用户名: 密码: 验证码:
酸味中药复方对糖尿病大鼠动脉粥样硬化病变的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的流行病学资料显示,大血管病变是2型糖尿病患者致死和致残的主要原因。在我国,约60%的2型糖尿病患者合并有心血管并发症,80%死于大血管病变。与非糖尿病患者相比,糖尿病患者患心脑血管病的风险高4倍,低位截肢风险高40%。糖尿病大血管病变(即在糖尿病下的血管重构)是一个复杂的多因素疾病,动脉粥样硬化是其主要病理改变之一。研究发现,高血糖与高血脂的毒性作用、蛋白质非酶糖基化、内皮功能障碍等因素共同作用于血管壁,导致平滑肌细胞增殖、胶原过度表达、血管结缔组织基质成分显著改变,与粥样斑块形成、血管壁纤维化、硬化、管腔狭窄密切相关。血管纤维化增加动脉僵硬度,引发血流紊乱,最终造成血流动力学障碍,成为动脉粥样硬化和动脉硬化发生发展的力学基础。
     糖尿病为全身代谢性疾病,需要终身治疗。而血管病变由于机制复杂,一种药物往往很难控制病情的发生发展。目前共同的观点是,对于糖尿病患者,应进行包括控制血糖、调节血脂、改变生活方式等多因素干预治疗,以改善其预后,特别是降低大血管事件的危险性。但长期、多因素干预治疗在提高疗效的同时大大增加了患者的治疗成本,同时也增加了不良反应的发生率。因此,寻找高效、低毒、多靶点发挥作用的药物非常必要。
     中医药具有整体调节和多重治疗作用,单味中药就是一个多成份的复合体,中药复方的成分就更复杂了。虽然中药在某单方面的作用并不强,但由于不同的成分各自作用于不同的靶点,从而发挥协同治疗作用。在糖尿病,尤其是血管病变的防治方面显示出了良好的临床应用前景。
     导师在长期临床实践的基础上,查阅大量古今文献,依据中医“木克土”、“酸克甘”理论,结合现代医学的新认识,提出了用“酸胜甘”法治疗糖尿病的学术观点和治法,并据此而立酸味中药复方。前期我们将该复方与甘味、苦味中药复方作对比,结果表明,该方可明显改善2型糖尿病大鼠糖、脂肪代谢紊乱和胰岛素抵抗状态,其效果优于甘味、苦味中药复方。由于中药具有整体、多靶点发挥作用的特点,我们推测该方可能对2型糖尿病大血管病变也具有防治作用,本实验就是在前期研究的基础上,进一步观察酸味中药复方对2型糖尿病大鼠大血管病变的作用及机制。
     研究目的
     1、观察酸味中药复方对2型糖尿病大鼠主动脉病理形态学的影响
     2、研究酸味中药复方对2型糖尿病大鼠空腹血糖、血脂及胰岛素的影响
     3、研究酸味中药复方对2型糖尿病大鼠主动脉非酶糖化的影响
     4、研究酸味中药复方对2型糖尿病大鼠主动脉内皮细胞功能的影响
     研究方法
     采用高脂饲料喂养加小剂量STZ腹腔注射的方法建立2型糖尿病动物模型。成模大鼠按血糖值随机分为模型组、中药组、AG组,在药物干预8周和12周两个时间点观察相关指标变化。
     采用HE染色观察主动脉病理变化,VG以及立春红/维多利亚蓝染色观察血管胶原纤维和弹性纤维变化,Care sense血糖仪测FBG,全自动生化仪测血脂,硝酸还原酶法测血清NO含量、NOS活性,放免法测血浆INS、ET–1水平,荧光法测主动脉AGEs、胶原含量,实时荧光定量PCR法检测主动脉RAGE基因表达量,免疫组化法检测主动脉NF–κB蛋白表达及α–SMA蛋白表达,原位杂交法检测主动脉内皮细胞ICAM–1基因表达。
     研究结果
     1、酸味中药复方对2型糖尿病大鼠主动脉病理变化及VSMC表型变化的影响
     (1)HE染色
     各时间点正常大鼠主动脉内膜光滑、平坦,内皮细胞扁平,紧贴于平直的内弹力板上,平滑肌细胞呈长梭形,排列整齐,与弹力板近似平行相间排列,细胞核大小均一,细胞膜及核膜清晰、完整,胞浆染色均匀。模型组大鼠在成模8周末,主动脉横断面上有多少不等的内膜增厚病灶,局部主要由排列紊乱的平滑肌细胞和泡沫细胞组成。病灶表面内皮细胞肿胀、肥胖,有的脱落、甚至坏死。内弹力板厚薄不匀或分层,中膜浅层平滑肌细胞增生,中层弹力板与平滑肌细胞间排列紊乱。成模12周末上述病理变化更明显。AG组和中药组在成模8周时主动脉内膜尚整齐,有少许泡沫细胞,平滑肌细胞排列尚整齐。12周时动脉内膜局部轻度增厚,破坏较轻,尚连续。
     (2)胶原纤维及弹力纤维变化
     VG染色显示:正常组大鼠主动脉胶原组织分布均匀,相邻细胞的胶原纤维网完好;模型组血管壁胶原纤维明显增多,围绕细胞的胶原纤维网断裂、不完整、排列紊乱;中药组和AG组胶原纤维较模型组减少,排列较规整,胶原纤维少有断裂。
     立春红/维多利亚蓝染色显示:正常组大鼠主动脉弹力纤维完整,无断裂,排列整齐,模型组弹力纤维断裂、不完整,排列紊乱,含量明显减少,中药组和AG组明显改善。
     半定量分析结果表明:各时间点糖尿病大鼠主动脉胶原纤维相对含量明显高于同时间正常大鼠(P<0.05),C/E比值增加(P<0.05);中药组和AG组大鼠主动脉胶原纤维相对含量及C/E比值均低于模型组(P<0.05)。
     (3)主动脉VSMC表型变化
     药物干预8周和12周后,各组大鼠主动脉均可见α–SMA蛋白阳性表达,与同时间点正常组相比,糖尿病大鼠主动脉α–SMA蛋白阳性表达指数明显降低(P<0.05),说明糖尿病大鼠主动脉VSMC以合成表型为主;酸味中药复方组和AG组α-SMA蛋白阳性表达指数明显高于模型组(P<0.05),合成表型减少,收缩表型增多;在用药8周时中药组α-SMA蛋白阳性表达指数高于AG组(P<0.05),12周时无差异(P>0.05)。
     2、酸味中药复方对2型糖尿病大鼠体重、FBG、INS及血脂的影响
     (1)大鼠FBG、体重变化
     正常组大鼠体重增加,模型组、中药组、AG组糖尿病大鼠体重均有下降,FBG升高,与同时间点正常组相比,差异有统计学意义(P<0.05)。与同时间点模型组和AG组相比,中药组大鼠体重增加、FBG降低(P<0.05)。AG组大鼠体重与同时间点模型组相比,只有12周时升(P<0.05)高,而FBG与同时间点模型组相比,无统计学差异(P>0.05)。
