用户名: 密码: 验证码:
CuO/γ-Al_2O_3催化剂脱硝吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤燃烧过程中产生大量的NO X对环境造成严重危害。CuO/γ-Al_2O_3催化剂可以有效脱除电厂烟气中的氮氧化物。目前,国内外对该催化剂的研究多以工艺脱除效果和流程化学为重点,而对脱硝过程中催化剂表面NH3、NO吸附性能研究不足。因此,有必要研究CuO/γ-Al_2O_3催化过程中吸附作用的微观机理,分析其对脱硝效率的影响,为催化剂的进一步改善提供理论依据。
     高效催化剂的制备,是整个研究工作和实验进行的基础。因此,论文首先介绍溶胶凝胶法制备CuO/γ-Al_2O_3催化剂的过程,并研究制得催化剂的脱硝效果;之后,通过催化剂表面脱附和暂态实验,探讨NH3和NO在脱硝反应中的化学吸附性能;最后,用量子化学方法从理论上研究NH3和NO等气体分子在催化剂表面的吸附行为,并与前面实验得出结论进行综合,解释催化过程中吸附作用对脱硝性能的影响。
     论文研究表明:溶胶凝胶法制备的CuO/γ-Al_2O_3催化剂拥有优良的结构特征,因此具有较好的催化脱硝活性;NH3和NO在催化剂上都存在明显的吸附现象,其吸附有利于脱硝反应的发生,O2的吸附可以有效地补充反应过程中催化剂消耗的晶格氧,较长时间内保持催化剂的活性;量子化学计算得到催化剂吸附NO需要克服较大的能垒,吸附作用较难发生,NH3的吸附则容易进行,形成的吸附键具有一定的强度,从而保证反应中活性组分CuO上充足的NH3吸附量。吸附作用引起的分子几何构型变化和电荷的转移及重新分配,有利于反应物分子内部价键的断裂和产物的形成。
NOX from coal combustion process results in serious harm to the environment. The CuO/γ-Al2O3 catalysts can remove nitrogen oxides from flue gas effectively. At present, the study on this catalysts is main about the removal effect of technology and chemical processes,but less on NH3 and NO adsorption properties on catalysts surface. So, it was necessary to study on the adsorption mechanism of catalysts and analyze the impact to denitrification efficiency, which was helpful to the improvement of catalyst performance.
     Preparing a highly efficient catalytic adsorbent is at the root of this study. Above all, the process of preparing CuO/γ-Al_2O_3 catalysts by the sol-gel method was introduced. And then, the denitrification efficiency of CuO/γ-Al2O3 catalysts was defined in a fixed-bed reactor. To obtain more information about the adsorption behaviors of NH3 and NO in this system, desorption experiments and transient behaviors had been carried out. Eventually, the chemical adsorption properties of NH3 and NO molecules on CuO/γ-Al 2 O3 catalysts surface had been investigated by using a quantum chemistry calculation, the results of which might be of help to understand the denitrification mechanism and explain the adsorption to catalysts performance.
     The main conclusions of this paper are as follows: the sol-gel-derived CuO/γ-Al2O3 granules had good structural characteristics and higher denitrification activity; the adsorption capacity of NH3 and NO on the catalyst surface was considerable and the adsorption played an important role in the reaction, O2 could effectively complement consumed lattice oxygen of the catalysts surface to maintain high denitrification activity during a long time; NO was relatively difficult to be adsorbed on the catalysts surface because of needing to overcome a larger energy barrier. while, NH3 adsorption was easy ,the suitable adsorption intensity enabled the sufficient adsorption capacity and made the products timely transferred and excluded to ensue rapid and efficient reaction in SCR. Changed molecular structure was an important reason for lower catalyst activity. the adsorption induced molecular structure changed and charge redistributed, which was in favor of reactant molecules internal covalent bond broken and a new product generated.
引文
[1]孙克勤,钟秦.火电厂烟气脱硝技术及工程应用.北京:化学工业出版社, 2006.
    [2]国家环境保护总局.国家酸雨和二氧化硫污染防治“十一五”规划[ EB /OL ]. (2008-01-17)http://www.sepa.gov.cn/in2 fo /gw /huangfa /
    [3]我国火电厂脱硫脱硝行业2007年发展综述.中国环保产业, 2008,6
    [4]中国国家统计局,国家环境保护总局. 2007中国环境统计年鉴.北京:中国统计出版社, 2007.
    [5]吴碧君.燃烧过程中氮氧化物的生成机理.电力环境保护. 2003, 19(4): 9-12.
    [6]岳涛,薄以匀,庄德安等.中国火电厂氮氧化物控制现状:2008. http://air.chinaep-t ech.com/SCR/26958.htm
    [7]王鑫,傅德黔,努丽亚. NOx排放统计方法综述.中国环境监测. 2008, 24(4):57 -60.
    [8]胡倩,张世秋,吴丹等.美国和欧洲氮氧化物控制政策对中国的借鉴意义.环境保护. 2007(9): 76-80.
    [9]中华人民共和国国家环境保护总局. GB13223-2003,火电厂大气污染物排放标准. 2003.
    [10]沈迪新,胡成南.我国火电厂排放氮氧化物控制技术.中国环保产业. 2005(8): 25-27.
    [11]侯建鹏,朱云涛,唐燕萍.烟气脱硝技术研究.电力环境保护. 2007, 23(3): 24-27.
    [12]吕宏俊,吴迅海.选择性催化还原脱硝技术应用的若干关键问题. 2006. 305-310.
