growththrough G0/G1cell-cycle arrest. Biochemical and Biophysical ResearchCommunications340(2006)1224~1228
    2S. Liu, W. Gu, D. Lo. N-methyl sansalvamide A peptide analogues. Potentnew antitumor agents, J. Med. Chem.48(2005)3630~3638
    3Irshad S, Ashworth A, Tutt A. Therapeutic potential of PARP inhibitors formetastatic breast cancer[J]. Expert Rev Anticancer Ther.2011,11(8):1243~1251
    4Krajewski S, Krajewska M, Ellerby Lm, et al. Release of caspase-9frommitochondria duing neuronal apoptosis and cerebral ischemia. Proc NatlAcad Sci USA1999,96:5752~5757
    5Susin SA, Lorenzo HK, Zamzami N, et al. Mitochondrial release ofcaspase-2and-9during the apoptotic process. J. Exp. Med.1999,189:381~394
    6Johnson CR, Jarvis WD. Caspase-9regulation: an update. Apoptosis.2004,9:423~427
    7Li p, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-DependentFormation of Apaf-1/Caspase-9Complex Initiates an Apoptotic ProteaseCascade. Cell1997,91:479~489
    8Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interactionmotif in caspase-9and Smac/DIABLO regulates caspase activity andapoptosis. Nature2001,410:112~116
    9Rodriguez J, Lazebnik Y. Caspase-9and APAF-1form an activeholoenzyme. Genes Dev.1999,13:3179~3184
    10Ulukaya E, Acilan C, Yilmaz Y. Apoptosis: why and how does it occur inbiology[J]. Cell Biochem Funct.2011,29(6):468-480;Elza C, De B, Jan P.Apoptosis and non-apoptotic deaths in cancer development and treatmentresponse[J]. Cancer Treatment Reviews,2008,34:737~749
    1Serra JM, Gutierrez A, Alemany R, et al. Inhibition of c-MycDown-Regulation by Sustained Extracellular Signal-Regulated KinaseActivation Prevents the Antimetabolite Methotrexate-andGemcitabine-Induced Differentiation in Non–Small-Cell Lung CancerCells[J]. Mol Pharmacol,2008,73(6):1679~1687
    2Leszczyniecka M, Roberts T, Dent P, et al. Differentiation therapy ofhuman cancer: basic science and clinical applications [J]. Pharmacology&Therapeutics,2001,90(2-3):105~156
    3Desai SH, Boskovic G, Eastham L, et al. Effect of Receptor-SelectiveRetinoids on Growth and Differentiation Pathways in Mouse MelanomaCells [J]. Biochem Pharmacol,2000,59(10):1265~1275
    4Yuan H B, Corbi N, Basilico C, et al. Developmental-specific activity ofthe FGF-4enhancer requires the synergistic action of Sox2and Oct-3.Genes Dev,1995,9:2635~2645
    5Johnson L R, Lamb K A, Gao Q S, et al. Role of the transcription factorSox2in the expression of the FGF-4gene in embryonal carcinoma cells.Mol Reprod Dev,1998,50:377~386
    6Dailey L, Yuan H B, Basilico C. Interaction between a novel F9-specificfactor and octamer-bidning proteins is required for cell-type-restrictedactivity of the fibroblast growth factor4enhancer. Mol Cell Biol,1994,14:7758~7769
    7Ambrosetti D C, Basilico C, Dailey L. Synergistic activation of thefibroblast growth factor4enhancer by Sox2and Oct-3depends onprotein-protein interactions facilitated by a specific spatial arrangement offactor binding sites. Mol Cell Biol,1997,17:6321~6329
    8Wood H B, Episkopou V. Comparative expression of the mouse Sox1,Sox2and Sox3genes from pre-gastrulation to early somite stages. MechDev,1999,86:197~201
    9Avilion A A, Nicolis S K, Pevny L H, et al. Multipotent cell lineages inearly mouse development depend on Sox2function. Genes Dev,2003,17:126~140
    10Wegner M. From head to toes: the multiple facets of Sox proteins. NuclAcids Res,1999,27:1409~1420