     (2)大鼠血脂变化
     在用药8周后,中药组大鼠血清TG、TC含量与同时间点正常组、模型组和AG组相比无统计学差异(P>0.05);HDL含量低于同时间点正常组(P<0.05),但与同时间点模型组和AG组相比,无统计学差异(P>0.05);LDL含量低于同时间点模型组和AG组,高于同时间点正常组(P<0.05)。用药12周后,中药组大鼠血清TG、LDL含量低于同时间点模型组和AG组,高于同时间点正常组(P<0.05);HDL含量高于同时间点模型组(P<0.05),而TC与同时间点模型组相比无差异(P>0.05)。AG组糖尿病大鼠在药物干预8周和12周后,血清TC、TG、LDL、HDL含量高于同时间点正常组,HDL含量低于同时间点正常组(P<0.05),而与同时间点模型组相比,无统计学差异(P>0.05)。
     (3)大鼠INS变化
     中药组、模型组、AG组糖尿病大鼠在药物干预8周和12周后,血清INS均低于同时间点正常组大鼠,差异有统计学意义(P<0.05);中药组糖尿病大鼠血清INS与同时间点模型组、AG组相比,无统计学差异(P>0.05)。
     3、酸味中药复方对2型糖尿病大鼠主动脉非酶糖化的影响
     (1)主动脉AGEs及胶原含量变化
     药物干预8周和12周后,模型组、中药组、AG组糖尿病大鼠主动脉AGEs、胶原含量均高于同时间点正常组(P<0.05);与同时间点模型组比较,中药组和AG组大鼠主动脉胶原、AGEs含量明显降低(P<0.05),中药组大鼠主动脉胶原、AGEs含量与同时间点AG组相比,无统计学差异(P>0.05)。
     (2)主动脉RAGE基因表达变化
     所有大鼠主动脉均可见RAGE因表达,但正常组RAGE基因表达量较少(P<0.05),与同时间点模型组相比,中药组和AG组RAGE基因表达量均降低(P<0.05);同时间点AG组和中药组相比无统计学差异(P>0.05)。
     4、酸味中药复方对2型糖尿病大鼠主动脉内皮细胞功能的影响
     (1)血清NO、NOS变化
     模型组、中药组、AG组大鼠血清NO、NOS水平均低于同时间点正常大鼠(P<0.05);与同时间点模型组比较,中药组和AG组大鼠血清NO、NOS含量均明显升高(P<0.05);中药组和AG组相比,无统计学差异(P>0.05)。
     (2)血浆ET-1变化
     模型组、中药组、AG组大鼠血浆ET–1水平均高于同时间点正常大鼠(P<0.05);与同时间点模型组比较,中药组和AG组大鼠血浆ET–1含量均明显降低(P<0.05);中药组和AG组相比,无统计学差异(P>0.05)。
     (3)主动脉ICAM-1基因表达变化
     原位杂交结果表明,大鼠主动脉均可见ICAM–1基因表达,但正常组ICAM–1基因表达量较少,低于同时间点糖尿病大鼠(P<0.05);与同时间点模型组相比,中药组和AG组大鼠主动脉ICAM–1基因表达量均降低(P<0.05)。
     结论
     1、酸味中药复方能够调节2型糖尿病大鼠糖、脂肪代谢;
     2、酸味中药复方能够减轻2型糖尿病大鼠主动脉内膜损伤,抑制VSMC增殖,降低胶原纤维相对含量及C/E值;
     3、酸味中药复方可减少2型糖尿病大鼠主动脉AGEs生成,下调RAGE基因表达,具有抑制非酶糖化的作用;
     4、酸味中药复方可提高2型糖尿病大鼠血清NO含量及NOS活性,降低血浆ET–1含量,抑制内皮细胞ICAM–1基因表达,保护内皮细胞功能。
     5、酸味中药复方对2型糖尿病大鼠动脉粥样硬化病变具有一定的防治作用。
Many epidemiological findings showed that macroangiopathy was the main cause to induce type 2 diabetic patients to die and mutilate .About 60% of the type 2 diabetic patients suffered from coronary heart disease, and 80% patients died of macroangiopathy.The risk of diabetic patients to coronary heart disease and cerebrovascular disease is 4 times and the amputation ratio is higher 40%than that of no diabetic patients. It has been suggested that the pathologic changes of diabetes-induced macroangiopathy are atherosclerosis and angiosclerosis. Many vocative factors such as the toxic effect of hyperglycemia and hyperglycemia, protein glycosylation, endothelial tissue functional impairment may induce to smooth muscle cell proliferation, collagen overexpression, connective tissue matrix alteration. Above-mentioned factors could lead to vascular fibrosis and stiffness.Vasular fibrosis may increase the vascular wall stiffness and turbulent blood flow, and eventually disturb of haemodynamics, which is the mechanics basis of atherosclerosis and angiosclerosis.
