用户名: 密码: 验证码:
CRH及内源性H_2S对临产前后子宫肌收缩性的不同调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早产发生率可达9-11%,不仅严重危害母婴健康,更是围产期新生儿死亡的首要原因,早产儿死亡率15%。然而,虽然全世界的医学家和生物学家几十年来不懈地努力,早产的发生率却并未得到有效的控制,其根本原因在于人类分娩启动的机理尚未明晰。
     在正常情况下,妊娠足月之前,子宫都是处于一种相对静息的状态,其兴奋性低,不发生大的收缩。只有在临近分娩时才发生高频率、高强度的规律宫缩。因此,子宫由静息态向收缩态的转化无疑是启动分娩的关键。但迄今为止对于子宫静息状态终止进而转为收缩激活的机制,尚未阐明。目前的研究表明,妊娠子宫肌静息状态维持和收缩的发生受到了一系列内源性活性因子的调控,而且妊娠期间,这些因子的产生量及子宫对它们的反应性是随着妊娠的进行而发生变化的。目前认为,正是由于上述这种动态变化,使子宫在足月前处于静息状态,在妊娠末期出现收缩。因此全面地了解究竟有哪些内源性子宫舒缩性调控因子,深入地研究这些因子在妊娠不同阶段对子宫的作用以及作用机制,是发现妊娠子宫静息终止转为收缩激活分子的关键。
     妊娠期间人类胎盘组织合成和分泌的促肾上腺皮质激素释放激素(corticotropin-releasinghormone,CRH)在人类分娩启动中发挥重要作用,被称为控制分娩的“生物钟”。人类子宫肌可以表达CRH受体,提示人类子宫肌是CRH作用的重要靶器官。因此在本课题的第一部分进行了以下四个方面的研究:1.观察CRH对临产和未临产子宫肌收缩性的不同调节作用;2.介导CRH对临产和未临产子宫肌不同调节作用的受体亚型;3.CRHR1介导CRH对临产和未临产子宫肌收缩性不同调节作用的细胞内信号转导通路;4.引起临产和未临产子宫肌中CRHR1偶联的G蛋白亚型发生改变的可能机制。
     硫化氢是继NO和CO之后发现的第三种具有生物活性的气体信号分子,可舒张多种平滑肌组织,但是H_2S对于子宫平滑肌作用的研究还相对较少,仅有两篇报道表明外源性的H_2S能抑制子宫平滑肌自发性收缩,而在人体中存在内源性H_2S,并且本课题前期研究表明人类妊娠子宫肌产生内源性H_2S。那么内源性H_2S是否能够舒张人类妊娠子宫肌?本课题的第二部分我们用产生内源性H_2S的供体L-半胱氨酸等处理人类离体子宫肌,观察内源性H_2S对人类子宫肌收缩性的调节,并对其作用机制进行系统性研究,进一步比较内源性H_2S对临产前后子宫肌收缩性的调节是否不同。
     在子宫肌由静息态向收缩态转变的过程中,子宫平滑肌上多种收缩相关蛋白的表达发生变化。本课题组前期的研究已经发现在临产后ATP激活的K~+通道(K_(ATP)),大电导Ca~(2+)激活的K~+通道(BK_(Ca))的表达较临产前明显降低,但是这种表达的变化对子宫肌收缩性有何影响尚不清楚。因此在本课题的第三部分我们用K_(ATP)和BK_(Ca)激动剂以及孕酮处理子宫肌组织,观察它们对临产前后子宫肌收缩性的调节是否不同。
     主要实验结果如下:
     一、CRH对临产前后子宫肌收缩性不同调节作用的分子机制
     1.我们课题组前期的研究已发现CRH能抑制未临产子宫肌的自发性收缩,但不影响临产子宫肌自发性收缩。本实验进一步观察CRH对催产素诱发的子宫肌收缩的影响,发现10~(-9) -10~(-7)mol/L CRH能剂量依赖性的增强临产子宫肌的收缩幅度。
     2.细胞内游离钙离子水平([Ca~(2+)]_i)是平滑肌收缩的关键因子,因此我们观察[Ca~(2+)]_i作为检测子宫肌收缩性的另一指标。在临产子宫肌中,我们发现CRH升高子宫肌细胞[Ca~(2+)]_i,而且此效应可以被CRHR1特异性受体拮抗剂阻断,但不能被CRHR2特异性受体拮抗剂阻断,提示CRH升高临产子宫肌细胞[Ca~(2+)]_i是由CRHR1介导的。siRNA干扰CRHR1的表达后,CRH升高临产子宫肌[Ca~(2+)]_i的作用消失,进一步证实了CRH升高临产子宫肌[Ca~(2+)]_i是通过CRHR1介导的。
     在未临产子宫肌中,我们发现CRH不影响未临产子宫肌[Ca~(2+)]_i。但我们前期的研究表明培养的子宫肌细胞能够合成和分泌CRH,为确认子宫肌自身合成和分泌(即内源性)的CRH是否调节子宫肌[Ca~(2+)]_i,我们分别应用CRHR1特异性拮抗剂和CRHR2特异性拮抗剂处理细胞,结果发现CRHR1特异性拮抗剂可剂量依赖性的升高未临产子宫肌[Ca~(2+)]_i,提示CRHR1特异性拮抗剂通过阻断内源性CRH与CRHR1的作用,升高[Ca~(2+)]_i;用siRNA干扰CRHR1的表达后,CRHR1特异性拮抗剂升高细胞[Ca~(2+)]_i的作用消失,进一步证实了CRHR1特异性拮抗剂升高细胞[Ca~(2+)]_i的作用是阻断内源性CRH与CRHR1的作用产生的。CRHR2特异性拮抗剂和激动剂都不影响未临产子宫肌细胞[Ca~(2+)]_i,进一步证实CRHR2不参与CRH对未临产子宫肌细胞[Ca~(2+)]_i的调节。
     这些结果提示CRH促进临产子宫肌的收缩,抑制未临产子宫肌的收缩,且CRH的作用都是由CRHR1介导的。
     3. CRHR1介导CRH调节临产前后子宫肌收缩性不同作用的细胞内信号转导通路。
     CRHR1是G蛋白偶联受体。G蛋白偶联受体若与Gαq偶联可激活磷脂酶Cβ(PLCβ),PLCβ催化PIP2水解产生IP_3和DAG,IP_3能引起内质网内钙离子释放,升高细胞[Ca~(2+)]_i;与Gαs偶联能激活AC,升高细胞内cAMP水平,cAMP激活PKA,PKA磷酸化PLCβ上的相应位点,PLCβ上这些位点的磷酸化使其丧失活性,降低细胞内IP_3水平,从而抑制[Ca~(2+)]_i升高;而与Gαi偶联则抑制AC-cAMP通路,减弱cAMP抑制[Ca~(2+)]_i升高的作用。CRHR1在多种组织中(如胎盘、垂体、心脏,神经等)能与包括Gαs、Gαi、Gαq等在内的多种Gα蛋白亚型偶联,而在子宫肌上的研究也表明,CRHR1能与多种Gα蛋白亚型偶联。因此,我们进一步研究在临产和未临产子宫肌细胞中CRH通过CRHR1激活的细胞内信号转导通路。