    11Wang Q, He W, Lu C, et al. Oct3/4and Sox2are significantly associatedwith an unfavorable clinical outcome in human esophageal squamous cellcarcinoma[J]. Anticancer Res,2009,29(4):1233~1241
    12Sanada Y, Yoshida K, Ohara M, et al. Histopathologic evaluation ofstepwise progression of pancreatic carcinoma with immunohistochemicalanalysis of gastric epithelial transcription factor Sox2: comparison ofexpression patterns between invasive components and cancerous ornonneoplastic intraductal components [J]. Pancreas,2006,32(2):164~170
    13Otsubo T, Akiyama Y, Yanagihara K, et al. Sox2is frequentlydownregulated in gastric cancers and inhibits cell growth throughcell-cycle arrest and apoptosis [J]. BrJ Cancer,2008,98(4):824~831
    14Saigusa S, Tanaka K, Toiyama Y, et al. Correlation of CD133, Oct4andSox2in rectal cancer and their association with distant recurrence afterchemoradiotherapy [J]. Ann Surg Oncol,2009,16(12):3488
    15Tompers DM, Foreman RK, Wang Q, et al. Foxd3is required in thetrophoblast progenitor cell lineage of the mouse embryo. Dev Biol2005,285(1):126~137
    16Labosky KA, Kaestner KH. The winged helix transcription factor Hfh2isexpressed in neural crest and spinal cord during mouse development.Mech Dev1998,76(1-2):185~190
    17Cheung M, Chaboissier MC, Mynett A, et al. The transcriptional control oftrunk neural crest induction, survival, and delamination. Dev Cell2005,8(2):179~192
    18Stewart RA, Arduini BL, Berghmans S, et al. Zebrafish Foxd3isselectively required for neural crest specification, migration and survival.Dev Biol2006,292(1):174~188
    19Whitlock KE, Smith KM, Kim H, et al. A role for Foxd3and sox10in thedifferentiation of gonadotropin-releasing hormone (GnRH) cells in thezebrafish Danio rerio. Development2005,132(24):5491~5502
    20Yaklichkin S, Steiner AB, Lu Q, et al. Foxd3and Grg4physically interactto repress transcription and induce mesoderm in Xenopus. J Biol Chem2007,282(4):2548~2557
    21Sutton J, Costa R, Klug M, et al. Genesis, a winged helix transcriptionalrepressor with expression restricted to embryonic stem cells. J Biol Chem1996,271(38),23126~23133
    22Xu D, Yoder M, Sutton J, et al. Forced expression of Genesis, a wingedhelix transcriptional repressor isolated from embryonic stem cells, blocksgranulocytic differentiation of32D myeloid cells. Leukemia1998,12(2):207~212
    23Dottori M, Gross MK, Labosky P, et al. The winged-helix transcriptionfactor foxd3suppresses interneuron differentiation and promotes neuralcrest cell fate. Development2001,128(21):4127~4138
    24Kos R,Reedy MV, Johnson RL, et al. The winged-helix transcriptionfactor FoxD3is important for establishing the neural crest lineage andrepressing melanogenesis in avian embryos. Development2001,128(8):1467~1479
    25Real C, Glavieux-Pardanaud Cle Douarin NM, et al. Clonally cultureddifferentiated pigment cells can dedifferentiate and generate multipotentprogenitors with self-renewing potential. Dev Biol2006,300(2):656~669
    26Chambers I, Colby D, Robertson M, et al. Functional expression cloningof Nanog, a pluripotency sustaining factor in embryonic cells. Cell,2003,113:643~655
    27Mitsui K, Tokuzawa Y, Itoh H, et al. The homeo protein Nanog is requiredfor maintenance of pluripotency in mouse epiblast and ES cells. Cell,2003,113(5):631~642