     Now the coincident concept is that doctors should regulate blood glucose and blood fat of type 2 diabetic patients. Meanwhile the patients should change their life styles. These thoracic methods could improve the patients’quality of life. Especially they could down regulate the risk factor for macroangiopathy.But patients may pay much money .So it is necessary to find high performance and economic thoracic methods.
     Traditional Chinese Medicine (TCM) has effect of multiple regulation and treatment, and it has got well clinical results in diabetes especially its complications. Compounded Sour Medicinal Herbs (CSMH) is organized according to five elements and flavors theory of TCM.We found it could improve glucolipid metabolic disorder and insulin resistance of type 2 diabetic rats. The aim of the present study is to identify the antimacroangiopathic effects of CSMH in vivo. Furthermore, relative mechanisms of antimacroangiopathic effects of CSMH were studied.
     Objective
     1. To observe the influence of CSMH on thoracic aortic pathological change in type 2 diabetic rat
     2. To investigate the influence of CSMH on the changes of FBG、blood fat and INS in diabetic rats
     3. To investigate the influence of CSMH on the changes of thoracic aortic no enzymatic in type 2 diabetic rat
     4. To investigate the influence of CSMH on the changes of thoracic aortic endothelial function in type 2 diabetic rats
     Materials and methods
     Twenty animals without any treatment was randomly choosed from 150 male SD rats after freedom bred, and set up for normal control group with normal diet. To induce T2DM animal models, the others fed with high-fat and high-caloric diets for two months. Then the rats with insulin resistance were injected with streptozotocin(STZ)40mg/kg through peritoneum after.Fourty eight an seventy two hours after injection, the fasting blood glucose (FBG)were tested. The rats which FBG≥16.7mmol/L were as T2DM animal models. Then the T2DM rats were randomly divided into three groups: untreated group,AG treated group and CSMH treated group. At the end of the 8week and 12week, 5-8 rats were random selected from each group. The rats were weight, tested FBG and taken blood to collect serum was before killed. The pathological change of thoracic aorta was observed with optical microscop.The content of collagen fibers and elastic fibers were detected with computer image analysis system. The change of VSMC was detected by immunohistochemical method. NO and NOS in serum were examined by checking their OD values, ET in plasma were detected by radio-immunization. The deposition of AGEs and gene expression of their receptor in aorta tissue of T2DM rats were detected separately by fluorescence and real time fluorescent quantization PCR method. The gene expression of ICAM-1 in the aorta endotheliocyte was detected with real in-situ hybridization method. The activity of NF-κB was detected by mmunohistochemical method.
     Result
     1. Pathological changes:
     (1) The results of HE stain
     At the two points, the aortic endothelial cells in group normal rats were thin and flat, adhering to inner elastic plates. The vascular smooth muscle cells (VSMC) in arranged regularly. The per cellular membrane was continuous and integral. The nuclear membrane was smooth and intact. Elastic lamina was uninterrupted and perfect. A few collagenous were scattered in extra cellular matrix. In untreated group rats, the VSMC arranged irregularly. The endothelial cell was swelling, even necrosis. The per cellular membrane was interrupted .The collagenous fibers in extra cellular matrix invaded elastic lamina. In comparison with untreated group, the pathologic changes were improved in CSMH and AG treated group.
     (2) The collagen elastic fibers changes
     VG staining slides showed that the collagen fibers in normal group were intact and well-arranged. In untreated group, the collagen fibers were increased. The dicyto-collagen-fibers around cells were split, unintact and arranged irregularly. The collagen fibers were greatly improved in CSMH and AG treated rats contrast to those in untreated rats.
     Victoria blue staining showed that the elastic fibers were intact and unintrrrupted in group normal rats. But in untreated group, the elastic fibers were deformed and interrupted. These changes in CSMH and AG treated group were markedly amelioration.
     The contents of collagen fibers in the aortic tissue of T2DM rats were higher and elastic fiber elastic fibers contents were lower than that in normal control rats at the two time points (P<0.05); While the contents of collagen fibers in aortic tissue of CSMH treated rats were decreased and elastic fiber elastic fibers contents were higher than that in untreated group rats (P<0.05). In comparison with untreated group, the collagen/elastin ratio in CSMH treated rats was higher.
     (3) Expression ofα-SMA protein (immunohistochemistry)
     There were high expression ofα-SMA in the aortic tissue of T2DM rats at 8th and 12th week after the models induced (P<0.05). the expression density of NF-κB p65 in CSMH treated group rats were lower than that in untreated model group (P<0.05).
