用户名: 密码: 验证码:
水泥稳定碎石的动态本构模型及其在侵爆数值模拟中的运用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机场跑道多层结构在承受动能弹侵彻爆炸加载条件下的动态响应过程研究具有重要的战略意义。水泥稳定碎石作为构建机场跑道多层结构的一种基层材料,其动态本构关系是研究弹体侵彻和爆炸加载下跑道整体破坏效果的重要基础内容之一。本文针对多层结构侵爆毁伤效应数值模拟需求对水泥稳定碎石材料动态本构关系进行了一些探索研究工作。主要内容包括:
     通过对水泥稳定碎石材料构成成分分析,发现其与水泥混凝土成分之间具有相似性,从而提出水泥稳定碎石可采用水泥混凝土的本构模型进行描述,两者的性能差异可以用单轴抗压强度这一指标来表征。确定了将单轴抗压强度归一化的RHT模型。通过对RHT模型进行详细分析,将众多参数分为三类,得出一套方法确定水泥稳定碎石模型各个参数的取值。为了进行参数敏感性分析,利用AUTODYN软件建立介质内部装药爆炸的计算模型,通过与实验数据对比验证了模型合理性。模拟了碎石在爆炸加载情况下破坏过程。选取损伤面积作为破坏程度的量化指标,利用图像处理软件得到损伤面积,通过改变单一参数的办法,得到了爆炸过程中各个参数的敏感性表。最后建立了侵爆全过程的计算模型,并将得到的水泥稳定碎石RHT模型运用于侵爆弹作用下多层介质毁伤效应的数值模拟。
It is of strategic important to study on the responses of multi-layer structure of the airport runway under dynamic loads of penetration and explosion. The dynamic constitutive relation of cement treated base courses is an important component of the study on damage effects for anti-runway penetrating-exploding submunition. In order to meet demand of numerical simulation of penetration-explosion damage effect on the multi-layer structure, dynamic constitutive relation of cement stabilized macadam material was carried out in this study. The main contents include:
     The component of cement treated macadam was analyzed first in this paper. The constitutive model of concrete material can be used to describe its Behavior Because of the similarity between the two materials. The different performance between the two can be measured by uniaxial compressive strength. Therefore, RHT model is selected as the constitutive model of cement stabilized macadam material under penetration and explosion. Detailed analysis of the RHT model was made and parameters were divided into three categories. A set of methods to determine the values of the parameters of model was summarized. Set the reference value for parameter sensitivity analysis. AUTODYN software was used to establish a medium internal explosion numerical simulation method, which was verified when compared with the experimental data,to analyze the sensitivity of parameter under explosive loading .Damage area was selected as a quantitative index of damage. The area was obtained accurately by photo processing software. The Explosion sensitivity table of each parameter was calculated. Finally, a simulation of was established to describe the whole process of kinetic energy missile's penetration-exploding with the studied cement treated macadam model.
引文
[1]齐振伟.反机场跑道串联随进弹终点效应的试验研究与数值模拟:学位论文.长沙:国防科技大学,2007.
    [2]中华人民共和国国家军用标准.侵彻爆破子弹机场道面靶技术要求GJB5003-2003.北京.总装备部军标出版发行部,2003.
    [3]何涛.动能弹在不同材料靶体中的侵彻行为研究:学位论文.合肥:中国科学技术大学,2007.
    [4] Franklin H.A nonlinear analysis of reinforced concrete frames and panels:Ph.D. Dissertation.Berkeley:University of California,1970.
    [5] Hadala P F.Evaluation of empirical and analytical procedures used for predicting the rigid body motion of an earth penetrator.ADA012143,1977.
    [6] ACE.Fundamentals of protective design.Office of the Chief of Engineers.Army Corps of Engineers.Report AT1207821,1946.
    [7]王儒策.弹丸终点效应.北京:北京理工大学出版社,1993.
    [8] NDRC.Effects of impact and explosion.Washington D C.Summary Technical Report of Division 2,1946.
    [9] Hughes G.Hard missile impact on reinforced concrete.Nuclear Engineering and Design,1984,77:23-35
    [10] Forrestal M J,Altman B S,Cargile J D,et al.An empirical equation for penetration depth of ogive-nose Projectiles into concrete targets.Proceedings of the Sixth International Symposium on Interaction of Nonnuclear Munitions with Structures.Panama City Beach,1993:9-32
    [11] Qian L X,Yang Y B,Liu T.A semi-analytical model for truncated-ogive-nose projectiles penetration into semi-infinite concrete targets.Int J Impt Engng,2000, 24:947-955
    [12] Tenland J A,Sjol H.Penetration into concrete by truncated Projectiles.Int J Impt Engng,2004, 30:447-464
    [13] Li Q M,Chen X W.Dimensionless formula for penetration depth of concrete target impacted by a non-deformable projectile.Int J Impt Engng,2003, 28:93-116
    [14] Forrestal M J.A spherical cavity-expansion penetration model for concrete targets.Int J Solids structures,1997, 34:4127-4146
    [15]何翔.石灰岩中爆炸成坑和地冲击传播规律的试验研究.岩石力学与工程学报,2003, 23:725-729
    [16]顾文斌.反跑道弹药道面下爆炸破坏效应试验研究.机场工程,2004(增刊):60-75
    [17]顾文斌,王清洁.多层介质爆炸空腔的数值模拟研究.北京理工大学学报,2003.23(增刊):362-366
    [18]梁斌.动能攻坚战斗部对混凝土靶侵爆效应研究:学位论文.绵阳:中国工程物理研究院,2009.