    28Yamaguchi S, Kimura H, Tada M, et al. Nanog expression in mouse germcell development. Gene Expression Patterns,2005,5(5):639~646
    29Ezeh U I,Turek P J, Reijo R A, et al. Human embryonic stem cells genesOct4, Nanog, StELLR, and GDFS are expressed on both seminoma andbreast carcinoma. Cancer,2005,104(10):2255~2265
    30Hart A H, Harttley K, Parker K, et al. The pluripotency homebox geneNanog is expressed in human germ cell tumors. Cancer,2005,104(10):2092~2098
    31Wu D Y, Yao Z. Isolation and characterization of the murine Nanog genepromoter. Cell Research,2005,15(15):317~324
    32Kerr C L, Hill C M, Blumenthal P D, et al. Expression of pluripotent stemcell markers in the human fetal testis. Stem Cells,2008,26:412-421
    33Kerr C L, Hill C M, Blumenthal P D, et al. Expression of pluripotent stemcell markers in the human fetal ovary. Human Reproduction,2008,23:589~599
    34Shields JM, Christy RJ, Yang VW. Identification and characterization of agene encoding a gut-enriched Kruppel-like factor expressed during growtharrest. J Biol Chem,1996,271(33):20009~20017
    35Yet SF, McA Nulty MM, Folta SC, et al. Human EZF, a Kruppel-like zincfinger protein is expressed in vascular endothelial cells and containstranscriptional activation and repression domains. J Biol Chem,1998,273(2):1026~1031
    36Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouseembryonic and adult fibroblast cultures by defined factors. Cell,2006126(4):663~676
    37Shields JM, Yang VW. Two potent nuclear localization signals in thegut-enriched Kruppel-like factor define a subfamily of closely relatedKruppel proteins. J Biol Chem,1997,272(29):18504~18507
    38Shields JM, Yang VW. Identification of the DNA sequence that interactswith the gut-enriched Kruppel-like factor. Nucleic Acids Res,1998,26(3):796~802
    39Wassmann S, Wassmann K, Jung A, et al. Induction of p53by GKLF isessential for inhibition of proliferation of vascular smooth muscle cells.Mol Cell Cardiol,2007,43(3):301~307
    40Innocente SA, Lee JM. p53is a NF-Y-and p21-independent,Sp1-dependent repressor of cyclin B1transcription. FEBS Lett,2005,579(5):1001~1007
    41Yoon HS, Chen X, Yang VW. Kruppel-like factor4mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem,2003,278(4):2101~2105
    42Foster KW, Frost AR, Mckie-Bell P, et al. Increase of GKLF messengerRNA and protein expression during progression of breast cancer. CancerRes,2000,60(22):6488~6495
    43Huang CC, Liu Z, Li X, et al. KLF4and PCNA identify stages of tumorinitiation in a conditional model of cutaneous squamous epithelialneoplasia. Cancer Biol Ther,2005,4(12):1401~1408
    44Kim B, Bang S, Lee S, et al. Expression profiling and subtype specificexpression of stomach cancer. Cancer Res,2003,63(23):8248~8255
    45Bianchi F, Hu J, Pelosi G, et al. Lung cancers detected by screening withspiral computed tomography have a malignant phenotype when analyzedby cDNA microarray. Clin Cancer Res,2004,10(18pt1):6023~6028
    46Xu J, Lu BJ, Xu FY, et al. Dynamic down-regulation of Kruppel-likefactor4in colorectal adenoma-carcinoma sequence. Cancer Res ClinOncol,2008,134(8):891~898
    47Ai W, Liu Y, Langlois M, et al. Kruppel-like factor4(Klf4) represseshistidine decarboxylase gene expression through an upstream Sp1site anddownstream gastrin responsive elements. J Biol Chem,2004,279(10):8684~8693