     2. The changes of weight,FBG,blood fat and INS in rat
     (1) The changes of FBG and weight
     In comparison with normal group rats, body weight of diabetic rats were decreased, while FBG were higher (P<0.05). At the two time points, body weight in CSMH treated group rats were higher and FBG lower than those in untreated group (P<0.05). There was no significant difference in AG treated and untreated group (P>0.05).
     (2) The changes of blood fat
     At the end of 8week, TC and LDL in CSMH treated group were lower than those of untreated group while HDL were higher (P<0.05); while HDL in CSMH group comparable with those AG treated and untreated group (P>0.05). In comparison with untreated group,FBG, TG, TC and LDL were lower(P<0.05).At the end of 12week, TG and LDL in CSMH treated group were lower than those of untreated group while HDL were higher(P<0.05).There was no significant difference of index of AG treated group in comparison with untreated group(P>0.05).
     (3) The changes of plasma INS
     In comparison with control group, INS in untread, CSMH and AG treated groups were decreased (P<0.05), while there was no significant in the three groups (P>0.05). .
     3. The influence of CSMH on the changes of thoracic aortic noenzymatic in type 2 diabetic rat
     The changes of AGEs and RAGE gene expression
     The deposition of AGEs and RAGE gene expression in the aorta tissues of control group were lower than that of T2DM rats (P<0.05). The deposition of AGEs and gene expression of their receptor in aorta tissues in CSMH treated group rats were decreased as compared with that of untreated group rats(P<0.05).
     4. The influence of CSMH on the changes of thoracic aortic endothelial function in type 2 diabetic rat
     (1) In comparison with the control group, The quantity of NO and NOS in blood serum were lower an ET-1 were higher of T2DM rats (P<0.05).The quantity of NO and NOS of CSMH treated group were higher and quantity of ET-1 in plasma were lower than those of untreated group (P<0.05).
     (2) The gene expression of ICAM-1 in the aorta tissues of control group were lower than that of T2DM rats (P<0.05). gene expression of ICAM-1in the aorta tissues of CSMH treated group rats were decreased as compared with that of untreated group rats(P<0.05).
     Conclusion
     1. CSMH could improve aorta injury; inhibit VSMC generation, decrease collagen fibers and C/E.
     2. CSMH could regulate diabetic rats’blood glucose and lipid metabolism.
     3. CSMH could inhibit the deposition of AGEs in aorta and down regulate its receptor gene expression.
     4. CSMH could obviously elevate the levels of NO and NOS in serum, decrease content of ET-1 in plasma and inhibit the gene expression of ICAM-1. It could improve the function of endothelial cell.
引文
[1] People’s Daily Online. China has annual increase of 1.2 million diabetes patients [EB/OL]. http: //English.peopledaily.corn.cn/200011/14/eng 200011–/14–55–162. html, 2008–02–29.
    [2] Betteridge DJ. The inter play off cardiovascular risk factors in the metabolic syndrorme and type 2 diabetes. European Heart Journal Supplements, 2004, 6 (supp l.7): G3–G7.
    [3]刘克军,王梅.我国慢性病直接经济负担研究.中国卫生经济, 2005, 24(10): 77–80.
    [4]张震巍,陈洁,唐智柳,等.中国糖尿病直接卫生费用研究.中国卫生资源, 2007, l0(3): l62–l68.
    [5]卢伟,邱永莉,叶露,等.上海市5家医院2型糖尿病住院费用分析.上海预防医学杂志, 2007, 19(2): 80–82.
    [6]唐玲,陈兴宝,陈惠云,等.中国城市2型糖尿病及其并发症的经济负担.中国卫生经济, 2003, 22(12): 21–23.
    [7]金雅丽,郭艺芳.强化降糖不能减少糖尿病大血管并发症. ADVANCE试验解读.临床荟萃, 2008, 23(15): 1065–1066.
    [8] Stratton IM,Adler AI,Neil HA,et a1.Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes(UKPDS 35):prospective observational study. BMJ, 2000, 321(7258): 405-412.
    [9] Adler AI, Stratton IM, Neil HA, et a1. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ, 2000, 321(7258):4l2-4l9.
    [10] Yu Y. Lyons TJ. A lethal tetrad in diabetes: hyperglycemia, dyslipidemia, oxidative stress, and endothelial dysfunction. Am J Med Sci, 2005, 330(5): 227-232.
    [11]朱德增,周松华,谷丽敏.“酸胜甘法”治疗糖尿病.中医杂志. 1997; 38(12): 725.
    [12]周亚兵,朱德增,罗若茵,等.酸味中药复方对2型糖尿病大鼠糖代谢的调节作用.成都中医药大学学报, 2004, 27(1): 13–16.
    [13]周亚兵,罗若茵,赵莉,等.酸味中药复方对实验性2型糖尿病大鼠胰岛素抵抗的影响.中国中西医结合杂志, 2005, 25(5): 441–444.
    [14]龚耀先,姚树桥,戴晓阳,等.心理社会因素在糖尿病发生过程中的作用及机理研究.中国临床心理学杂志, 1997, 5(2): 69–73.
    [15] JM mooy JM, H de Vries, PA Grootenhuis, et al. Major stressful life events in relation to prevalence of undetected type 2 diabetes: the Hoorn Study. Diabetes Care, 2000, 23(2): 197–201.
    [16] Cathy Lioyd, Julie Smith, Katie Weinger. Stress and Diabetes: A Review of the Links. Diabetes Spectrum, 2005, 18(2): 121–127.