     (1)CRHR1介导CRH促进临产子宫肌收缩的细胞内信号转导通路。我们发现CRH能够剂量依赖性升高临产子宫肌细胞内PLCβ3磷酸化水平和IP_3水平,此效应可被CRHR1特异性拮抗剂阻断,提示CRH通过CRHR1激活PLCβ3-IP_3通路。将特异性抑制Gαq的小肽GP-2A转染进入临产子宫肌细胞后,CRH升高细胞内IP_3的作用消失,提示在临产子宫肌中CRHR1与Gαq偶联升高细胞内IP_3。
     如前所述,除了Gaq激活可升高细胞内Ca外,Gi蛋白的激活也可能升高[Ca~(2+)]_i。我们发现CRH能激活临产子宫肌Gαi蛋白,还能剂量依赖性的降低临产子宫肌细胞内cAMP水平,而且此效应能够被CRHR1的特异性拮抗剂阻断,提示CRH通过CRHR1降低临产子宫肌细胞内cAMP。而转染Gαi抗体进入临产子宫肌细胞,阻断Gαi的作用,能部分阻断CRH升高细胞内IP_3水平的作用,提示临产子宫肌中CRH通过CRHR1激活Gαi也能升高细胞内IP_3。PLC抑制剂和IP_3受体拮抗剂能阻断CRH升高临产子宫肌细胞内[Ca~(2+)]_i的作用,提示PLCβ-IP_3通路激活的确参与CRH升高临产子宫肌[Ca~(2+)]_i。
     由上述结果提示在临产子宫肌中CRHR1偶联于Gaq和Gai,CRH通过CRHR1激活PLC-IP_3和抑制AC-cAMP细胞内信号通路,升高[Ca~(2+)]_i。
     (2)CRHR1介导CRH抑制未临产子宫肌收缩性的细胞内信号转导通路。
     在未临产子宫肌中,我们发现CRH能够激活Gαs。外源性给予CRH不影响未临产子宫肌细胞内cAMP水平,但是CRHR1的特异性拮抗剂能降低细胞内cAMP水平,这与CRHR1拮抗剂升高未临产子宫肌细胞[Ca~(2+)]_i的结果相符。腺苷酸环化酶(AC)激动剂能阻断CRHR1拮抗剂升高未临产子宫肌[Ca~(2+)]_i的作用,而AC抑制剂可以模拟CRHR1拮抗剂升高未临产子宫肌[Ca~(2+)]_i的作用,提示CRHR1拮抗剂的确是通过抑制AC升高未临产子宫肌[Ca~(2+)]_i。如前所述,cAMP升高可抑制PLC-IP_3通路,抑制[Ca~(2+)]_i升高。我们的研究表明外源性给予CRH不影响未临产子宫肌细胞内IP_3水平,但CRHR1的特异性拮抗剂能剂量依赖性的升高细胞内IP_3水平,提示内源性CRH通过CRHR1降低未临产子宫肌细胞内IP_3水平。
     由上述结果提示在未临产子宫肌中CRHR1偶联于Gas,CRH通过CRHR1激活AC-cAMP细胞内信号通路,抑制[Ca~(2+)]_i升高。
     比较CRH对临产和未临产子宫肌细胞[Ca~(2+)]_i的调节机制,我们发现CRH对临产和未临产子宫肌的作用不同是由于CRHR1偶联于不同的G蛋白亚型,激活不同的细胞内信号通路所致。
     4.对未临产和临产子宫肌组织上各Gα亚型的蛋白表达量进行比较,发现临产后子宫肌上Gαs蛋白表达下降,Gαq蛋白表达上升,这可能是导致临产前后子宫肌上CRHR1偶联的Gα亚型发生改变的原因之一。
     二、内源性H_2S对子宫肌收缩性的调节及其机制
     1.在人类妊娠子宫肌中L-cysteine、SPRC都能产生内源性的H_2S;应用H_2S合成酶CBS和CSE的抑制剂可以明显降低子宫肌以L-cysteine为底物的H_2S生成速率,提示L-cysteine是在H_2S合成酶CBS和CSE的催化下产生内源性的H_2S的。
     2.内源性H_2S对于人类妊娠子宫平滑肌收缩性的调节具有双重效应:能降低自发性收缩的幅度,而高浓度时能升高收缩的频率,引起紧张性收缩。K_(ATP)通道抑制剂能阻断内源性H_2S抑制子宫肌收缩的效应,提示内源性H_2S通过激活K_(ATP)通道产生抑制子宫肌收缩的效应。
     3.比较内源性H_2S供体L-cysteine对临产前后子宫肌收缩性的调节,发现L-cysteine对临产子宫肌自发性收缩的抑制作用明显弱于对未临产子宫肌的作用。
     三、多种药物对临产前后子宫肌收缩性的影响
     1.用K_(ATP)和BK_(Ca)激动剂处理离体子宫肌组织,结果发现K_(ATP)和BK_(Ca)激动剂能明显抑制子宫肌的自发性收缩,而且它们对临产子宫肌收缩的抑制作用明显弱于对未临产子宫肌的作用。
     2.孕酮能剂量依赖性的抑制未临产子宫肌的自发性收缩,但不能抑制临产子宫肌自发性收缩。
     结论:1. CRH促进临产子宫肌的收缩,抑制未临产子宫肌的收缩,且CRH的作用都是由CRHR1介导的。2.在临产子宫肌中,CRHR1与Gαq和Gαi蛋白偶联,CRH通过激活PLC-IP_3和抑制AC-cAMP这两条细胞内信号通路,升高[Ca~(2+)]_i;在未临产子宫肌中, CRHR1与Gαs蛋白偶联,内源性CRH可能是通过激活Gαs-AC-cAMP信号通路,抑制细胞内IP_3水平升高,抑制细胞[Ca~(2+)]_i升高;3.与未临产子宫肌相比,临产子宫肌上Gαs蛋白表达下降,Gαq蛋白表达上升,这可能是导致CRHR1偶联的Gα亚基发生改变的原因之一。4.内源性H_2S可调节妊娠子宫平滑肌收缩,对临产子宫肌收缩性的抑制作用明显弱于对未临产子宫肌的作用。5. K_(ATP)通道激动剂、BK_(Ca)通道激动剂和孕酮对临产子宫肌收缩性的抑制明显弱于对未临产子宫肌的作用。
Premature birth remains a major cause of infant morbidity and is a serious health and financial burden to society. The pre-excitement of uterine smooth muscle will lead to preterm labor. And the etiology for premature labor is not clear. While in human the events that trigger parturition are not well defined, prior to the onset of parturition, a series of coordinate events prepare the myometrium to respond to contractant signals and to be less responsive to relaxant signals.