    48Baltatzi M, Hatzitolios A, Tziomalos K, et al. Neuropeptide Y andalpha-melanocyte-stimulating hormone: interaction in obesity and possiblerole in the development of hypertension [J]. J Trauma,2009,66(2):465~469
    1Thornberry NA, Lazebnik Y. Caspases: enemies within. Science,1998,281:1312~1316
    2Hengartner MO, Horvitz HR, et al. C. elegans cell survival gene ced-9encodes a functional homolog of the mammalian proto-oncogene bcl-2[J].Cell,1994,76(4):665~676
    3Peter ME, Heufflder AE, Hengartner MO, ET al. Advances in apotosisresearch. Proc. Natl. Acad. Sci. USA,1997,94:12736~12737
    4Krajewski S, Krajewska M, Ellerby Lm, et al. Release of caspase-9frommitochondria duing neuronal apoptosis and cerebral ischemia. Proc NatlAcad Sci USA1999,96:5752~5757
    5Johnson CR, Jarvis WD. Caspase-9regulation: an update. Apoptosis.2004,9:423~427
    6Li p, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-DependentFormation of Apaf-1/Caspase-9Complex Initiates an Apoptotic ProteaseCascade. Cell1997,91:479~489
    7Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interactionmotif in caspase-9and Smac/DIABLO regulates caspase activity andapoptosis. Nature2001,410:112~116
    8Rodriguez J, Lazebnik Y. Caspase-9and APAF-1form an activeholoenzyme. Genes Dev.1999,13:3179~3184
    9Kim HE, Du F, Fang M, et al. Formation of apoptosome is initiated bycytochrome c-induced dATP hydrolysis and subsequent nucleotideexchange on APaf-1. Proc. Natl. Acad. Sce. USA.2005,102:17545~17550
    10Adams JM, cory S. The Bcl-2Protein Family: Arbiters of Cell Survival.Science,1998,281:1322~1326
    11Chami M, Prandini A, Campanella M,et al. Bcl-2and Bax exert opposingeffects on Ca2+from endoplasmic reticulum stores and mitochondrialapoptosis during stress-induced cell death [J]. J Biol Chem,2005,280:23819~23836
    12Voehringer DW, Meyn RE. Redox aspects of Bcl-2function [J]. AntioxidRedox Signal,2000,2:537~550
    13Ellerby LM, Ellerby HM, Park SM, et al. Shift of the cellularoxidation-reduction potential in neural cell expressing Bcl-2[J]. JNeurochem,1996,67:1259~1267
    14Brooks C Dong Z. Regulation of mitochondrial morphological dynamicsduring apoptosis by Bcl-2family proteins: a key in Bak [J]. Cell Cycle,2007,6(24):3043~3047
    15Willis SN, Chen L, Dewson G, et al.Proapoptotic Bak is sequestered byMcl-1and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins [J].Genes Dev,2005,19(11):1294~3051
    16Willis SN, Fletcher JI, Kaufmann T, et al. Apoptosis initiated when BH3ligands engage multiple Bcl-2homologs, not Bax or Bak [J]. Science,2007,315(5813):856~859
    17Li P, Nijhawan D, Budihardjo I, et al. Cytochrome and dATP-dependentformation of Apaf-1/caspase-9complex intiates an apoptotic proteasecascade [J]. Cell,1997,91(4):479~489
    18Evan G, Littlewood T. A matter of life and cell death. Science,1998,281:1317~1322
    19King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu. Rev.Physiol.,1998,60:601~617
    20Eskes R, Desagher S, Antonsson B, et al. Bid induces the oligomerizationand insertion of Bax into the outemitochondrial membrane [J]. Mol CellBiol,2000,20(3):929~935
    21Leu JI, Dumont P, Hafey M, et al. Mitochondrial p53activates Bak andcauses disruption of a Bak-Mcl1complex [J]. J Biol Chem,2001,276(19):16391~16398
    22McConkey DJ, Nutt LK. Calcium Flux Measruements in apoptosis[J].Methods Cell Biol,2001,66(2):229~246
