用户名: 密码: 验证码:
小麦族植物果聚糖合成酶基因克隆及功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果聚糖(Fructan)广泛存在于温带、亚温带草本及禾本植物中,能提高植物对干旱、盐碱和低温等非生物胁迫的抗性。异源六倍体小麦是重要的粮食作物,果聚糖合成和降解是小麦碳水化合物的主要代谢途径之一。研究小麦中果聚糖合成酶(Fructan biosynthesis enzymes, FBEs)基因结构特性、表达特性、遗传特性和功能,解析果聚糖合成相关基因与抗逆性之间的关系等,对认识小麦的进化过程、明晰果聚糖合成酶基因参与抗旱的机理及通过转基因方法提高小麦等作物的抗逆性具有重要意义。本研究以二倍体乌拉尔图小麦(AA)、西尔斯山羊草(SS)、粗山羊草(DD),四倍体硬粒小麦(AABB),六倍体普通小麦(AABBDD)等小麦族植物为材料,利用Touch-down PCR技术分离出果聚糖合成酶基因蔗糖:蔗糖-1-果糖基转移酶( Sucrose: sucrose 1-fructosyltransferase, 1-SST)、果聚糖:果聚糖-1-果糖基转移酶(Fructan: fructan1-fructosyltransferase, 1-FFT)和蔗糖:果聚糖-6-果糖基转移酶(Sucrose: fructan 6-fructosyltransferase, 6-SFT),进行了基因结构和序列分析;以普通小麦品种扬麦6号为材料,采用I-PCR及TAIL-PCR技术,分别克隆了三个果聚糖合成酶基因的启动子序列,利用生物信息学技术对克隆的启动子功能元件进行了预测,通过功能元件缺失的方式构建功能缺失融合载体,运用基因枪轰击小麦幼胚,通过GUS基因瞬时表达进行启动子的功能研究;利用Southern杂交分析了三个果聚糖合成酶基因在不同倍性小麦族植物的拷贝数。利用绿色荧光蛋白(GFP)和6-SFT基因构建融合表达载体,轰击洋葱表皮细胞,对6-SFT进行了亚细胞定位分析;以6个普通小麦品种为材料,采用Real-time技术分析了在不同干旱胁迫时期果聚糖合成酶基因的表达模式。利用农杆菌介导法将克隆的小麦6-SFT基因转入了烟草,对转基因烟草植株进行了抗旱、抗盐和抗低温鉴定。主要结果如下:
     1.小麦族植物中1-SST基因序列比较保守。gDNA长度为3326 bp,cDNA大小为1989 bp,由4个外显子和3个内含子构成,4个外显子大小依次为406 bp、9 bp、872 bp、702 bp,3个内含子大小分别为161 bp、146 bp、1030 bp。小麦族植物中的1-SST基因都含有一个只有9个核酸序列(ATCCCAACG)组成的小外显子,是目前植物中发现的最小的外显子。在氨基酸水平上,AABB同AA和SS的序列相似性分别为95.62%和96.83%。AABBDD同AA、SS和DD的相似性分别为97.89%、99.09%和99.24%;
     2.小麦族植物中的1-FFT基因大小在AA、SS、AABB、AABBDD基因组上都为2652 bp, cDNA大小均为1947 bp,由4个外显子和3个内含子构成,4个外显子大小分别为367 bp、9 bp、869 bp和702 bp,3个内含子大小分别为156 bp、377 bp和172 bp。在DD基因组上gDNA序列长度是2603 bp,cDNA大小为1935 bp,4个外显子大小分别为355 bp、9 bp、869 bp和699 bp,3个内含子大小分别为160 bp、393 bp和118 bp。1-FFT基因也有一个只含有9个碱基(ATCCCAACG)的外显子序列。在氨基酸水平上,AABB同AA和SS的序列相似性分别为97.84%和99.38%。AABBDD同AA、SS和DD的相似性分别为99.07%、99.07%和88.63%。
     3.小麦族植物6-SFT基因在进化上比较活跃。其gDNA在AA、SS、DD、AABB和AABBDD基因组中分别为3122 bp、3302 bp、3100 bp、3138 bp和3146 bp,cDNA大小同为1851 bp。与1-SST和1-FFT基因相同,6-SFT也含有4个外显子和3个内含子。在第一个外显子上出现了插入/缺失突变,它们的gDNA长度主要差异在第三个内含子上。在氨基酸水平上,AABB同AA和SS的序列相似性分别为97.08%和98.54%。AABBDD同AA、SS和DD在DNA序列上的相似性分别为97.24%、98.70%和96.92%。
     4.明确了果聚糖合成酶基因在不同倍性小麦族植物中的拷贝数。1-SST基因在AA基因组和DD组中存在3个拷贝,在SS基因组中至少有1个拷贝,在AABB基因组中有5~6个拷贝,在AABBDD基因组中至少含有7~8个拷贝;1-FFT基因在SS和DD基因组中存在3个拷贝,在AA基因组中至少存在2个拷贝,在四倍体AABB基因组中有6个拷贝,在普通小麦AABBDD基因组中至少有7个拷贝出现;6-SFT基因在AA基因组中有2~3个拷贝,在SS基因组中至少有1个拷贝,在DD基因组中存在3个拷贝,在AABB中有5~6个拷贝,在AABBDD中至少存在7~8个拷贝。
     5.成功从小麦基因组中克隆了3个果聚糖合成酶基因启动子区段,命名为PSFT、PSST及PFFT,长度分别为1064 bp、1927 bp及2142 bp。功能元件预测结果表明,3个启动子区段皆有完整的TATA盒及CAAT元件,同时也具有逆境胁迫响应的元件,如MYB、LTR、ABRE及GARE,同时也存在控制生长昼夜节律性变化的Circadian元件及胚乳特异表达的Skn-1元件(PFFT除外)。对1-SST及1-FFT启动子进行了功能元件缺失研究表明它们受胁迫诱导。
     6.明确了果聚糖合成酶基因在不同干旱胁迫阶段的表达特性。1-SST和1-FFT基因在干旱胁迫7天时表达量达到最高,6-SFT在干旱胁迫26天时表达量达到最高。进一步分析表明,不同小麦材料果聚糖合成酶基因具有有不同的表达特性,1-SST基因在扬麦6号中表达量最大,其次是扬麦12,而在整个干旱胁迫处理过程中中国春的表达量基本保持在同一水平,表达量较低,这也许是中国春不耐旱的原因之一。1-FFT的表达模式和1-SST相似,只是在胁迫处理到第7天时,旱选10号的表达量最高。6-SFT对干旱胁迫的响应要慢于1-SST和1-FFT,也是旱选10号的表达量最高。
     7.利用GFP的瞬时表达进行6-SFT基因亚细胞定位分析,构建了融合表达载体16318-hGFP::6-SFT,借助基因枪转化技术转化洋葱表皮细胞,获得在洋葱表皮细胞中融合表达的GFP及6-SFT,共聚焦显微镜观测表明6-SFT基因定位在洋葱表皮细胞质膜上。
     8.利用烟草这种模式植物进行6-SFT抗逆功能分析,获得了转小麦6-SFT基因的烟草。通过对转基因烟草株系的旱胁迫、盐胁迫和低温胁迫试验,相对于未转基因的野生型对照来说,转基因烟草表现出较强的抗旱、抗盐和抗低温能力。