    [17]蒋渝,尹才渊,周世清.山茱萸降血糖的实验研究.中药药理与临床, 1989, 5 (1): 36.
    [18] Hatano T, Yasuhara T, Abe R, et al. A galloylated monoterpene glucoside and dimeric hydrolysable tannin from corns officinalis. Phytochemistry, 1990, 29(9):2975.
    [19]舒思沽,庞鸿志,明章银,等.山茱萸抗糖尿病作用的实验研究.咸宁医学院学报, 1997, 11(4): 148–150.
    [20]郝海平,许惠琴,朱荃,等.山茱萸环烯醚萜总苷对由链脉佐菌素诱导的糖尿病血管并发症大鼠血清sICAM-1、TNF-α的影响.中药药理与临床, 2002, 18(4): 13–14.
    [21]钱东生,罗琳,何敏,等.山茱萸乙醇提取液对Ⅱ型糖尿病大鼠的治疗效应.南通医学院学报, 2000, 20(4): 337–339.
    [22]许惠琴,朱荃.山茱萸环烯醚萜总苷对实验性糖尿病肾病变的保护作用.南京中医药大学学报, 2003, 19(6): 342–345.
    [23]皮文霞,蔡宝昌,许惠琴,等.山茱萸环烯醚萜总苷对糖尿病血管并发症模型大鼠血清SOD的影响.中药新药与临床药理, 2003, 14(1): 23–24.
    [24]张兰桐,任雷鸣,温进坤.山茱萸提取液抗心律失常有效部位的研究.中草药, 2001, 32(11): 1004—1007.
    [25]戴岳,杭秉茜,黄朝林.山茱萸对炎症反应的抑制作用.中国中药杂志, 1992, 17(5): 307–309.
    [26]张尔贤,陈杰,顾伟文,等.乌梅果超氧化物歧化酶纯化及部分性质研究.中国药学杂志, 1991, 26(7): 404.
    [27]方文贤,宋崇顺,周立孝,等.医用中药药理学.北京:人民卫生出版社,1998, 757.
    [28]李仲兴,王秀华,赵建宏,等.乌梅对308株临床菌株的抑菌效果.中国中医药信息杂志, 2007, 14(11): 41–42.
    [29]方芳,吴永贵,董婧,等.白芍总苷对糖尿病大鼠肾组织氧化应激的影响.中国药理学与毒理学杂志, 2008, 22(3): 199–204.
    [30]方芳,吴永贵,董婧,等.白芍总苷对糖尿病大鼠肾小管–间质损伤的保护作用及机制.中国药理学通报, 2008, 24(3): 369–373.
    [31]王兴旺,陈敏珠,徐叔云.白芍总苷对免疫系统的影响.中国病理生理杂志, 1991, 7(6): 609–611.
    [32]杨煜,吕文伟,宋瑛士,等.白芍总苷白芍抗血栓形成作用.中草药, 2006, 37(7): 1066–1068.
    [33]王晓明,李付彪,吕文伟,等.白芍总苷对犬急性心肌缺血的保护作用.吉林大学学报(医学版), 2006, 32(3): 393–396.
    [34]董昆山.现代临床中药学.北京:中国中医药出版社, 1998, 328.
    [35]沈映君.中药药理学.北京:人民卫生出版社, 2000: 574.
    [36]林秋实,陈吉棣.山楂及山楂黄酮预防大鼠脂质代谢紊乱的分子机制研究.营养学报, 2000, 22(2): 131.
    [37]李义奎.中药药理学.北京:中国中医药出版社, 1992, 126.
    [38] Schussler M.山楂中黄酮类化合物的强心作用.国外医学·植物分册, 1994; 9(4): 178.
    [39]林玲.山楂液杀灭微生物作用及其影响因素的实验观察.中国消毒杂志, 2000, 17(2): 85.
    [40]刘志春,王小丽,林鹏,等.五味子等29种中草药的体外抑菌实验.赣南医学院学报, 2004, 24(5): 509–512.
    [41]苗明三,方晓艳.五味子多糖对正常小鼠免疫功能的影响.中国中医药科技, 2003, 10(2): 100.
    [42]黄治森,何燕,张均田,等.五味子三种成分的抗氧化作用.中国药理学与毒理学杂志, 1990, 4(4): 275.
    [43]张铁梅,王宝恩,刘耕陶.五味子乙素对原代培养大鼠肝细胞脂质过氧化的抗氧化作用.中国药理学报, 1989, l0(4): 353.
    [44]林童俊,刘耕陶.五味子酚和丹酚酸A抗氧化作用机理及对阿毒素心脏毒性的保护作用.生理科学进展, 199l, 22(4): 342.
    [45]林童俊,刘耕陶,李小洁,等.用电子自旋共振方法检测五味子酚清除自由基活性.中国药理学报, 1990, 11(6): 539.
    [46]柴可夫,覃志成,王亚丽.北五味子油对糖尿病小鼠胰岛细胞形态及功能的影响.中国中医药科技, 2007, (14)3: 177–178.
    [47]许惠琴,朱荃,丁永芳.五味子、山茱萸等对蛋白质非酶糖化的抑制作用.南京中医药大学学报(自然科学版), 2001, 17(3): 166–167.
    [48]沈忠明,李英,姜宏,等.降糖中药对α–葡萄糖苷酶抑制作用的研究.中国生化药物杂志, 2000, 21(2): 69–70.
    [49]袁海波,沈忠明,殷建伟,等.五味子中α–葡萄糖苷酶抑制剂对小鼠的降血糖作用.中国生化药物杂志, 2002, 23(3): 112–114.