    23De Maria R, Lentil L, Malisan F, et al. Requirement for CD3gangliosidein CD95and ceramide-induced apoptosis[J]. Science,1997,227:1652~1655
    1Bonnet D, Kick JE. Human acutemyeloid leukemia is organized as ahierarchy tat originates from a primitive hematopoietic cell Nat Med,1997,3(7):730~737
    2Ai-Hajj M, Wicha M S, Benita-Hemandez A, et al. Prospectiveidentification of tumorigenic breast cancer cells [J]. Proc Natl Acad SciUSA,2003,100(7):3983~3988
    3Singh SK, Clarke D, Terasaki M. et al. Identification of a cancer stem cellin human brain tumors. Cance Res,2003,63(18):5821-5828
    4Hemmati HD, Nakano L, Lazareff JA, et al. Cancerous stem cells can arisefrom pediatric brain tumors. Proc Natl Acad Sci USA,2003,100(25):15178~15183
    5Fang D, Nguyen TK, LeishearK, et al. A tumorigenic subpopulation withstem cell properties in melanomas. Cancer Res,2005,65(20):9328~9337
    6Patrawala L, Calhoun T, schneid er-Broussard R, et al. Highly purifiedCD44+prostate cancer cells from xenograft human tumors are enriched intumorigenic and metastatic progenitor cells. Oneogene,2006,25,1696~1708
    7Yuan H B, Corbi N, Basilico C, et al. Developmental-specific activity ofthe FGF-4enhancer requires the synergistic action of Sox2and Oct-3.Genes Dev,1995,9:2635~2645
    8Johnson L R, Lamb K A, Gao Q S, et al. Role of the transcription factorSox2in the expression of the FGF-4gene in embryonal carcinoma cells.Mol Reprod Dev,1998,50:377~386
    9Dailey L, Yuan H B, Basilico C. Interaction between a novel F9-specificfactor and octamer-bidning proteins is required for cell-type-restrictedactivity of the fibroblast growth factor4enhancer. Mol Cell Biol,1994,14:7758~7769
    10Ambrosetti D C, Basilico C, Dailey L. Synergistic activation of thefibroblast growth factor4enhancer by Sox2and Oct-3depends onprotein-protein interactions facilitated by a specific spatial arrangement offactor binding sites. Mol Cell Biol,1997,17:6321~6329
    11Wood H B, Episkopou V. Comparative expression of the mouse Sox1,Sox2and Sox3genes from pre-gastrulation to early somite stages. MechDev,1999,86:197~201
    12Avilion A A, Nicolis S K, Pevny L H, et al. Multipotent cell lineages inearly mouse development depend on Sox2function. Genes Dev,2003,17:126~140
    13Wegner M. From head to toes: the multiple facets of Sox proteins. NuclAcids Res,1999,27:1409~1420
    14Wang Q, He W, Lu C, et al. Oct3/4and Sox2are significantly associatedwith an unfavorable clinical outcome in human esophageal squamous cellcarcinoma[J]. Anticancer Res,2009,29(4):1233~1241
    15Sanada Y, Yoshida K, Ohara M, et al. Histopathologic evaluation ofstepwise progression of pancreatic carcinoma with immunohistochemicalanalysis of gastric epithelial transcription factor Sox2: comparison ofexpression patterns between invasive components and cancerous ornonneoplastic intraductal components [J]. Pancreas,2006,32(2):164~170
    16Otsubo T, Akiyama Y, Yanagihara K, et al. Sox2is frequentlydownregulated in gastric cancers and inhibits cell growth throughcell-cycle arrest and apoptosis [J]. BrJ Cancer,2008,98(4):824~831
    17Saigusa S, Tanaka K, Toiyama Y, et al. Correlation of CD133, Oct4andSox2in rectal cancer and their association with distant recurrence afterchemoradiotherapy [J]. Ann Surg Oncol,2009,16(12):3488