     Placental CRH production increases exponentially as pregnancy progresses toward labor, and it has been proposed that CRH might act as a placental clock regulating the length of human gestation. The precise biological role of placental CRH during pregnancy and labor remains unknown, but the human myometrium appears to be a major target of their actions. In vitro studies in our laboratory suggest that, CRH acts on CRH-R1 to inhibit spontaneous contractions in term myometrium from women who were not undergoing labour, but not those who were undergoing labour. But the mechanisms of CRH different modulation on human myometrial contractility before and during labour is unknown.
     Hydrogen sulfide (H_2S) has recently been shown to play a key role in the control of smooth muscle tension. The role of endogenous H_2S produced locally in the control of uterine contractility during labour is unknown.
     The aims of the present study were to explore effects of CRH and endogenous H_2S on contractility of human term myometrium, and compare these effects in labouring and nonlabouring myometrium. Further, study the mechanisms of CRH and endogenous H_2S different modulation in human myometrium contractility before and during labor.
     Results:
     1. CRH (10-10-10-7 mol/L) enhance oxytocin-induced contractions and produced dose-dependent increase in [Ca~(2+)]_i in myometrium from women who were undergoing labour, but not those who were not undergoing labour.
     2. The effects, CRH increase in [Ca~(2+)]_i in myometrium cells from women underwent labour, were reversed by CRH receptor type 1 (CRHR1) antagonist antalarmin, but not by CRH receptor type 2 (CRHR2) antagonist astressin 2b. And CRHR1 small interfering RNA (siRNA) abrogate the effect of [Ca~(2+)]_i increase in laboring myometrium cell stimulated by CRH.
     For the nonlabouring myometrium, CRH did not induce [Ca~(2+)]_i transient in myometium cells. Antalarmin(10-9-10-6 mol/L) dose-dependently increased [Ca~(2+)]_i in the cells, whereas astressin 2b did not. The effects of antalarmin could be blocked by exogenous CRH, suggesting that endogenous CRH has tonic inhibitory effects on [Ca~(2+)]_i . And CRHR1 siRNA abrogate the effect of [Ca~(2+)]_i increase in nonlaboring myometrium cell stimulated by antalarmin. CRHR1 exert the contrasting roles of maintaining myometrial relaxation before labor onset and stimulating contractility during labor.
     3. The possible signaling pathways involved in the CRH regulation of [Ca~(2+)]_i were also investigated.
     For the labouring myometrium, CRH (10-9-10-6 mol/L) induced active Gαi expression and dose-dependently decreased cAMP production in the cells. Blocking phospholipase C (PLC) activity with U73122 and application of IP_3 receptor antagonist blocked CRH-evoked [Ca~(2+)]_i transient in laboring myometrium cells. CRH (10-10-10-7 mol/L) dose-dependently induced phosphorylated PLC-?3 expression and increased in level of IP_3 in labouring myometrium cells. These effects were partly block by Gαi antibody and totally block by GP-2A, the inhibitor of Gαq.
     For nonlabouring myometrium, CRH (10-10-10-7 mol/L) induced active Gαs expression and antalarmin (10-9-10-6 mol/L) dose-dependently decreased cAMP production in the cells. Forskolin, the adenylate cyclase activator, reversed antalarmin-induced [Ca~(2+)]_i transient. SQ 22536, an adenylate cyclase inhibitor, induced [Ca~(2+)]_i transient. Our results suggest that CRH act on CRHR1 to induce [Ca~(2+)]_i transient in labouring myometrium, but inhibit [Ca~(2+)]_i in nonlabouring myometrium. Before labour onset, CRHR1 may coupled with Gs protein and CRH enhances AC-PKA signaling pathway to decrease [Ca~(2+)]_i in myometrium cells. During labour, CRHR1 may couple with Gq protein and CRH activates PLC/IP_3 signaling pathway to increase [Ca~(2+)]_i in myometrium cells.
     4. Cumulative administration of L-cysteine (10-7-10-2mol/L), a precursor of H_2S, caused a dose-dependent decrease in the amplitude of spontaneous contractions in nonlabouring and labouring myometrium strips. L-cysteine at high concentration (10-3mol/L) increased the frequency of spontaneous contractions and induced tonic contraction. These effects of L-cysteine were blocked by the inhibitors of CBS and CSE. Pre-treatment of myometrium strips with glibenclamide, an inhibitor of ATP-sensitive potassium (K_(ATP)) channels, abolished the inhibitory effect of L-cysteine on spontaneous contraction amplitude. The effects of L-cysteine on the amplitude of spontaneous contractions and baseline muscle tone were less potent in labouring tissues than that in nonlabouring strips.
     Conclusion:
     Our results suggest that CRH act on CRHR1 to induce [Ca~(2+)]_i transient in labouring myometrium, but inhibit [Ca~(2+)]_i transient in nonlabouring myometrium. Before labour onset, CRHR1 may coupled with Gαs protein and CRH stimulates AC-PKA signaling pathway to decrease [Ca~(2+)]_i in myometrium cells. During labour, CRHR1 may couple with Gαq protein and Gαi protein, and CRH activates PLC/IP_3 signaling pathway to induced [Ca~(2+)]_i transient in myometrium cells, thereby facilitating contraction.
     H_2S generated by CSE and CBS locally exerts dual effects on the contractility of pregnant myometrium. Expression of H_2S synthetic enzymes is down-regulated during labour, suggesting that H_2S is one of factors involved in the transition of pregnant uterus from quiescence to contractile state after onset of parturition.
引文
1. Creasy RK (1991) Preventing preterm birth. N Engl J Med 325, 727-9.
    2. Ward RM and Beachy JC (2003) Neonatal complications following preterm birth. Bjog 110 Suppl 20, 8-16.
    3. Petrou S, Mehta Z, Hockley C, Cook-Mozaffari P, Henderson J and Goldacre M (2003) The impact of preterm birth on hospital inpatient admissions and costs during the first 5 years of life. Pediatrics 112, 1290-7.
    4. Olson DM, Christiaens I, Gracie S, Yamamoto Y and Mitchell BF (2008) Emerging tocolytics: challenges in designing and testing drugs to delay preterm delivery and prolong pregnancy. Expert Opin Emerg Drugs 13, 695-707.