    [50] Moller DE. Transgenic approaches to the pathogenesis of NIDDM. Diabetes, 1991, 43(12): 1394–1401.
    [51] Takashi Kadowaki. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest, 2000, 106(4): 459–465.
    [52] Proiettoo, FiliPis A, Nakhla C, Clarks. Nutrient–induced insulin resistance. Mol cell endocrinol, 1999, 151(1): 143–149. Review.
    [53]张芳林,李果,刘优萍,等. 2型糖尿病大鼠模型的建立及其糖代谢特征分析.中国实验动物学报. 2002; 10(1): 18–19.
    [54] Stevens RJ. Stratton IM, Holman RR, et a1. UKPDS 58–modeling glucose exposure as a risk factor for photocoagulation in type 2 diabetes. J Diabetes Complications, 2002, 16(6): 371–376.
    [55] Howard BV, Lipoprotein metabolism in diabetes mellitus. Lipid Res, 1987, 28(6): 613–628.
    [56]马博清,魏立明,霍丽梅,等. 2型糖尿病的血脂代谢异常.中华临床医药, 2002, 3(13): 36.
    [57] Gotto A. Triglyceride as a risk factor for coronary artery disease. Am J Caridal, 1998, 82(9A): 22Q–25Q.
    [58]钱荣立.糖尿病与血脂异常.中国糖尿病杂志, 2002, 10 (2): 125–126.
    [59] Veiraiah A. Hyperglycemia, lipoprotein glycation, and vascular disease. Angiol– ogy, 2005, 56: 431–438.
    [60]张亚军,高云艳.山茱萸化学成分与药理研究概况.中国中医药信息杂志, 2002, 9(10): 81.
    [61]全山丛,邬旻,朱德增,等.酸克糖颗粒的质量标准研究.药学服务与研究, 2004, 4(1): 36–37 .
    [62]胡润生.日本对八味丸中抗糖尿病成分的研究.中成药研究, 1982, (1): 46.
    [63]林科,张太平,张鹤云.山楂中熊果酸的提取及其对小鼠的降血脂作用.天然产物研究与开发, 2007, 19 (6): 1052–1054.
    [64] Stern MP. Diabetes and cardiovascular disease. The“common soil”hypothesis. Diabetes, 1995, 44(4): 369–374.
    [65] Meng J, Sakata N, Takebayashi S, et al. Advanced glycation end products of the mallard reaction in aort pepsin–soluble collagen from diabetic rats. Diabetes, 1996, 45(8): 1037–1043.
    [66] ShogoK , Toshiyuki K. Atherosclerosis and extracellularm atrix. J Athero Thromb, 2003, 10(5): 267–274.
    [67] Elaine W. The extracellular matrix can regulate vascular cell migration, proliferation, and survival; relationships to vascular disease. Inter J Experi Patho, 2008, 81: 173–182.
    [68] Brownlee M. Glycation and diabetic complications. Diabetes, 1994, 43(6): 836–841. Review.
    [69] Reiser KM. Nonenzymatic glycattion of collagen in aging and diabetes. Proc Soc Exp Biol Med, 1998, 218(1): 23–37. Review.
    [70] Bellmunt MJ, Portero M, Pamplona R, et al. Evidence for the Maillard reaction in rat lung collagen and its relationship with solubility and age. Biochim Biophys Acta, 1995, 1272(1): 53–60.
    [71]姜宗来.冠状动脉的形态学和生物力学特性研究.第二军医大学学报, 1995, 16( 3): 201–205.
    [72] Wolingsky H, Glagov S. Structural basis for the mechanical properties of the aortic media. Circ Res, 1964, 14: 400–413.
    [73]姜宗来,何光箎.犬冠状动脉及有关动、静脉显微结构成分的定量分析.解剖学报, 1990, 21(4): 350–352.
    [74] Ross R. The pathogenesis of atheroscelerosis an update. New Engl J Med, 1986, 314: 488.
    [75]苏静怡.心血管疾病的病理生理基础和发病机制.北京:北京医科大学.协和医科大学联合出版社, 1994: 45–51.
    [76] Schaub FJ, Han DK, Conrad Liles W, et a1. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells, Nat Med 2000, 6(7): 790–796.
    [77] Mallat Z, Hugel B, Ohan J, et a1. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques–A role for apoptosis in plaque thrombogenicity. Circulation, 1999, 99(3): 348–353.
    [78] Lorente–Cortes V, Otero-Vinas M, Hurt–Camejo E, et a1. Human coronary smooth muscle cells internalize versican–modified LDL through LDL receptor–relatedprotein and LDL receptors. Arterioscler Thromb Vase Biol, 2002, 22(27): 387– 393.
    [79]韩启德,文允镒.血管生物学.北京:北京医科大学协和医科大学联合出版社, 1997: 50–64 .
    [80] Cho A, Mitchell L, Koopmas D, et a1. Effects of changes in blood flow rate on cell death and cell proliferation in carotid arteries of immature rabbits. Circ Res, 1997, 8l(3): 328–337.
    [81] Lopez–Candales A, Holmes DR, Liao SX, et a1. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol, 1997, 150(3): 993–1007.
    [82] Thyberg J. Differentiated properties and proliferation of arterial smooth muscle cells in culture. Int Rev Cytol. 1996; 169: 165–183.
    [83] Owens GK. Regulation differentiation of vascular smooth muscle cells. Physiol Rev.1995, 73(3): 487–517.