    18Tompers DM, Foreman RK, Wang Q, et al. Foxd3is required in thetrophoblast progenitor cell lineage of the mouse embryo. Dev Biol2005,285(1):126~137
    19Labosky KA, Kaestner KH. The winged helix transcription factor Hfh2isexpressed in neural crest and spinal cord during mouse development.Mech Dev1998,76(1-2):185~190
    20Cheung M, Chaboissier MC, Mynett A, et al. The transcriptional controlof trunk neural crest induction, survival, and delamination. Dev Cell2005,8(2):179~192
    21Stewart RA, Arduini BL, Berghmans S, et al. Zebrafish Foxd3isselectively required for neural crest specification, migration and survival.Dev Biol2006,292(1):174~188
    22Whitlock KE, Smith KM, Kim H, et al. A role for Foxd3and sox10in thedifferentiation of gonadotropin-releasing hormone (GnRH) cells in thezebrafish Danio rerio. Development2005,132(24):5491~5502
    23Yaklichkin S, Steiner AB, Lu Q, et al. Foxd3and Grg4physically interactto repress transcription and induce mesoderm in Xenopus. J Biol Chem2007,282(4):2548~2557
    24Sutton J, Costa R, Klug M, et al. Genesis, a winged helix transcriptionalrepressor with expression restricted to embryonic stem cells. J Biol Chem1996,271(38),23126~23133
    25Xu D, Yoder M, Sutton J, et al. Forced expression of Genesis, a wingedhelix transcriptional repressor isolated from embryonic stem cells, blocksgranulocytic differentiation of32D myeloid cells. Leukemia1998,12(2):207~212
    26Dottori M, Gross MK, Labosky P, et al. The winged-helix transcriptionfactor foxd3suppresses interneuron differentiation and promotes neuralcrest cell fate. Development2001,128(21):4127~4138
    27Kos R,Reedy MV, Johnson RL, et al. The winged-helix transcriptionfactor FoxD3is important for establishing the neural crest lineage andrepressing melanogenesis in avian embryos. Development2001,128(8):1467~1479
    28Real C, Glavieux-Pardanaud Cle Douarin NM, et al. Clonally cultureddifferentiated pigment cells can dedifferentiate and generate multipotentprogenitors with self-renewing potential. Dev Biol2006,300(2):656~669
    29Chambers I, Colby D, Robertson M, et al. Functional expression cloningof Nanog, a pluripotency sustaining factor in embryonic cells. Cell,2003,113:643~655
    30Mitsui K, Tokuzawa Y, Itoh H, et al. The homeo protein Nanog is requiredfor maintenance of pluripotency in mouse epiblast and ES cells. Cell,2003,113(5):631~642
    31Yamaguchi S, Kimura H, Tada M, et al. Nanog expression in mouse germcell development. Gene Expression Patterns,2005,5(5):639~646
    32Ezeh U I,Turek P J, Reijo R A, et al. Human embryonic stem cells genesOct4, Nanog, StELLR, and GDFS are expressed on both seminoma andbreast carcinoma. Cancer,2005,104(10):2255~2265
    33Hart A H, Harttley K, Parker K, et al. The pluripotency homebox geneNanog is expressed in human germ cell tumors. Cancer,2005,104(10):2092~2098
    34Wu D Y, Yao Z. Isolation and characterization of the murine Nanog genepromoter. Cell Research,2005,15(15):317~324
    35Kerr C L, Hill C M, Blumenthal P D, et al. Expression of pluripotent stemcell markers in the human fetal testis. Stem Cells,2008,26:412~421
    36Kerr C L, Hill C M, Blumenthal P D, et al. Expression of pluripotent stemcell markers in the human fetal ovary. Human Reproduction,2008,23:589~599
    37Shields JM, Christy RJ, Yang VW. Identification and characterization of agene encoding a gut-enriched Kruppel-like factor expressed during growtharrest. J Biol Chem,1996,271(33):20009~20017