    [19]钟光复.岩石、混凝土介质中爆破近区破坏规律的研究:学位论文.合肥:中国科学技术大学,2006.
    [20]杨冬梅.机场跑道多层介质靶中爆炸毁伤的数值仿真.第五届全国工程结构安全防护学术会议,2005:205-208
    [21]宋顺成.模拟战斗部对混凝土侵彻与爆炸耦合作用的计算.弹道学报,2004.16 (4) :23-28
    [22]刘瑞朝.分层岩土介质爆炸效应的三维仿真模拟.岩石力学与工程学报,2007,26(7) :1458-1462
    [23]仵卫东.高性能水泥稳定碎石基层研究:学位论文.西安:长安大学,2006.
    [24]程箭.水泥稳定碎石静态模量与动态模量比较.建筑材料学报.2009.12(1) :63-75
    [25]蒋应军,王富玉,刘斌.水泥稳定碎石强度特性的试验研究.武汉理工大学学报,2009,15:52-57
    [26]孙兆辉.水泥稳定碎石强度影响因素的试验研究.建筑材料学报,2006,9(3):285-290
    [27]呙贵春.水泥稳定碎石无侧限抗压强度与抗压回弹模量的关系.公路,2007, 1:171-174
    [28]康家鼎.水泥稳定碎石路用性能研究:学位论文.东南大学,2005
    [29]王喜燕.公路沥青路面水泥稳定碎石基层应用技术研究.北京工业大学,2006
    [30]丛林,郭忠印.水泥稳定碎石路用性能.北京科技大学学报,2001,9 (23)15-19
    [31] Watstein D.Effect of straining rate on the compressive strength and elastic properties of concrete.ACI J.proceedings,1953,49(8) :729-744
    [32]姜锡权.水泥砂浆静动态力学行为及短纤维增强性能研究:学位论文.合肥:中国科技大学,1996
    [33] Bischoff P H,Pery S H,Impact behavior of plain concrete in uniaxial compression.Int J Eng Mech,1995,121(6) :685-693
    [34] Bischoff P H.Compressive response of concrete to hard impact:Ph.D. Dissertation.London:Imperial college of science,technology and Medicine,1988.
    [35] Bischoff P H.Compressive behavior of concrete at high strain rate.Material and structure,1991,144(24) :425-450
    [36] Tang T,Malvern L E,Jenkins D A.Rate effects in uniaxial dynamic compression of concrete.Int J Eng Mech,1992,118(1) :108-124
    [37] Bakis C E,Uppuluri V S.Analysis of bonding mechanics of smooth and lugged FRP rods embedded in concrete.Comp Sci&Tech,1998, 58:1307-1319
    [38]过镇海.混凝土的强度和本构关系―原理与应用.北京:中国建筑工业出版社,2004
    [39]查文华,洪宝宁.路基水泥稳定碎石的压缩特性试验与分析.低温建筑技术,2007.1:9-11
    [40]高燕.混凝土粗骨料结构数值模拟:学位论文.沈阳:沈阳农业大学,2007.
    [41] Holmquist T J,Johnson G R.A computational constitutive model for concrete subjected to large strains,high strain rates,and high pressures.14th International Symposium on Ballistics.Quebec,Canada,1993:591~600
    [42] Riedel W.Beton unter dynamischen Lasten Mesound makro mechanische Modelle und ihre Parameter.Freiburg,Germany,Phd Thesis,Ermst Mach Institut,2000.
    [43]杨慕松.混凝土冲击绝热线计算与测量.材料侵彻学术专题研讨会,2001:134-139
    [44]丁育青.混凝土材料动态本构关系研究:学位论文.长沙:国防科技大学,2009.
    [45]过镇海,王伟志.多轴应力下混凝土的强度和破坏准则研究.土木工程学报,1991,24(3):1~14
    [46] Hansson H,Skoglund P.Simulation of concrete penetration in 2D and 3D with the RHT material model.FOI-Swedish Defence Research Agency Weapons and Protection.FOI-R-0720-SE,2002.
    [47] Interactive Non-linear Dynamic Analysis Software AUTODYN Users Manual.Release Notes Version4.2.Century Dynamics lnc,2001.
    [48]宋浦.混凝土中的爆坑试验研究火炸药学报,2005.28(2):60-62
    [49]杨军.岩石爆破理论模型及数值计算.北京:科学出版社,1999.
    [50] Bibiana M L . Evaluating the effect of underground explosions onstructures.Mecánica Computational,2008.XXVII:1999-2019

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700