Fructans, being widespread in temperate and sub-temperate herbaceous and grass plants, which biosynthetic and degraded processes characterize one of major metabolic pathways of wheat carbohydrate, can enhance the resistances of plants to drought, salinity, low temperature and other abiotic stresses. As an important allohexaploid plant and a staple crop, wheat has received great attention in the study on FBEs gene structure features, expression characteristics, genetic features, the mechanism of wheat fructan accumulation, the analysis of the relationship between fructan synthesis-related genes and the resistances, which shows great significance on the enhancement of the resistance of wheat and other crops of important agricultural traits. In this study, three diploid species (Triticum urartu Thum: AA; Aegilops speltoides Gren: SS; Aegilops tauschii Coss: DD), one tetraploid accession (Triticum turgidum: AABB) and one hexaploid variety (Triticum aestivum: AABBDD) were chosen as plant materials for FBEs isolation. Touch-down PCR technique were employed to clone genes coding for fructan biosynthetases: sucrose: sucrose-1-fructosyltransferase, 1-SST; fructan:
     fructan-1-fructosyltransferase, 1-FFT and sucrose: fructan-6-fructosyltransferase, 6-SFT. Sequence alignment and structural analysis were also performed among them and those of different origins. Using I-PCR and TAIL-PCR technology, partial length of promoters for FBEs were identified from common wheat cv. Yangmai 6. Functional elements were predicted through online bioinformatics. Functional elements were confirmed through the construction of fusion vector with truncated promoter fragments and GUS and then transformation into the wheat immature embryos using biolistics. Prediction on the gene copies in common wheat was carried out using Southern blotting analysis. Six common wheat cultivars were chosen for expression profile assay by real-time technique under drought stress at different time intervals. Agrobacterium-mediated transformation was adopted to characterize the function of the cloned wheat 6-SFT in tobacco (Nicotiana tobacum) under drought, salt and low temperature stresses. Main results are covered as the following:
     1. High conserved 1-SST in Triticeae plants. The full length of gDNA and cDNA were 3326 bp and 1989 bp, respectively, containing four exons and three introns in composition with 406 bp, 9 bp, 872 bp, 702 bp in exon length and 161 bp, 146 bp, 1030 bp in intron length. At the amino acid level, AABB-originated 1-SST shared the similarity of 95.62% and 96.83% with the AA- and SS-originated. In AABBDD genome, it had 97.89%, 99.09% and 99.24% identity with that in AA, SS, and DD genomes at the amino acid level, respectively.
     2. The gDNA and cDNA lengths of 1-FFT were the same from AA, SS, AABB, AABBDD genomes with 2652 bp and 1947 bp in length, respectively, composed of four exons and three introns. The sizes of four exons were 367 bp, 9 bp, 869 bp, 702 bp and the sizes of the 3 introns, 156 bp, 377 bp, 172 bp, respectively. In the DD genome, gDNA length was 2603 bp and cDNA length, 1935 bp consisting of 4 exons: 355 bp, 9 bp, 869 bp and 699 bp, and 3 introns: 160 bp, 393 bp and 118 bp. At the amino acid level, 97.84% and 99.38% similarities were found between AABB vs AA and AABB vs SS. Compared to AABBDD genome-originated, the similarity was 99.07%, 99.07%, 88.63% in AA, SS and DD genome, respectively.