    38Yet SF, McA Nulty MM, Folta SC, et al. Human EZF, a Kruppel-like zincfinger protein is expressed in vascular endothelial cells and containstranscriptional activation and repression domains. J Biol Chem,1998,273(2):1026~1031
    39Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouseembryonic and adult fibroblast cultures by defined factors. Cell,2006126(4):663~676
    40Shields JM, Yang VW. Two potent nuclear localization signals in thegut-enriched Kruppel-like factor define a subfamily of closely relatedKruppel proteins. J Biol Chem,1997,272(29):18504~18507
    41Shields JM, Yang VW. Identification of the DNA sequence that interactswith the gut-enriched Kruppel-like factor. Nucleic Acids Res,1998,26(3):796~802
    42Wassmann S, Wassmann K, Jung A, et al. Induction of p53by GKLF isessential for inhibition of proliferation of vascular smooth muscle cells.Mol Cell Cardiol,2007,43(3):301~307
    43Innocente SA, Lee JM. p53is a NF-Y-and p21-independent,Sp1-dependent repressor of cyclin B1transcription. FEBS Lett,2005,579(5):1001~1007
    44Yoon HS, Chen X, Yang VW. Kruppel-like factor4mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem,2003,278(4):2101~2105
    45Foster KW, Frost AR, Mckie-Bell P, et al. Increase of GKLF messengerRNA and protein expression during progression of breast cancer. CancerRes,2000,60(22):6488~6495
    46Huang CC, Liu Z, Li X, et al. KLF4and PCNA identify stages of tumorinitiation in a conditional model of cutaneous squamous epithelialneoplasia. Cancer Biol Ther,2005,4(12):1401~1408
    47Kim B, Bang S, Lee S, et al. Expression profiling and subtype specificexpression of stomach cancer. Cancer Res,2003,63(23):8248~8255
    48Bianchi F, Hu J, Pelosi G, et al. Lung cancers detected by screening withspiral computed tomography have a malignant phenotype when analyzedby cDNA microarray. Clin Cancer Res,2004,10(18pt1):6023~6028
    49Xu J, Lu BJ, Xu FY, et al. Dynamic down-regulation of Kruppel-likefactor4in colorectal adenoma-carcinoma sequence. Cancer Res ClinOncol,2008,134(8):891~898
    50Ai W, Liu Y, Langlois M, et al. Kruppel-like factor4(Klf4) represseshistidine decarboxylase gene expression through an upstream Sp1site anddownstream gastrin responsive elements. J Biol Chem,2004,279(10):8684~8693
    51Dean M, Fojo T, Bates S. Tumor stem cells drug resistance. NatureReviews. Cancer,2005,5:275~284
    52Diehn M, Clarke M F. Cancer stem cells and radiotherapy a new insightsinto tumor radioresistance. Journal of the National Cancer Institute,2006,98:1755~1757
    53Li X, Lewis M T, Huang I, et al. Intrinsic resistance of tumorigenic breastcancer cells to chemotherapy. Journal of the National Cancer Institute,2008,100:672~679
    54Gupta P B, Onder T T, Jiang G, et al. Identification of selective inhibitorsof cancer stem cells by high through put screening. Cell,2009,138:645~659
    55Marian CO, Cho SK, McEllin BM, et al. The telomerase antagonist,imetelstat, efficiently targets glioblastoma tumor-initiating cells leading todescreased proliferation and tumor growth. Clin Cancer Res,2010,16(1):154~163
    56Frank NY, Margaryan A, Huang Y, et al. ABCB5-mediated doxorubicintransport and chemoresistance in human malignant melanoma. Cancer Res,2005,65(10):4320~4333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700