    5. Mesiano S,Wang Y, Norwitz ER.(2011) Progesterone receptors in the human pregnancy uterus: do they hold the key to birth time? Reprod Sci 18, 6-19
    6. Mesiano S. (2007) Myometrial progesterone responsiveness. Semin Reprod Med 25,5-13
    7. Khan AH,Carson RJ, Nelson SM. (2008) Prostaglandins in labor-a translational approach. Front Biosci 13,5794-809
    8. Olson DM, Ammann C. (2007) Role of the prostaglandins in labor and prostaglandin receptor inhibitors in the prevention of preterm labor. Front Biosci 12, 1329-43
    9. Challis JRG, Matthew SG, Gibb W, Lye SJ. (2000) Endocrine and paracrine regulation of birth at term and preterm. Endocrine Rev. 21: 514.
    10. Hoffinann P, Stanke-Labesque F, Fanchin R, Dilai N, Pons JC, Ayoubi JM. (2003) Effects of L-arginine and sodium nitroprusside on the spontaneous contractility of human non-pregnant uterus. Hum Reprod 18(1)148-151.
    11. Grammatopoulos DK. Placental corticotropin-releasing hormone and its receptors in human pregnancy and labour: still a scientific enigma. J Neuroendocrinol. 2008; 20(4):432-8.
    12. Olson DM, Ammann C. Role of the prostaglandins in labour and prostaglandin receptor inhibitors in the prevention of preterm labour. Front Biosci. 2007;12:1329-43.
    13. Olson DM. The promise of prostaglandins: have they fulfilled their potential as therapeutic targets for the delay of preterm birth? J Soc Gynecol Investig. 2005; 12(7):466-78.
    14. Okawa T, Asano K, Takahashi H, Sato A, Vedernikov YP, Saade GR, Gafield RE. Nitric oxide donor-induced inhibition of pregnat rat uterine spontaneous contractile activity and release of nitric oxide from uterus mesasured by microdialysis. J Endocrinol Invest. 2005; 28(11):998-1002.
    15. Arthur P, Taggart MJ, Zielnik B, Wong S, Mitchell BF. Relationship between gene expression andfunction of uterotonic systems in the rat during gestation, uterine activation and both term and preterm labour. J Physiol. 2008;586(Pt 24):6063-76.
    16. Torricelli M, Novembri R, Bloise E, De Bonis M, Challis JR, Petraglia F.( 2011) Changes in Placental CRH, Urocortins, and CRH-Receptor mRNA Expression Associated with Preterm Delivery and Chorioamnionitis. J Clin Endocrinol Metab. 96,534-40
    17. Wang R. Two’s company, three’s crowd: can H_2S be the third endogenous geseous mediator? FASEB J 2002; 16: 1792-1798.
    18. Patel, P., et al., The endogenous production of hydrogen sulphide in intrauterine tissues Reproductive Biology and Endocrinology, 2009: p. 9.
    19. Goland RS, Wardlaw SL, Blum M, Tropper PJ, Stark RI 1988 Biologically active corticotropin-releasing hormone in maternal and fetal plasma during pregnancy. Am J Obstet Gynecol 159:884–890
    20. Campbell EA, Linton EA, Wolfe CDA 1987 Plasma corticotropinreleasing hormone concentrations during pregnancy and parturition. J Clin Endocrinal Metab 64:1054–1059.
    21. Sasaki A, Shinkawa O, Margioris AN 1987 Immunoreactive corticotropin-releasing hormone in human plasma during pregnancy, labor, and delivery. J Clin Endocrinal Metab 64:224–229
    22. McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R 1995 A placental clock controlling the length of human pregnancy. NatMed1:460–463
    23. Stamatelou F, Deligeoroglou E, Farmakides G, Creatsas G. (2009) Abnormal progesterone and corticotropin releasing hormone levels are associated with preterm labour. Ann Acad Med Singapore.38,1011-6
    24. Guendelman S, Kosa JL, Pearl M, Graham S, Kharrazi M.(2008) Exploring the relationship of second-trimester corticotropin releasing hormone, chronic stress and preterm delivery. J Matern Fetal Neonatal Med. 21,788-95
    25. Simpkin JC, Kermani F, Palmer AM, Campa JS, Tribe RM, Linton EA, Poston L 1999 Effects of corticotrophin releasing hormone on contractile activity of myometrium from pregnant women. Br J Obstet Gynaecol 106:439–445
    26. MignotTM,Paris B, Carbonne B, Vauge C, Ferre′F, VaimanD2005 Corticotropin-releasing hormone effects on human pregnant vs.nonpregnant myometrium explants estimated from a mathematical model of uterine contraction. J Appl Physiol 99:1157–1163
    27. Zhang LM, Wang YK, Hui N, Sha JY, Chen X, Guan R, Dai L, Gao L, Yuan WJ, Ni X 2008 Corticotropin-releasing hormone acts on CRH-R1 to inhibit the spontaneous contractility of non-labouring human myometrium at term. Life Sci 83:620–624
    28. Benedetto C, Petraglia F, Marozio L, Chiarolini L, Florio P, Genazzani AR, Massobrio M 1994 Corticotropin-releasing hormone increases prostaglandinF2_ activityonhumanmyometriumin vitro.AmJ Obstet Gynecol 171:126–131
    29. Petraglia F, Benedetto C, Florio P, D’Ambrogio G, Genazzani AD, Marozio L, Vale W 1995 Effect of corticotropin-releasing factorbinding protein on prostaglandin release from cultured maternal decidua and on contractile activity of human myometrium in vitro. J Clin Endocrinal Metab 80:3073–3076
    30. Quartero HW, Noort WA, Fry CH, Keirse MJ 1991 Role of prostaglandins and leukotrienes in the synergistic effect of oxytocin and corticotropin-releasing hormone (CRH) on the contraction force in human gestational myometrium. Prostaglandins 42:137–150
    31. Miller F, Chibbar R, mitchell BF. Synthesis of oxytocin in amnion, chorion and decidua : a potential paracrine role for oxytocin in the onset of human parturition. Regulatory Peptides, 1993, 45 : 247-251
    32. Teixeira FJ, Zakar T, Hirst J, Guo F, Machin G, Olson DM. Prostaglandin endoperoxide H synthase (PGHS) activity increase with gestation and labour in human amnion. J Lipid Mediat. 1993, 6 : 515-23
    33. CHEN, R., LEWIS, K. A., PERRIN, M. H. & V ALE, W. W. (1993).Expression cloning of a human corticotropin-releasing-factor receptor. Proceedings of the National Academy of Sciences of the USA 90, 8967–8971.