     3. 6-SFTs from Triticeae plants were more active during evolution. Different gDNA lengths were found to be 3122 bp, 3302 bp, 3100 bp, 3138 bp and 3146 bp in AA, SS, DD, AABB, and AABBDD genome, respectively. And the cDNA sizes were 1851 bp. 6-SFT also contains four exons and three introns. High efficiency of insertion/deletion mutation in the first exon accounted for the full-length difference in Triticeae plants. At the amino acid level, 97.08% and 98.54% identity was found between AABB vs AA, AABB vs SS, respectively. 97.24%, 98.70% and 96.92% similarity was shared by AABBDD-originated 6-SFT with AA-, SS-, and DD-originated at the amino acid level, respectively.
     4. Multi-copies of FBEs in Triticeae were found. For 1-SST, there were three copies in the AA group and the DD group, while in the SS group, at least one copy was found. In the AABB and AABBDD genomes, there were 5 to 6 copies and more than 7 to 8 copies, respectively. In the SS and DD groups, there existed three copies of 1-FFT, while in the AA genome, at least two copies existed. Then in tetraploid wheat, AABB, there were six copies and in the common wheat, AABBDD, at least seven copies were present; 6-SFT in AA group, there are 2 or 3 copies; in the SS group, at least one copy existed; in the DD group, there were three copies and at least 5 to 6 and 7 to 8 copies were present in AABB and AABBDD genomes, respectively.
     5. Successful isolation of promoter for FBEs from wheat cv. Yangmai 6, designated as PSFT, PSST and PFFT with 1064 bp, 1927 bp and 2142 bp in length, respectively. Functional elements prediction online showed the presence of TATA box and CAAT element, stress response elements, such as MYB, LTR, ABRE and GARE and Circadian element responsible for circadian rhythm in plants and Skn-1 components controlling endosperm-specific expression (except PFFT) in all the three promoters. Functional truncated assay on PSST and PFFT demonstrated that they were abiotic stress-responsive.
     6. Expression pattern was characterized on FBEs under different time-interval drought stresses. The highest expression levels of 1-SST and 1-FFT reached at seven days, while that of 6-SFT reached after 26-day treatment. Further analysis showed different expression characteristics in different wheat varieties. As for 1-SST expression, Yangmai 6 was high, followed by Yangmai 12, while during the whole process of drought stress in common wheat cv. Chinese Spring, the expression remained at the same level with relatively lower expression, which may answer for the low drought-tolerance in part. 1-FFT and 1-SST shared the same expression pattern with the highest expression in Hanxuan 10 at 7-day drought stress. 6-SFT responded to drought stress slower than 1-SST and 1-FFT with the same highest expression level presenting in Hanxuan 10.
     7. Biolistics-mediated transformation of onion epidermal cell with fusion vector 16318-hGFP::6-SFT. Transient expression of GFP showed 6-SFT may be located at cell membrane using confocal microscope.
     8. Obtaining transgenic tobacco lines with wheat 6-SFT. When treated with no watering, 300 mM NaCl and -20℃for 30 min, transgenic tobaccos showed strong tolerance to drought, salt and low temperature stresses while wild types display wilting, growth retardment and turn white.
引文
1.韩志勇,王新其,沈革志.反向PCR克隆转基因水稻的外源基因旁侧序列.上海农业学报. 2001, 17: 27-32
    2.黄君健,李杰之,林坚,蒋晓山,高朝晖,黄翠芬.人端粒酶催化亚基hTERT基因启动子的克隆.生物技术通讯. 1999, 10: 167-170
    3.李慧娟,尹海英,张学成,杨爱芳.转蔗糖:蔗糖-1-果糖基转移酶基因提高烟草的耐旱性.山东大学学报(理学版). 2007, 42(1): 89-94
    4.李秋莉,尹辉,李丹.辽宁碱蓬胆碱单加氧酶(CMO)基因启动子分离及功能元件分析.遗传学报. 2007, 34(4): 355-361
    5.李维,张义正.黄孢原毛平革菌基因启动子的分离与鉴定.生物工程学报. 2001, 16(5): 599-602
    6.任红旭,陈雄,孙国钧,王亚馥.抗旱性不同的小麦幼苗对水分和NaCl胁迫的反应.应用生态学报. 2000, 11 (5) :718-722
    7.王新国,肖成祖,张国华,方荣祥.用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子.中国生物化学和分子生物学报. 2001, 17 (1): 61-65
    8.殷桂香,佘茂云,高翔,王瑾,叶兴国.植物果聚糖合成酶基因克隆及特性分析.中国生物工程杂志. 2009, 29(2): 125-133
    9.殷桂香,王瑾,徐惠君,陶丽莉,杜丽璞,毛新国,等.几个小麦基因型苗期抗旱性鉴定及相关生理指标分析.麦类作物学报. 2009, 29(2): 319-323
    10.张慧,董伟,周骏马,杜宝兴,谷冬梅,陈受益.果聚糖蔗糖转移酶基因的克隆及耐盐转基因烟草的培育.生物工程学报. 1998, 2: 181-186
    11.朱玉贤,李毅.现代分子生物学.北京:高等教育出版社. 1997
    12. Akira K, Midori Y. Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Bioscience Biotechnology and Biochemistry 2002, 66(11): 2297-2305
    13. Alexander B and Lázaro H. Fructans: from natural sources to transgenic plants. Biotecnología Aplicada 2006, 23(3): 202-210
    14. Allison S D, Chang B, Randolph T W, Change B. Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Archives of Biochemistry and Biophysics 1999, 65: 289-298
    15. Archibold H K. Fructosans in the monocotyledons. The New Phytologist 1940, 39: 185-219
    16. Babenko V I, Gevorkyan A M. Accumulation of oligo saccharides and their significance in the low-temperature hardening of cereal grains. Fiziol Rast 1967, 14: 727-736