    [84]韩启德,文允镒.血管生物学.北京:北京医科大学协和医科大学联合出版社, 1997: 50, 64.
    [85] Ahmed N, Argirov OK, Minhas HS, et al. Assay of advanced glycation end products (AGEs): Surveying AGEs by chromatographic assay with derivatization by 6–aminoquinolgyl–Nepsilon–carboxymethyl–carbamate and application to Nepsilon–carboxymethyl–lysine–and Nepsilon–(1–carboxyethyl) lysine modi- fied albumin. Biochem, 2002, 364 (15): 1214.
    [86] R Singh, A Barden, T Mori , et al. Advanced glycation end products: a review. Diabetologia, 2001, 44(2): 129–146.
    [87] Schmidt AM, Hori O, Chen J X, et al. RAGE a novel receptor for AGEs. Diabetes, 1996, 45 (Suppl 3): S77–S80.
    [88] Marx N, Walcher D, Ivanova N, et a1. Thiazolidinediones reduce endothelial expression of receptors for advanced glycation end products. Didbetes, 2004, 53 (10): 2662–2668.
    [89] Bierhaus A, Hofmann MA, Ziegler R, et al. AGE and their interaction with AGE– receptors in vascular disease and diabetes mellitus. 1. The AGE conep. Cardiovascular Res, 1998, 37(3): 586–600.
    [90] Eckel RH, Wassef M, Chait A, et a. Prevention Conference VI: Diabetes and Cardiovascular Disease: Writing GroupⅡ: Pathogenesis of atherosclerosis in diabetes. Circulation, 2002, 105 (18): e138–143.
    [91]李卫红,吴同果,高美常.糖尿病血管内皮功能损伤的发病机制研究进展.泰山医学院学报. 2004;25(6 ): 685.
    [92] Hartge MM, Pharm B, Kintscher U, et al. Endothelial dysfunction and its role in diabetic vascular disease. Endocrinol Metab Clin N Am, 2006, 35: 551–560.
    [93] Szabo C, Mabley JG, Moeller SM, et al. Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med, 2002, 8: 571–580.
    [94]周慧,李玲. 2型糖尿病血管病变与内皮功能关系的研究.心血管康复医学杂志, 2003, 12(4): 315–317.
    [95] Boulbou MS, Koukoulis GN, Makri ED, et al. Circulating adhesion molecules levels in type 2 diabetes mellitus and hypertension. Int J Cardiol, 2005, 98(1): 39–44.
    [96]柴伟栋,陈家伟,沈捷,等.葡萄糖,胰岛素对血管内皮细胞功能的影响.中国微循环, 2003, 2(4): 218–220.
    [97]冯波,倪亚芳,张登海,等.不同浓度葡萄糖和胰岛素对血管内皮细胞形态学影响.数理医药学杂志, 2002, 23(4): 218–220.
    [98] Grossin N, Wautier JL. Protein glycation and endothelium dysfunction. J Soc Biol, 2007, 201 (2): 175–184.
    [99] Khaloui T, Lizard G, Ouertani-Meddeb A. Adhesion molecules (ICAM-1 and VCAM–1) and diabetic retinopathy in type 2 diabetes. J Mol Histol, 2008, 39(2): 243–249.
    [100] Wang Y, Schmeichel AM, Iida H, et al. Enhanced inflammatory response via activation of NF–kappaB in acute experimental diabetic neuropathy subjected to ischemia reperfusion injury. J Neurol Sci, 2006, 247(1): 47–52.
    [1]廖文生,李卫青,陈世伟,等.解毒中药复方对实验性2型糖尿病大鼠糖脂代谢的影响.山西中医, 2008, 24(7): 48-49.
    [2]张志平,邹丽宜,吴铁,等.山药苦瓜复方制剂降低2型糖尿病大鼠血糖和血脂的实验.中国临床康复, 2006, 10(35): 180-182.
    [3]冷三华,卢付耳,屠庆年,等.黄连解毒汤对2型糖尿病大鼠血糖和血脂代谢的影响.中国临床康复, 2004, 8(21):4388-4389.
    [4]李学军,杨叔禹,聂明,等.二陈汤加减对2型糖尿病并发脂肪肝模型大鼠血糖、血脂、胰岛素抵抗以及肝功能和脂肪肝变的影响.中国临床康复, 2006, 10(11): 77-80.
    [5]李永民,李建东,张永鹏,等.中药糖煎平对2型糖尿病大鼠血糖血脂、血流变及球结膜微循环的影响.中国中医基础医学杂志, 2006, 12(1): 39-39, 66.
    [6]潘竞锵,刘惠纯,刘广南,等.金银花能降低小鼠血糖血脂水平.广州医药, 1998, 29(3): 59.
    [7]李红辉,朱建华,李家富,等.槲皮素对实验性糖尿病大鼠脂质异常的作用.中国糖尿病杂志, 2001, 9(2): 75.
    [8]方朝晖,张静波,王开成,等.丹栀降糖胶囊对2型糖尿病胰岛素抵抗大鼠脂联素的影响.中医药临床杂志, 2008, 20(6): 613-615.
    [9]郭洁文,潘竞锵,邱光清,等.荔枝核增强2型糖尿病-胰岛素抵抗大鼠胰岛素敏感性作用.中国新药杂志, 2003, 12(7): 526-529.
    [10]孙卫,郑学芝,崔荣军,等.葛根素对2型糖尿病大鼠胰岛素抵抗及脂肪分化相关蛋白基因表达的影响.医药导报, 2008, 27(10): 1159-1161.