    34. Grammatopoulos DK, Dai Y, Randeva HS, Levine MA, Karteris E, Easton AJ, Hillhouse EW 1999 A novel spliced variant of the type 1 corticotropin-releasing hormone receptor with a deletion in the seventh transmembrane domain present in thehumanpregnant term myometrium and fetal membranes. Mol Endocrinol 13:2189–2202
    35. Markovic D, Vatish M, Gu M, Slater D, Newton R, Lehnert H, Grammatopoulos DK 2007 The onset of labor alters corticotropinreleasing hormone type 1 receptor variant expression in human myometrium: putative role of interleukin-1_. Endocrinology 148: 3205–3213
    36. Stevens MY, Challis JR, Lye SJ 1998 Corticotropin-releasing hormone receptor subtype 1 is significantly up-regulated at the time of labor in thehumanmyometrium. J Clin EndocrinolMetab83:4107– 4115
    37. Sanborn BM. Hormones and calcium: Mechanisms controlling uterine smooth muscle contractile activity. The Litchfield Lecture. Exp Physiol 2001;86:223–37.
    38. Dodge KL, Carr DW, Sanborn BM. Protein kinase A anchoring to the myometrial plasma membrane is required for cyclic adenosine 3=,5=-monophosphate regulation of phosphatidylinositideturnover. Endocrinology 1999;140:5165–70.
    39. Dodge KL, Sanborn BM. Evidence for inhibition by protein kinase A of receptor/G alpha(q)/phospholipase C (PLC) coupling by a mechanism not involving PLCbeta2. Endocrinology 1998;139:2265–71
    40. Yue C, Dodge KL, Weber G, Sanborn BM. Phosphorylation of serine 1105 by protein kinase A inhibits phospholipase Cbeta3 stimulation by Galphaq. J Biol Chem 1998;273:18023–7
    41. Sanborn BM, Ku CY, Shlykov S, Babich L. (2005) Molecular signaling through G-protein-coupled receptors and the control of intracellular calcium in myometrium. J Soc Gynecol Investig 12,479-87.
    42. Zmijewski MA, Slominski AT. (2010) Emerging role of alternative splicing of CRHF1 receptor in CRF signaling. Acta Biochim Pol 57, 1-13
    43. Grammatopoulos DK, Randeva HS, Levine MA, Kanellopoulou KA, Hillhouse EW 2001 Rat cerebral cortex corticotropin-releasing hormone receptors: evidence for receptor coupling to multiple G-proteins. J Neurochem 76:509–519
    44. Karteris E, Grammatopoulos D, Randeva H, Hillhouse EW 2000 Signal transduction characteristics of the corticotropin- releasing hormone receptors in the feto-placental unit. J Clin Endocrinol Metab 85:1989–1996
    45. Blank T, Nijholt I, Grammatopoulos DK, Randeva HS, Hillhouse EW, Spiess J 2003 Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus: role in neuronal excitability and associative learning. J Neurosci 23:700–707
    46. Ildiko′Toma, Eric Bansal, Elliott J. Meer, Jung Julie Kang, Sarah L. Vargas, and Ja′nos Peti-Peterdi. Connexin 40 and ATP-dependent intercellular calcium wave in renal glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol 294: R1769–R1776, 2008
    47. Clifton, V.L., et al., Corticotropin-Releasing Hormone and Proopiomelanocortin-Derived Peptides Are Present in Human Myometrium. J Clin Endocrinol Metab, 1998. 83(10): p. 3716-3721.
    48. Roztocil E, Nicholl SM, Davies MG. Sphingosine-1-phosphate-induced oxygen free radical generation in smooth muscle cell migration requires Galpha12/13 protein-mediated phospholipase C activation. J Vasc Surg. 2007 Dec;46(6):1253-1259.
    49. Tanski WJ, Roztocil E, Hemady EA, Williams JA, Davies MG. Role of Galphaq in smooth muscle cell proliferation. J Vasc Surg. 2004 Mar;39(3):639-44.
    50. Tanski W, Roztocil E, Davies MG.Sphingosine-1-phosphate induces G(alphai)-coupled, PI3K/ras-dependent smooth muscle cell migration. J Surg Res. 2002 Nov;108(1):98-106.
    51. CHENG-CHAN, E., J. FALKONER, G. MADSEN, et al. 1998. A corticotropin-releasinghormone type 1 receptor antagonist delays parturition in sheep. Endocrinology 139: 3357–3360
    52. WADHWA, P.D., T.J. GARITE, M. PORTO, et al. 2004. Placental corticotropinreleasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: a prospective investigation. Am. J. Obstet. Gynecol. 191: 1063–1069
    53. ERICKSON, K., P.THORSEN,G.CHROUSOS, et al. 2001. Pretermbirth: associated neuroendocrine, medical, and behavioral risk factors. J. Clin. Endocrinol. Metabol. 86: 2544–2552
    54. Hillhouse EW, Grammatopoulos D, Milton NG, Quartero HW 1993 The identification of a human myometrial corticotropin-releasing hormone receptor that increases in affinity during pregnancy. J Clin Endocrinol Metab 76:736–741
    55. Grammatopoulos D, Hillhouse EW. 1999 Activation of protein kinase C by oxytocin inhibits the biological activity of the human myometrial corticotrophin-releasing hormone receptor at term. Endocrinology 140:585-594
    56. Gao L, Lu C, Xu C, Tao Y, Cong B, Ni X 2008 Differential Regulation of Prostaglandin Production Mediated by Corticotropin-Releasing Hormone Receptor Type 1 and Type 2 in Cultured Human Placental Trophoblasts. Endocrinology 149:2866-2876
    57. Grammatopoulos D, Stirrat GM, Williams SA, Hillhouse EW 1996 The biological activity of the corticotropinreleasing hormone receptor-adenylate cyclase complex in human myometrium is reduced at the end of pregnancy. J Clin Endocrinol Metab 81:745–751.
    58. Aggelidou E, Hillhouse EW, Grammatopoulos D 2002 Up-regulation of nitric oxide synthase and modulation of the guanylate cyclase activity by corticotropin releasing hormone but not urocortin II or urocortin III in cultured human pregnant myometrial cells. Proc Natl Acad Sci USA 99:3300–3305,
    59. Word RA, Casey ML, Kamm KE, Stull JT 1991 Effects of cGMP on [Ca~(2+)]_i, myosin light chain phosphorylation, and contraction in human myometrium. Am J Physiol 260:C861–C867
    60. Grammatopoulos DK, Randeva HS, Levine MA, Katsanou ES, Hillhouse EW 2000 Urocortin, but not corticotropinreleasing hormone (CRH), activates the mitogen-activated protein kinase signal transduction pathway in human pregnant myometrium: an effect mediated via R1αand R2βCRH receptor subtypes and stimulation of Gq-proteins. Mol Endocrinol 14:2076–2091
    61. Sehringer, B., et al., mRNA expression profiles for corticotrophin-releasing hormone, urocortin, CRH-binding protein and CRH receptors in human term gestational tissues determined by real-time quantitative RT-PCR. J Mol Endocrinol, 2004. 32(2): p. 339-348.