    17. Badawi M., Danyluk J., Boucho B., Houde M., Sarhan F. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Molecular Genetics and Genomics 2007, 277: 533-554
    18. Bancal P, Carpita N.C, Gaudillere J P. Differences in fructan accumulated in induced and field-grown wheat plants: an elongation-trimming pathway for their synthesis. The New phytologist 1992, 20: 313-321
    19. Beck E H, Fettig S, Knake C, Knake C, Hartig K, Bhattarai T . Specific and unspecific responses of plants to cold and drought stress. Journal of Bioscience 2007, 32: 501-510
    20. Cacela C, Hincha D K. Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidylcholine, but not for lyoprotection of liposomes. Biophysical Journal 2006, 90: 2831-2842
    21. Cacela C, Hincha D K. Monosaccharide composition, chain length and linkage type influence the interactions of oligosaccharides with dry phosphatidylcholine membranes. Biochimica et Biophysica Acta 2006, 1758: 680-691
    22. Canny M J. Apoplastic water and solute movement: new rules for an old space. Annual Review of Plant Physiology and Plant Molecular Biology 1995, 46: 215-236
    23. Carles C, Bies Etheve N, Aspart L, Koornneef M., Echeverria M., Delseny, M. Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant Journal. 2002, 30: 373-383
    24. Carter C, Pan S, Zouhar J, Avila E L, Girke T, Raikhel N V. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. The Plant Cell 2004, 16: 3285-3303
    25. Chalmers J, Lidgett A, Cummings N, Cao Y, Forster J, Spangenberg G. Molecular genetics of fructan metabolism in perennial ryegrass. Plant Biotechnology 2005, 3: 459-474
    26. Chatterton N J, Harrison P A, Bennett J H, Asay K H. Carbohydrate partitioning in 185 accessions of Gramineae grown under warm and cold environments. Plant Physiology 1989, 134: 169-179
    27. Cloutier Y, Siminovitch D. Correlation between cold- and drought-induced frost hardiness in winter wheat and rye varieties. Plant Physiology 1982, 69:256-258
    28. Crawford C, Sepulveda M F, Elliott J, Harris P A, Bailey S R. Dietary fructan carbohydrate increases amine production in the equine large intestine: implications for pasture-associated laminitis. Journal of Animal Science 2007, 85: 2949-2958
    29. Crowe L M. Lessons from nature: the role of sugars in anhydrobiosis. Comparative Biochemistry and Physiology Part A 2002, 131: 505-513
    30. Cunff L.L., Garsmeur O., Raboin L.M., Pauquet J, Telismart H, Selvi A, et al. Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane . Genetics 2008, 180: 649-660
    31. Cyril J, Powell G L, Duncan R R, Baird W V. Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop Science 2002, 42: 2031-2037
    32. Darbyshire B, Henry R J. Differences in fructan content and synthesis in some Allium species. The New phytologist 1981, 87:249-256
    33. Darbyshire B, Henry R J. The distribution of fructans in onions. The New phytologist 1978, 81: 29-34
    34. Demel R A, Dorrepaal E, Ebskamp M J M, Smeekens, Kruijff B. Fructans interact strongly with model membranes. Biochimica et Biophysica Acta 1998, 1375: 36-42
    35. Dong Q., Wilkerson M.D., Brendel V. Tracembler--software for in silico chromosome walking in unassembled genomes. BMC Bioinformatics, 2007, 8: 151-156
    36. Dvorak J, Luo M C, Yang Z L, Zhang H B. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics 1998, 97: 657-670
    37. Eagles C F. Variation in the soluble carbohydrate content of climatic races of Dactylis glomerata cocksfoot at different temperatures. Annals of Botany 1967, 31: 645-651
    38. Edelman J, Jefford T G. The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. The New phytologist 1968, 67: 517-531
    39. Englmaier P. Carbohydrate metabolism of salt-tolerant fructan grasses as exemplified with Puccinellia peisonis. Biochemie und Physiologie der Pflanzen 1987, 182:165-182
    40. Etxeberria E, Gonzalez P, Pozueta-Romero J. Sucrose transport into citrus juice cells: evidence for an endocytic transport system. Journal of the American Society of Horticultural Science 2005, 130: 269-274
    41. Fodor I, Krasnikova O V, Berets E. Cloning, structure and features of a Saccharomyces cerevisiae DNA fragment causing the expression of reporter genes. Molecular Biology (Mosk). 1990, 24(5): 1411-418
    42. Francki M G, Walker E, Forster J W, Spangenberg G, Appels R.. Fructosyltransferase and invertase genes evolved by gene duplication and rearrangements: rice, perennial ryegrass, and wheat gene families. Genome 2006, 49: 1081-1091
    43. French A D, Waterhouse A L. Chemical structure and characteristics. In: Suzuki M, Chatterton NJ, eds. Science and technology of fructans. Florida: CRC Press 1993, 41-81
    44. Friebe B, Gill B S. Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. In: Jauhar PP (eds), Methods of Genome Analysis in Plants. CRC Press, Boca Raton, New York, 1996, 39-60