    [11]杨化冰,吴勇,徐丹林.益气养阴通络方对2型糖尿病大鼠骨骼肌、脂肪组织PTP-1B蛋白表达的影响.中外健康文摘:临床医师, 2008, (2): 1672-5085.
    [12]朱玉霞,邹德平,刘学鹏,等.桑叶黄酮对2型糖尿病大鼠胰岛素抵抗影响的研究.四川医学, 2008, 29(9):1114-1116.
    [13]小檗碱改善2型糖尿病大鼠胰岛素抵抗与PI-3K、GLUT4蛋白相关性的研究.中国药理学通报, 2008, 24(8): 1007-1010.
    [14]王东,李敬林,姜良铎.糖克煎剂对2型糖尿病模型大鼠胰岛素抵抗的影响.中华中医药学刊, 2008, 26(6): 1243-1245.
    [15]金智生,潘宇清.金匮肾气丸对实验性2型糖尿病胰岛素抵抗大鼠血清TNF-α、Leptin的影响.现代中医药, 2008, 28(3): 66-68.
    [16]钱毅,薛耀明,李佳,等.六味地黄丸对自发性2型糖尿病大鼠血浆脂联素水平的影响.南方医科大学学报, 2008, 28(1): 34-36.
    [17]李赛美,凌家杰,王志高.加味桃核承气汤及其拆方对高糖诱导HUVEC培养液中ET-1、NO及ICAM-1含量的影响.北京中医药大学学报, 2007, 30(8):535-538.
    [18]范朝华,杨宏杰,张丹,等.金芪降糖片对血管内皮细胞损伤影响的研究.中成药, 2008, 30(11): 1685-1687.
    [19]岳斌,李占林,沈福珍.四黄汤对实验性糖尿病大鼠心血管病变危险因素的影响.环球中医药, 2008, 1(5): 6-9.
    [20]邱云霞,许凤,陈新焰,等.生芪降糖颗粒对2型糖尿病大鼠血糖、血脂及血管内皮素表达的影响.山东医药, 2008, 48(16): 23-25.
    [21]田风胜,李振彬,王元松,等.大黄对糖尿病大鼠血管病变保护机制的研究.中国中药杂志, 2008, 33(6): 672-675.
    [22]韩永明,袁芳,段妍君,等.翻白草对糖尿病大鼠血管内皮细胞形态结构的影响.中医药学刊, 2005, 23(9): 1614-1616.
    [23]茅彩萍,顾振纶,许夕慧,等.葛根素对糖尿病大鼠主动脉内皮形态功能的影响.中草药, 2005, 23(9): 1614-1616.
    [24]谢毅强,谢春光,张红敏,等.参芪复方对自发性糖尿病大鼠血管内皮保护的作用机制.中华中医药杂志, 2008, 23(3): 253-256.
    [25]李文桐,邹俊杰,刘岩,等.通络方剂对糖尿病大鼠血管内皮细胞的保护作用.第二军医大学学报, 2007, 28(7): 807-808.
    [1]林兰.中西医结合糖尿病学.北京:人民卫生出版社, 1999: 338– 366.
    [2]王洪武,倪青,肖月星.林兰治疗糖尿病合并冠心病的辨治思路.北京中医药, 2008, 27(12): 925–927.
    [3]张玥.活血化瘀法治疗糖尿病冠心病42例.湖南中医杂志, 2009, 25(1): 42–43.
    [4]温兴韬,王欢,方朝晖.益气养阴活血法治疗糖尿病性冠心病35例观察.中医药临床杂志, 2008, 20(4): 384–385.
    [5]王天鹏,李正兰,翟艳清等.康心方治疗糖尿病并发冠心病35例临床观察.中国中医急症, 2008, 17(8): 1046–1049.
    [6]孙艳玲.育阴活血法治疗糖尿病合并冠心病心绞痛30例.浙江中西医结合杂志, 2008, 18(12): 759–750.
    [7]高莹.辨证分型治疗糖尿病合并冠心病62例分析.中医药学刊, 2003, 2 (21):151.
    [8]李荣光.糖尿病性心脏病辨治体会.中国中医急症, 2007, 16(12): 1548.
    [9]李丰衣,尤卫平.南征教授治疗糖尿病性脑血管病经验举隅.泰山医学院学报, 2004, 25(5): 463-464.
    [10]高彦彬,赵慧玲.糖尿病脑血管病中医辩治.北京中医药大学学报, 2004, 11(3): 47–49.
    [11]林兰,董彦敏,倪青,等.氦–氖激光合益气养阴活血中药治疗糖病脑梗塞的临床观察.中国中医药信息杂志. 2000; 7(7): 56.
    [12]邓奕辉,陈大舜.糖尿病合并缺血性中风基本病机及治法探讨.中国中医药信息杂志, 2002, 9(4): 49.
    [13]卞礼恩.止渴通脉胶囊治疗2型糖尿病合并脑梗塞的临床研究.中国中医药信息杂志, 2002, 7(4): 54.
    [14]贾晓林,蔡文就,刘晨峰,等.邓铁涛教授论治糖尿病足经验.广州中医药大学学报, 2005, 22(3): 228–230.
    [15]韦巧玲.史奎钧治疗糖尿病足经验.浙江中医杂志, 2005, 40 (3): 104–105.
    [16]王娟,张如峰,李进峰.奚九一教授诊治糖尿病足经验.陕西中医, 2007, 28(3) : 321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700