    62. Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, and Jakobs KH (2001) A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 3:1020–1024.
    63. Devine CE, Somlyo AV, Somlyo AP. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol 1972;52:690–718
    64. Shmigol AV, Eisner DA, Wray S. Simultaneous measurements of changes in sarcoplasmic reticulum and cytosolic [Ca~(2+)] in rat uterine smooth muscle cells. J Physiol Lond 2001;531:707–13.
    65. Shmygol A, Wray S. Modulation of agonist-induced Ca release by SR Ca load: direct SR and cytosolic Ca measurements in rat uterine myocytes. Cell Calcium 2005;37:215–23
    66. Sanborn BM, Yue C, Wang W, Dodge KL. G protein signaling pathways in myometrium: affecting the balance between contraction and relaxation. Rev Reprod 1998;3:196–205
    67. Sanborn BM. Hormones and calcium: Mechanisms controlling uterine smooth muscle contractile activity. The Litchfield Lecture. Exp Physiol 2001;86:223–37
    68. Fuchs A-R. Plasma membrane receptors regulating myometrial contractility and their hormonal modulation. Semin Perinatol 1995;19:15–30
    69. Wray S. Uterine contraction and physiological mechanisms of modulation. Am J Physiol 1993;264:C1–18
    70. Papadopoulou N, Chen J, Randeva HS, Levine MA, Grammatopoulos DK.2004 Protein kinase A-induced negative regulation of the corticotrophin-releasing hormone R1αreceptor-extracellularly regulated kinase signal transduction pathway: the critical role of Ser301 for signaling switch and selectivity. Mol Endocrin 18: 624-639.
    71. Grammatopoulos D, G.M. Stirrat, S.A. Williams & E.W. Hillhouse: The biological activity of the corticotropin-releasing hormone receptor-adenylate cyclase complex in human myometrium is reduced at the end of pregnancy. J Clin Endocrinol Metab 81: 745-51 (1996)
    72. Teli T, Markovic D, Levine MA, Hillhouse EW, Grammatopoulos DK.Regulation of Corticotropin-Releasing Hormone Receptor Type 1 alpha Signaling: Structural Determinants for G Protein-Coupled Receptor Kinase-Mediated Phosphorylation and Agonist-Mediated Desensitization Endocrinol. 2005 19:474-490
    73. Europe-Finner G.N, S. Phaneuf, A.M. Tolkovsky, S.P. Watson & A. Lopez Bernal: Down-regulation of G alpha s in human myometrium in term and preterm labor: a mechanism for parturition. J Clin Endocrinol Metab 79, 1835-9 (1994)
    74. I., B., et al., Involvement of a nitric oxide-cyclic guanosine monophosphate pathway in control of human uterine contractility during pregnancy. Am J Obstet & Gynecol, 1995. 172(2): p. 1577-84.
    75. Yallampalli C, et al., Role and regulation of nitric oxide in the uterus during pregnancy and parturition. J Soc Gynecol Invest, 1998. 5(2): p. 58-67.
    76. Acevedo, C.H. and A. Ahmed, Hemeoxygenase-1 inhibits human myometrial contractility viacarbon monoxide and is upregulated by progesterone during pregnancy. The Journal of Clinical Investigation, 1998. 101(5): p. 949-955.
    77. Hosoki, R., N. Matsuki, and H. Kimura, The Possible Role of Hydrogen Sulfide as an Endogenous Smooth Muscle Relaxant in Synergy with Nitric Oxide. Biochemical and Biophysical Research Communications, 1997. 237(3): p. 527-531.
    78. Zhao P, Huang X, Wang ZY, Qiu ZX, Han YF, Lu H, Kim YC, Xu WX. Dual effect of exogenous hydrogen sulfide on the spontaneous contraction of gastric smooth muscle in guinea-pig. European Journal of Pharmacology. 2009, 616: 223–228
    79. Al-Magableh MR. , Hart JL. Mechanism of vasorelaxation and role of endogenous hydrogen sulfide production in mouse aorta.Naunyn-Schmied Arch Pharmacol. 2011,383:403–413
    80. Teague B, Asiedu S, Moore PK. The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility.British Journal of Pharmacology.2002, 137:139 -145
    81. Sidhu R , et al., L-cysteine and sodium hydrosulphide inhibit spontaneous contractility in isolated pregnant rat uterine strips in vitro. Pharmacol Toxicol, 2001. 88(4): p. 198-203.
    82. Hu R, Lu J, You X, Zhu X, Hui N, Ni X. Hydrogen sulfide inhibits the spontaneous and oxytocin-induced contractility of human pregnant myometrium. Gynecol Endocrinol. 2011 Feb 1. [Epub ahead of print]
    83. Liu, X.Q., Liu, X.Q., Jiang, P., Huang, H., Yan, Y., 2008. Plasma levels of endogenous hydrogen sulfide and homocysteine in patients with Alzheimer’s disease and vascular dementia and the significance thereof. Chin. Med. J. 88, 2246–2249
    84. Wang R. Two’s company, three’s crowd: can H_2S be the third endogenous gaseous mediator? FASEB J 2002; 16: 1792-1798.
    85. Erickson, P.F., et al., Sequence of cDNA for rat cystathionine gamma-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. Biochem J, 1990. 269(2): p. 335-40.
    86. Swaroop, M., et al., Rat cystathionine beta-synthase. Gene organization and alternative splicing. J Biol Chem, 1992. 267(16): p. 11455-61.
    87. Leffler CW, Parfenova H, Jaggar JH, Wang R. Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol. 2006; 100: 1065-76.
    88. Y. Kodera, A. Suzuki, O. Imada, S. Kasuga, I. Sumioka, A. Kanezawa, N. Taru, M. Fujikawa, S. Nagae, K. Masamoto, K. Maeshige, K. Ono, Physical, chemical, and biological properties of S-allylcysteine, an amino acid derived from garlic, J. Agric. Food Chem. 2002; 50: 622–632.