    45. Gale M D, Devos K M. Comparative genetics in the grasses. Proceedings of the National Academy of Sciences of the United States of America 1998, 95: 1971-1974
    46. Gallagher J A, Cairns A J, Pollock C J. Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass Lolium temulentum L. Journal of Experiment Botany 2004, 55: 557-569
    47. Gento Tsuji, Satoshi Fujii, Naoki Fujihara, Chika Hirose, Seiji Tsuge, Tomonori Shiraishi, et al. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. Journal of General Plant Pathology 2003, 69: 230-239
    48. Giraudat J., Parcy F., Bertauche N., Gosti F., Leung J., Morris P.C., Bouvier-Durand M., Vartanian N. Current advances in abscisic acid action and signaling. Plant Molecular Biology 1994, 26: 1557-1577
    49. Glaucia M D T, Nair M I ,M Angela M C. Fructans and water suppression on intact and f ragmentedrhizophores of Vernonia herbacea. Brazilian Archives of Biology and Technology 2004 ,47 (3): 363-373
    50. Guiltinan M J, Marcotte W R, Quatrano R S. A plant leucine zipper protein that recognize an abscisic acid response element. Science 1990, 250: 267-271
    51. Guy C L. Freezing tolerance of plants: current understanding and selected emerging concepts. Canadian Journal of Botany 2003, 81: 1216-1223
    52. Halleux S, Van C P. Cloning and sequencing of the 1-SST cDNA from Chicory root. Plant Physiology 1997, 113: 1003
    53. Hattori T, Terada T, Hamasuna S. Sequence and functional analyses of the rice gene homologous to the maize Vp1. Plant Molecular Biology 1994, 24: 805-810
    54. He Y, Gan S. Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. Plant Molecular Biology 2001, 47(5): 595-605
    55. Heino P, Palva E T. Signal transduction in plant cold acclimation. In: Hirt H, Shinozaki K, eds. Topics in current genetics 4. Berlin: Springer-Verlag 2003, 151-186
    56. Hellwege E M, Gritscher D, Willmitzer L, Heyer A G. Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose sucrose 1- fructosyltransferase of artichoke Cynara scolymus blossom discs. Plant Journal 1997, 12: 1057-1065
    57. Hellwege E M, Raap M, Gritscher D, Willmitzer L, Heyer A G. Differences in chain-length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. FEBS Lett 1998, 427: 25-28
    58. Hendry G A F, Wallace R K. The origin distribution and evolutionary significance of fructans. In: Suzuki M, Chatterton NJ eds Science and technology of fructans. CRC Press, Boca Raton 1993, 119-139
    59. Hendry G.A. The ecological significance of fructan in a contemporary flora. The New phytologist 1987, 106: 201-216
    60. Henson C A, Livingston D P III. Characterization of a fructan exohydrolase purified from barley stems that hydrolyzes multiple fructofuranosidic linkages. Plant Physiology and Biochemistry 1998, 36: 715-720
    61. Hincha D K, Popova A V, Cacela C. Effects of sugars on the stability of lipid membranes during drying. In: Advances in planar lipid bilayers and liposomes, Elsevier 2006, 3: 189-217
    62. Hinrichs W L J, Prinsen M G, Frijlink H W. Inulin glasses for the stabilization of therapeutic proteins. International Journal of Pharmacology 2001, 215: 163-174
    63. Hobo T, Asada M, Kwoyama Y, Hattori T. ACGT-containing abscisic acid response elemet (ABRE) and coupling element 3(CE3) are functionally equivalent. Plant Journal 1999, 19: 679-689
    64. Houde M, Saniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant Journal 1995, 8: 583~593
    65. Hudson M A, Idle D B. The formation of ice in plant tissues. Planta 1962, 57: 718-730
    66. Ji X, Van den Ende W, Schroeven L, Clerens S, Geuten K, Cheng S, et al. The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. The New phytologist 2007, 173: 50-62
    67. Joaquin Medina, Monica Bargues, Javier Terol, Perez-Alonso, Salinas. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant physiology. 1999, 119(2): 463-469
    68. Johansson. Notice formation and frost hardiness in some agricultural plants. Contrib Natl Swed Inst Plant Protect 1970, 14: 365-382
    69. Jones D H, Winistorfer S C. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA. Nucleic Acids Rearch 1992, 20(3): 595-600
    70. Kawakami A, Sato Y, Yoshida M. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. Journal of Experimental Botany 2008, 59: 793-802
    71. Kawakami A, Yoshida M. Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose: fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Bioscience Biotechnology and Biochemistry 2002, 66(11): 2297-2305
    72. Kerepesi I ,Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science 2000 ,40(2): 482-487
    73. Kobayashi F., Maeta E., Terashima A., Kawaura K., Ogihara Y., Takumi S. Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. Journal of Experimental Botany, 2008, 59: 891-905.
    74. Kony D, Damm W, Stoll S, Hunenberger P H. Explicit-solvent molecular dynamics simulations of the b1/3 and b1/6 linked disaccharides b-laminarabiose and b-gentiobiose in water. Journal of Physical Chemistry B 2004, 108: 5815-5826
    75. Koster K L, Lei Y P, Anderson M, Martin S, Bryant G. Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. Biophysics Journal 2000, 78: 1932-1946
    76. Le Roy K, Lammens W, Verhaest M, De Coninck B, Rabijns A, Van Laere A, et al. Unraveling the difference between invertases and fructan exohydrolases: a single amino acid Asp-239 substitution transforms Arabidopsis cell wall invertase1 into a fructan 1-exohydrolase. Plant Physiology 2007, 145: 616-625
    77. Lee G, Nowak W, Jaroniec J, Zhang Q, Marszalek P. Molecular dynamics simulations of forced conformational transitions in 1,6-linked polysaccharides. Biophysical Journal 2004, 87: 1456-1465
    78. Lenne T, Bryant G, Holcomb R, Koster K L. How much solute is needed to inhibit the fluid to gel membrane phase transition at low hydration? Biochimica et Biophysica Acta 2007, 1768: 1019-1022
    79. Levitt J ed. Responses of plants to environmental stress, vol. 1, 2nd ed. Academic Press, New York, 1980
    80. Levitt J Effects of artificial increases in sugar content on frost hardiness. Plant Physiology 1959, 34:401-402
    81. Levitt J, Scarth G W. Frost-hardening studies with living cells 1. Osmotic and bound water changes in relation to frost resistance and the seasonal cycle. Canadian Journal of Research 1936, 8: 267-28
    82. Li H J, Yang A F, Zhang X C, Gao F, Zhang J R. Improving freezing tolerance of transgenic tobacco expressing sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa. Plant Cell Tissue and Organ Culture 2007, 89: 37-48
    83. Liu Y G, Robert F W. Thermal asymmetric interlaced PCR: automatable a amplification and sequencing of insert end fragment from PI and YAC clones for chromosome walking. Genomics 1995, 25: 674-681
    84. Liu Y.G., Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007, 43: 649~656.
    85. Livingston D P III, Chatterton NJ, Harrison P A. Structure and quantity of fructan oligomers in oat Avena spp. The New phytologist 1993, 123: 725-734
    86. Livingston D P III, Henson C A. Apoplastic sugars, fructans, fructan exohydrolase and invertase in winter oat: responses to second-phase cold hardening. Plant Physiology 1998, 116: 403-408
    87. Livingston D P III, Tallury S P, Premakumar R, Owens S A, Olien C R. Changes in the histology of cold hardened oat crowns during recovery from freezing. Crop Science 2005, 45: 1545-1558
    88. Livingston DP III, Premakumar R, Tallury S P. Carbohydrate partitioning between upper and lower regions of the crown in oat and rye during cold acclimation and freezing. Cryobiology 2006, 52: 200-208
    89. Lothier J, Lasseur B, Le Roy K, Laere A V, Prudhomme M P, Barre P, et al. Cloning, gene mapping, and functional analysis of a fructan 1-exohydrolase 1-FEH from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization. Journal of Experiment Botany 2007, 58: 1969-1983
    90. Maestra B, Naranjo T. 1998. Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theoretical and Applied Genetic 97, 181-186
    91. Maleux K, Van den Ende W. Levans in excised leaves of Dactylis glomerata: effects of temperature, light, sugars, and senescence. Journal of Plant Biology 2007, 50: 671-680
    92. Martini M F, Disalvo E A. Superficially active water in lipid membranes and its influence on the interaction of an aqueous soluble protease. Biochimica et Biophysica Acta 2007, 1768: 2541-2548
    93. Mazal A, Leshem Y, Tiwari B S, Levine A. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 AtRabG3e. Plant Physiology 2004, 134: 118-128
    94. McFadden E S, Sears E R. The origin of Triticum spelta and its free-threshing hexaploid relatives. The Journal of Heredity 1946, 37: 81-89, 107-116
    95. Meier H, Reid J S G. Reserve polysaccharides other than starch in higher plants. In: Loewus FA, Tanner W eds Ency- clopedia of plant physiology, Plant carbohydrates I: intracellular carbohydrates. Springer-Verlag, Berlin, 1982, 418-471
    96. Menkens A E, Schindler U, Cashmore A R. The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of Bzip proteins. Trends of Biochemistry. Science 1995, 20: 506-510
    97. Meryman H T. The relationship between dehydration and freezing injury in the human erythrocyte. In: Asahina E ed Cellular injury and resistance in freezing organisms, vol 2. Proceedings of the international conference on low temperature science. Bunyeido, Sapporo, Japan 1966, 231-244
    98. Milhaud J. New insights into water-phospholipid interactions. Biochimica et Biophysica Acta 2004, 1663: 19-51
    99. Mundy J, Yamaguchi Shinozaki K, Chua N H. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. 1990, Proceedings of the National Academy of Sciences of the United States of America 87: 1406-1410
    100. Newton R. Colloidal properties of winter wheat plants in relation to frost resistance. Journal of Agricultural Science 1923, 14: 177-191
    101. Niu X, Helentjaris T, Bate N J. Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 2002, 14: 2565-2575
    102. Ohtake S, Schebor C, de Pablo J J. Effects of trehalose on the phase behavior of DPPC-cholesterol unilamellar vesicles. Biochimica et Biophysica Acta 2006, 1758: 65-73
    103. Olien C R. Analysis of midwinter freezing stress. In: Olien CR, Smith MN eds Analysis and improvement of plant cold hardiness. CRC Press, Boca Raton 1981, 35-58