    89. Pinto JT, Krasnikov BF, Cooper AJ. Redox-sensitive proteins are potential targets of garlic-derived mercaptocysteine derivatives. J Nutr. 2006;136: 835S–841S
    90. Chuah SC, Moore PK, Zhu YZ (2007) S-allyl cysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. Am J Physiol Heart Circ Physiol 293:H2693–H2701
    91. Pan LL, Liu XH, Gong QH, Zhu YZ. S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharideinduced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism. Amino Acids. 2011;
    92. Wang Q, Liu HR, Mu Q, Rose P, Zhu YZ. S-propargyl-cysteine Protects Both Adult Rat Hearts and Neonatal Cardiomyocytes From Ischemia/Hypoxia Injury: The Contribution of the Hydrogen Sulfide-Mediated Pathway. J Cardiovasc Pharmacol. 2009; 54:139-164
    93. Raoof JB, Ojani R, Beitollahi H. L-Cysteine Voltammetry at a Carbon Paste Electrode Bulk-Modified with Ferrocenedicarboxylic Acid. Electroanalysis. 2007; 19: 1822-30
    94. Mazloum-Ardakani M, Taleat Z, Beitollahi H, et al. Selective determination of cysteine in the presence of tryptophan by carbon paste electrode modifed with quinizarine. J Iran Chem Soc. 2010; 7: 251-9
    95. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H_2S as a novel endogenous gaseous K_(ATP) channel opener. EMBO J 20(21):6008–16
    96. Bhatia M (2005) Hydrogen sulfide as a vasodilator. IUBMB Life 7(9): 603-6.
    97. Tang G, Wu L, Liang W, Wang R (2005) Direct stimulation of K_(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68(6): 1757-64
    98. Gong QH, Wang Q, Pan LL, Liu XH, Xin H, Zhu YZ. S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: Involvement of TNF signaling and NF-κB pathway in rats. Brain Behav Immun 2011; 25:110–11
    99. Gong QH, Pan LL, Liu XH, Wang Q, Huang H, Zhu YZ. S-propargyl-cysteine (ZYZ-802), a sulphur-containing amino acid, attenuates beta-amyloid-induced cognitive deficits and proinflammatory response: involvement of ERK1/2 and NF-kappaB pathway in rats. Amino Acids 2011; 40:601–610.
    100. Khan, R.N., et al., Ca~(2+) dependence and pharmacology of large-conductance K~+ channels in nonlabor and labor human uterine myocytes. Am J Physiol Cell Physiol, 1997. 273(5): p. C1721-1731.
    101. Xu C, You X, Gao L, Zhang L, Hu R, Hui N, Olson David, Ni X. Expression of ATP-Sensitive Potassium Channels in Human Pregnant Myometrium. Reprod Biol Endocrinol 2011 March .
    102. Gemzell-Danielsson K, Bygdeman M, Aronsson A. Studies on uterine contractility followingmifepristone and various routes of misoprostol. Contraception. 2006;74(1):31-5.
    103. Mesiano S, Welsh TN (2007) Steroid hormone control of myometrial contractility and parturition. Semin Cell Dev Biol 18:321–331
    104. Putnam CD, Brann DW, Kolbeck RC, Mahesh VB (1991) Inhibition of uterine contractility by progesterone and progesterone metabolites: mediation by progesterone and gamma amino butyric acidA receptor systems. Biol Reprod 45:266–272
    105. Astle S, Khan RN, Thornton S (2003) The effects of a progesterone metabolite, 5 beta-dihydroprogesterone, on oxytocin receptor binding in human myometrial membranes. BJOG 110:589–592
    1. Frim DM, Emanuel RL, Robinson BG, Smas CM, Adler GK, Majzoub JA. Characterization and gestational regulation of corticotropin-releasing hormone messenger RNA in human placenta. J Clin Invest. 1988 Jul;82(1):287-92.
    2. Reyes T.M, K. Lewis, M.H. Perrin, K.S. Kunitake, J. Vaughan, C.A. Arias, J.B. Hogenesch, J. Gulyas, J. Rivier, W.W. Vale & P.E. Sawchenko: Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA 98, 2843-8 (2001)
    3. Ross P.C, C.M. Kostas & T.V. Ramabhadran: A variant of the human corticotropin-releasing factor (CRF) receptor: cloning, expression and pharmacology. Biochem Biophys Res Commun 205, 1836-42 (1994)
    4. Valdenaire O, T. Giller, V. Breu, J. Gottowik & G. Kilpatrick: A new functional isoform of the human CRF2 receptor for corticotropin-releasing hormone. Biochim Biophys Acta 1352, 129–132 (1997)
    5. Kostich W.A, A. Chen, K. Sperle & B.L. Largent: Molecular identification and analysis of a novel human corticotropin-releasing factor (CRF) receptor: the CRF2 receptor. Mol Endocrinol 12, 1077–1085 (1998)
    6. Jones SA, Challis JR. Local stimulation of prostaglandin production by corticotropin-releasing hormone in human fetal membranes and placenta. Biochem Biophys Res Commun 1989; 159: 192–199.
    7. Jeschke U, Mylonas I, Richter DU, Hocker I, Briese V, Makrigiannakis A, Friese K. Regulation of progesterone production in human term trophoblasts in vitro by CRH, ACTH and cortisol (prednisolone). Arch Gynecol Obstet 2005; 272: 7–12.
    8. Gao L, He P, Sha J, Liu C, Dai L, Hui N, Ni X. Corticotropin-releasing hormone receptor type 1 and type 2 mediate differential effects on 15-hydroxy prostaglandin dehydrogenase expression in cultured human chorion trophoblasts. Endocrinology 2007; 148: 3645–3654.
    9. Yang R, You X, Tang X, Gao L, Ni X. Corticotropin-releasing hormone inhibits progesterone production in cultured human placental trophoblasts. J Mol Endocrinol. 2006 Dec;37(3):533-40.
    10. You X, Yang R, Tang X, Gao L, Ni X. Corticotropin-releasing hormone stimulates estrogen biosynthesis in cultured human placental trophoblasts. Biol Reprod. 2006 Jun;74(6):1067-72.
    11. Clifton VL, Read MA, Leitch IM, Boura AL, Robinson PJ, Smith R. Corticotropin-releasing hormone-induced vasodilatation in the human fetal placental circulation. J Clin Endocrinol Metab1994; 79: 666–669.
    12. Karteris E, Goumenou A, Koumantakis E, Hillhouse EW, Grammatopoulos D. R8duced expression of corticotropin-releasing hormone receptor type 1a in human preeclamptic and growth restricted placentas. J Clin Endocrinoetab 2003; 88: 363–370.
    13. Bamberger AM, Minas V, Kalantaridou SN, Radde J, Sadeghian H, Loning T, Charalampopoulos I, Brummer J, Wagener C, Bamberger CM, Schulte HM, Chrousos GP, Makrigiannakis A. Corticotropin-releasing hormonemodulates human trophoblast invasion through carcinoembryonic antigen- related cell adhesion molecule-1 regulation. Am J Pathol 2006; 168: 141–150.