    104. Oliver A E, Hincha D K, Crowe J H. Looking beyond sugars: the role of amphiphilic solutes in preventing adventitious reactions in anhydrobiotes at low water contents. Comparative Biochemistry and Physiology Part A 2002, 131: 515-525
    105. Ono A, Izawa T, Chua N H, Shimamoto K. The rab16B promoter of rice contains two distinct abscisic acid-reponsive elements. Plant Physiology 1996, 112: 483-491
    106. Pearce R S, Houlston C E, Atherton K M, Rixon J E, Harrison P, Hughes M A, et al. Localization of expression of three cold-induced genes, blt101, blt4.9, and blt14 in different tissues of the crown and developing leaves of cold-acclimated cultivated barley. Plant Physiology 1998, 117: 787-795
    107. Pollock C J, Cairns A J. Fructan metabolism in grasses and cereals. Ann Rev Plant Physiol Plant Molecular Biology 1991, 42: 77-101
    108. Pollock C J, Chatterton N J. Fructans. In: Stumpf W, Conn PM, Preiss J eds The biochemistry of plants, vol 14. Academic Press, New York 1988, 109-140
    109. Pollock C J, Eagles C F, Sims I M. Effect of photoperiod and irradiance changes upon development of freezing tolerance and accumulation of soluble carbohydrate in seedlings of Lolium perenne grown at 2°C. Annals of Botany 1988, 62: 95-100
    110. Pollock C J. Environmental effects on sucrose and fructan metabolism. In: Randall DD, Miles CD, Nelson CJ, Blevins DG, Miernyk JA eds Current topics in plant biochemistry and physiology, vol 5. University of Missouri Press, Columbia 1986, 32-46
    111. Pollock C J. Physiology and metabolism of sucrosyl-fructans. In: Lewis DH ed Storagecarbohydrates in vascular plants. Cambridge University Press, Campbridge 1984, 97-113
    112. Pollock C J. Seasonal patterns of fructan metabolism in forage grasses. The New phytologist 1979, 83: 9-15
    113. Pollock C J. Sucrose accumulation and the initiation of fructan biosynthesis in Lolium temultentum L. The New phytologist 1984, 96: 527-534
    114. Pontis H G. Fructans and cold stress. Plant Physiology 1989, 134: 148-150
    115. Pontis H.G, Del Campillo E. Fructans. In: Dixon RA ed Biochemistry of storage carbohydrates in green plants. Aca- demic Press, London 1985, 205-227
    116. Qiang Liu, Mie Kasuga, Yoh Sakurma. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression respectively in Arabidopsis. The Plant Cell 1998, 10(8): 1 391-1 406
    117. Rechael L N, Robert W W, Raymond L R. Eukaryotic DNA fragments which act as promoters for a plasmid gene. Nature, 1979, 277: 324-325
    118. Ricker J V, Tsvetkova N M, Wolkers W F. Trehalose maintains phase separation in an air-dried binary lipid mixture. Biophysical Journal 2003, 84: 3045-3051
    119. Roberfroid M B. Inulin-type fructans: functional food ingredients. CRC Press, Boca Raton, 2005
    120. Sakai A. Relation of sugar content to frost-hardiness in plants. Nature 1960, 185: 698-699
    121. Santarius K A. The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost desiccation and heat resistance. Planta 1973, 113 : 105-114
    122. Shen Q, Chen CN, Brands A. The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Molecular Biology. 2001, 45(3): 327-340
    123. Shen Q, Zhang P, Ho T H. Modular nature of abscisic acid(ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell, 1996, 8: 1107-1119
    124. Shibata S, Shimada T. Anatomical observation of the development of freezing injury in orchardgrass crown. J Japan Grassl Sci 1986, 32: 197-204
    125. Shiomi N. Properties of fructosyltransferases involved in the synthesis of fructan in liliaceous plants. Plant Physiology 1989, 134: 151-155
    126. Silva J M, Arrabaca M C. Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress. Journal of Plant Physiology 2004, 161: 551-555
    127. Sims I M, Pollock CJ, Horgan R. Structural analysis of oligomeric fructans from excised leaves of Lolium temulentum. Phytochemistry 1992, 31: 2989-2992
    128. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 1990, 2: 503-512
    129. Slade L, Levine H. Beyond water activity: recent advances based on an alternative approach to theassessment of food quality and safety. Critical Reviews in Food Science and Technology 1991, 30: 115-360
    130. Spollen W G, Nelson C J. Response of fructan to water deficit in growing leaves of tall fescue. Plant Physiology 1994, 106: 329-336
    131. Sprenger N, Bortlik K, Brandt A, et al. Purification, cloning and functional expression of sucrose:fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. Proceedings of the National Academy of Sciences of the United States of America 1995, 92: 11652-11656
    132. St John J A, Sims I M, Bonnet G D, Simpson R J. Identification of products formed by a fructan:fructan fructosyltransferase activity from Lolium rigidum. The New phytologist 1997, 135: 249-257
    133. Steponkus P L. The relationship of carbohydrates to cold acclimation of Hedera helix L cv. Thorndale. Physiologia Plantarum 1968, 21: 777-791
    134. Stokes S. Baker, Kathy S Wilhelm, Michael F Thomashow. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-, and ABA-regulated gene expression. Plant Molecular Biology1994, 24: 701-713
    135. Sturm A. Invertase: primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology 1999, 121: 1-7
    136. Sun X.C., Hu C.X., Tan Q.L., Liu J.S., Liu H.E. Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Annals of Botany, 2009, 104: 345-356
    137. Suzuki M, Nass H G. Fructan in winter wheat, triticale and fall rye cultivars of varying cold hardiness. Canadian Journal of Botany 1988, 66: 1723-1728
    138. Tan G., Gao Y., Shi M., Zhang X., He S., Chen Z., An C. SiteFinding-PCR: a simple and efficient PCR method for chromosome walking. Nucleic Acids Research, 2005, 33: 122-129
    139. Tanino K K, McKersie B D. Injury within the crown of winter wheat seedlings after freezing and icing stress. Canadian Journal of Botany 1985, 63: 432-435
    140. Tognetti J A, Calderon P L, Pontis H G. Fructan metabolism: Reversal of cold acclimation. Plant Physiology and Biochemistry 1989, 134(2): 232-234
    141. Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Research, 1988, 16: 8186
    142. Trunova T L. The significance of different forms of sugars in increasing the frost resistance of the coleoptiles of winter cereals. Fiziol Rast 1963, 10: 495-499
    143. Uno Y, Furihata T, Abe H, Yoshida R, Yoshida R, Shinozaki K, Shinozaki K K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the United States of America 2000, 97: 11632-11637
    144. Valluru R, van den Ende W. Plant fructans in stress environments: emerging concepts and future prospects. Journal of Experimental Botany 2008, 59: 2905-2916
    145. Van den Ende W, Clerens S, Vergauwen R, Boogaerts D, Kle R, Arckens, et al. Cloning and functional analysis of a high DP fructan:fructan 1-fructosyl transferase from Echinops ritro Asteraceae: comparison of the native and recombinant enzymes. Journal of Experimental Botany 2006, 57: 775-789
    146. Van den Ende W, Clerens S, Vergauwen R, Van Riet L, Van Laere A, Yoshida M, et al. Fructan 1-exohydrolases.trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping and cloning of two fructan 1-exohydrolase isoforms. Plant Physiology 2003, 131: 621-631
    147. Van den Ende W, Van Laere A, Le Roy K, Vergauwen R, Boogaerts D, Figueiredo-Ribeiro C L, et al. Molecular cloning and characterization of a high DP fructan:fructan 1-fructosyltransferase from Viguiera discolor Asteraceae and its heterologous expression in Pichia pastoris. Physiologia Plantarum 125, 419-429
    148. Van den Ende W, Van Laere A. Denovo synthesis of fructans from sucrose in vitro by a combination of two purified enzymes sucrose:sucrose 1-fructosyl transferase and fruc- tan:fructan 1-fructosyl transferase from chicory roots Cichorium intybus L.. Planta 1996, 200: 335-342
    149. Van den Ende W, Yoshida M, Clerens S, Vergauwen R, Kawakami A. Cloning, characterization and functional analysis of novel 6-kestose exohydrolases 6-FEHs from wheat Triticum aestivum L.. The New phytologistogist 2005, 166: 917-932
    150. Van der Meer I M, Koops A J, Hakkert J C, Van Tunen A J. Cloning of fructan biosynthesis pathways of Jerusalem artichoke. Plant Journal 1998, 15: 489-500
    151. Van Riet L, Nagaraj V, Van den Ende W, Clerens S , Wiemken A , Van Laere A . Purification, cloning and functional characterization of a fructan 6-exohydrolase from wheat Triti- cum aestivum L.. Journal of Experiment Botany 2005, 57: 213-223
    152. Vereyken I J, Albert van Kuik J, Evers T H, Rijken P J, Kruijff B. Structural requirements of the fructan—lipid interaction. Biophysical Journal 2003, 84: 3147-3154
    153. Verhaest M, Lammens W, Le Roy K, De Ranter C J, Van L A, Rabijns A, et al. Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase:1-kestose as substrate vs sucrose as inhibitor. The New Phytologist 2007, 174: 90-100
    154. Verslues P E, Agarwal M, Katiyae-Agarwal S, Zhu J H, Zhu J K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal 2006, 45: 523-539
    155. Vijn I, Smeekens S. Fructan: more than a reserve car- bohydrate? Plant Physiology 1999, 120: 351-359
    156. Vijn I, van Dijken A, Sprenger N, Dun K, van Weisbeek P, Wiemken A. Fructan of the inulin neoseries is synthesized in transgenic chicory plants Cichorium intybus L. harbouring onion Allium cepa L. fructan:fructan 6- fructosyltansferase. Plant Journal 1997, 11: 387-398
    157. Volaire F, Thomas H, Lelievre F. Survival and recovery of perennial forage grasses under prolonged Mediterranean drought. I. Growth, death, water relations, and solute content in herbageand stubble. The New phytologistogist 1998, 140: 439-449
    158. Wagner W, Keller F, Wiemken A. Fructan metabolism in cereals: induction in leaves and compartmentation in protoplasts and vacuoles. Plant Physiology 1983, 112: 359-372
    159. Waite R, Boyd J The water-soluble carbohydrates of grasses. I. Changes occurring during the normal life-cycle. Science Food Agricutural 1953, 4:197-204
    160. Wang S., He J., Cui Z., Li S. Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Applied and Environmental Microbiology, 2007, 73: 5048-5051
    161. Waterhouse A L, Chatterton N J. Glossary of fructan terms. In: Suzuki M, Chatterton NJ eds Science and technology of fructans. CRC Press, Boca Raton 1993, 1-7
    162. Westhafer M A, Law J T Jr, Duff D T. Carbohydrate quantification and relationships with N nutrition in cool-season turfgrasses. Agronomy Journal 1982, 74: 270-274
    163. Williams R J. Frost desiccation: an osmotic model. In: Olien CR, Smith MN eds Analysis and improvement of plant cold hardiness. CRC Press, Boca Raton, 1980, 89-115
    164. Wolfe J, Bryant G. Freezing, drying and/or vitrification of membrane-solute-water systems. Cryobiology 1999, 39: 103-129
    165. Yamaguchi-Shinozaki K., Mundy J., Chua N.H. Four tightly linked rab genes are differentially expressed in rice. Plant Molecular Biology 1989, 14: 29-39
    166. Yoshida M, Lin D, Kawakami A. A mini exon in the sucrose: sucrose 1-fructosyltransferase gene of wheat. Journal of Plant Physiology, 2004, 161: 1277-1279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700