    14. Bamberger CM, Minas V, Bamberger AM, Charalampopoulos I, Fragouli Y, Schulte HM, Makrigiannakis A. Expression of urocortin in the extravillous human trophoblast at the implantation site. Placenta. 2007 Feb-Mar;28(2-3):127-32.
    15. Grammatopoulos D, N.G. Milton & E.W. Hillhouse: The human myometrial CRH receptor: G proteins and second messengers. Mol Cell Endocrinol 99, 245-50 (1994)
    16. Aggelidou E, E.W. Hillhouse & D. Grammatopoulos: Up-regulation of nitric oxide synthase and modulation ofthe guanylate cyclase activity by corticotropin releasing hormone in cultured human pregnant myometrial cells.Proc Natl Acad Sci USA 99, 3300-3305 (2002)
    17. Yue C, K.L. Dodge, G. Weber & B.M. Sanborn: Phosphorylation of serine 1105 by protein kinase A inhibits phospholipase Cbeta3 stimulation by Galphaq. J Biol Chem 273: 18023-7 (1998)
    18. Mignot T.M., B. Paris, B. Carbonne, C. Vauge, F. Ferre & D. Vaiman: Corticotropin-releasing hormone effects on human pregnant vs. nonpregnant myometrium explants estimated from a mathematical model of uterine contraction. J Appl Physiol 99, 1157-63 (2005)
    19. Grammatopoulos DK.The role of CRH receptors and their agonists in myometrial contractility and quiescence during pregnancy and labour. Front Biosci. 2007 Jan 1;12:561-71.
    20. Grammatopoulos D.K & E.W. Hillhouse: Basal and interleukin-1beta-stimulated prostaglandin production fromcultured human myometrial cells: differential regulation by corticotropin-releasing hormone. J Clin Endocrinol Metab 84, 2204-11 (1999)
    21. Benedetto C, F. Petraglia, L. Marozio, L. Chiarolini, P. Florio, A.R. Genazzani & M. Massobrio: Corticotropinreleasing hormone increases prostaglandin F2 alpha activity on human myometrium in vitro. Am J Obstet Gynecol 171:126-31 (1994))
    22. Petraglia F, P. Florio, C. Benedetto, L. Marozio, A.M. Di Blasio, C. Ticconi, E. Piccione, S. Luisi, A.R. Genazzani & W. Vale: Urocortin stimulates placental adrenocorticotropin and prostaglandin release and myometrial contractility in vitro. J Clin Endocrinol Metab 84, 1420-3 (1999)
    23. Grammatopoulos D.K, H.S. Randeva, M.A. Levine, E.S. Katsanou & E.W. Hillhouse: Urocortin,but not corticotropin-releasing hormone (CRH), activates the mitogen-activated protein kinase signal transduction pathway in human pregnant myometrium: an effect mediated via R1alpha and R2beta CRH receptor subtypes and stimulation of Gq-proteins. Mol Endocrinol 14, 2076-91 (2000)
    24. Papadopoulou N, J. Chen, H. Randeva, M.A. Levine, E.W. Hillhouse & D. Grammatopoulos: Protein kinase Ainduced negative regulation of the corticotropin-releasing hormone (CRH) R1alpha receptor-ERK signal transduction pathway: the critical role of Ser301 for signalling switch and selectivity. Mol Endocrinol 18, 624-39 (2004)
    25. Karteris E, E.W. Hillhouse & D. Grammatopoulos: Urocortin II is expressed in human pregnant myometrial cells and regulates myosin light chain phosphorylation: potential role of the type-2 corticotropin-releasing hormone receptor in the control of myometrial contractility.Endocrinology 145, 890-900 (2004)
    26. Zhang LM, Wang YK, Hui N, Sha JY, Chen X, Guan R, Dai L, Gao L, Yuan WJ, Ni X.Corticotropin-releasing hormone acts on CRH-R1 to inhibit the spontaneous contractility of non-labouring human myometrium at term. Life Sci. 2008 Oct 24;83(17-18):620-4.
    27. Grammatopoulos D, S. Thompson & E.W. Hillhouse: The human myometrium expresses multiple isoforms of the corticotropin-releasing hormone receptor. J Clin Endocrinol Metab 80: 2388-93 (1995)
    28. Grammatopoulos D, Y. Dai, J. Chen, E. Karteris, N. Papadopoulou, A.J. Easton & E.W. Hillhouse: Human corticotropin-releasing hormone receptor: differences in subtype expression between pregnant and nonpregnantmyometria. J Clin Endocrinol Metab 83, 2539-44 (1998)
    29. Stevens M.Y, J.R. Challis & S.J. Lye: Corticotropinreleasing hormone receptor subtype 1 is significantly upregulated at the time of labor in the human myometrium. J Clin Endocrinol Metab 83, 4107-15 (1998)
    30. Markovic D, Vatish M, Gu M, Slater D, Newton R, Lehnert H, Grammatopoulos DK.The onset of labor alters corticotropin-releasing hormone type 1 receptor variant expression in human myometrium: putative role of interleukin-1beta. Endocrinology. 2007 Jul;148(7):3205-13. Epub 2007 Apr 12.
    31. Markovic D, Lehnert H, Levine MA, Grammatopoulos DK.Structural determinants critical for localization and signaling within the seventh transmembrane domain of the type 1 corticotropin releasing hormone receptor: lessons from the receptor variant R1d.Mol Endocrinol. 2008 Nov;22(11):2505-19. Epub 2008 Sep 4.
    32. Bukowski R, Hankins GD, Saade GR, Anderson GD, Thornton S. Laborassociated gene expression in the human uterine fundus, lower segment, and cervix. PLoS Med 2006; 3: e169.
    33. Grammatopoulos D & E.W. Hillhouse: Activation of protein kinase C by oxytocin inhibits the biological activityof the human myometrial corticotropin-releasing hormone receptor at term. Endocrinology 140, 585-94 (1999)
    34. Markovic D, Papadopoulou N, Teli T, Levine MA, Hillhouse EW, Grammatopoulos DK. Differential responses of CRH receptor type 1 variants to PKC phosphorylation. J Pharmacol Exp Ther 2006; 19: 1032–1042.
    35. Europe-Finner G.N, S. Phaneuf, A.M. Tolkovsky, S.P. Watson & A. Lopez Bernal: Down-regulation of G alpha sin human myometrium in term and preterm labor: a mechanism for parturition. J Clin Endocrinol Metab 79,1835-9 (1994)
    36. Randeva H.S, D.K. Grammatopoulos &E.W. Hillhouse: Differential activation of G-Proteins by CRH and Urocortin in human pregnant myometrium. 81th Annual Meeting of the Endocrine Society, San Diego, P3-460 (1999)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700