    [13]孙克勤,周长城,徐海涛.火电厂烟气脱硝技术及其国产化建议.电力环境保护. 2005(3): 27-29.
    [14] Centi G, Riva A, Passarini N, et al. Simultaneous removal of SO2/NOx from flue gas sorbent-catalyst design and performance. Chem Eng Sci. 1990, 45: 2679-2686.
    [15] Jeong S M, Kim S D. Removal of NOX and SO2 by CuO/γ-Al2O3 Sorbent/Catalyst in a Fluidized-Bed Reactor. Ind Eng Chem Res. 2000, 39(6): 1911-1916.
    [16] Yeh J T, Demski R J, Strakey J P, et al. Combined SO2/NOx removal from flue gas. detail discussion of a new regenerative fluidized-bed process developed by the Pittsburgh Energy Technology Center. Environ Prog. 1985, 4(4): 223-228.
    [17]张玉芬,谢有畅,张阳.氧化物在载体上的存在状态及其还原性能研究-NiO/γ-Al 2 O3和CuO/γ-Al2O3体系.中国科学B辑. 1986, 16(8): 805-813.
    [18]张虎,佟会玲,陈昌和.燃煤烟气同时脱硫脱硝机理概述.环境科学与技术. 2006, 29(7): 103-105.
    [19] McCrea D H, Forney A J, Myers J G, et al. Recovery of sulfur from flue gases using a copper oxide absorbent. Journal of the Air Pollution Control Association. 1970, 20(12): 819-824.
    [20] Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics. 1970, 19(4): 553-566.
    [21]赵清森,孙路石,向军等.溶胶凝胶法制备CuO/γ-Al 2 O3催化吸附剂.工业催化. 2008, 16(4): 24-29.
    [22] Jeong S M, Jung S H, Yoo K, et al. Selective Catalytic Reduction of NO by NH3 over a Bulk Sulfated CuO/γ-Al 2 O3 Catalyst. Ind Eng Chem Res. 1999, 38(6): 2210-2215.
    [23]谢国勇. CuO/γ-Al 2 O3同时脱除烟气中SO2和NO的研究.博士论文, 2004.
    [24]刘清雅,刘振宇,李成岳. NH3在选择性催化还原NO过程中的吸附与活化.催化学报. 2006, 27(7): 636-646.
    [25]毛金波.溶胶-凝胶法制备的CuO/γ-Al2O3催化吸附剂及其脱硫脱硝研究.硕士论文, 2006.
    [26]赵清森,向军,王乐乐等. CuO/γ-Al 2 O3催化剂上NH3选择性催化还原NO.电站系统工程. 2008, 24(5): 17-20.
    [27] Yeh J T,Demski R J, Strakey J P, et al. Combined SO2/NOx removal from flue gas. detail discussion of a new regenerative fluidized-bed process developed by the Pittsburgh Energy Technology Center. Environ Prog. 1985, 4(4): 223-228.
    [28] Deng S G, Lin Y S. Sulfur Dioxide Sorption Properties and Thermal Stability of Hydrophobic Zeolites. Ind Eng Chem Res. 1995, 34(11): 4063-4070.
    [29] Leenaars A F M, Keizer K, Burggraaf A J. The Preparation and Characterization of Alumina Membranes with Ultra-Fine Pores. Part1.Microstructural Investigations on Non-supported Membranes. J Mater Sci. 1984, 19(5).
    [30] Deng S G, Lin, Y S. Granulation of Sol-Gel Derived Nano-scale Alumina. AIChE J. 1997, 43(2): 505-514.
    [31] Centi G, Passarini N, Perathoner S. Combined De-SOx De-NOx reactions on a copper on alumina sorbent catalyst.3.DeNOx behavior as a function of the surface coverage with sulfate species. Ind Eng Chem Res. 1992, 31(8): 1963-1970.
    [32]周健儿,王艳香,马光华.溶胶-凝胶法制备超滤Al 2 O3膜的研究:Ⅰ、勃姆石溶胶的制备.陶瓷学报. 1999, 20(2): 87-91.
    [33] Wang Z W, Lin Y S. Sol-Gel Synthesis of Pure and Copper Oxide Coated Mesoporous Alumina Granular Particles. J Catal. 1998, 174(1): 43-51.
    [34] Centi G, Riva A, Passarini N, et al. Simultaneous removal of SO2/NOx from flue gas sorbent-catalyst design and performance. Chem Eng Sci. 1990, 45: 2679-2686.
    [35] Jun X, Qingsen Z, Song H, et al. Experimental research and characteristics analysis of alumina-supported copper oxide sorbent for flue gas desulfurization. Asia-pacific journal of Chemical Engineering. 2007, 2(3): 182-189.
    [36]谢国勇,刘振宇,刘有智.用CuO/γ-Al 2 O3催化剂同时脱除烟气中的SO2和NO.催化学报. 2004, 25(1): 33-38.
    [37]赵清森,孙路石,石金明等.溶胶凝胶法制备CuO/γ-Al 2 O3催化剂及其脱除烟气中NO性能研究.动力工程. 2008, 28(4): 620-624.
    [38]赵清森,孙路石,向军等. CuO/γ-Al 2 O3和CuO-CeO2 -Na 2 O/γ-Al 2 O3催化吸附剂的脱硝性能.中国电机工程学报. 2008, 28(8): 52-57.
    [39] Zhao Q S, Xiang J, Shi J M, et al. Selective catalystic reduction of NO by NH3 over sol-gel-derived CuO/γ-Al2O3 catalysts. wuhan, China: 2007.
    [40] Forzatti P. Present status and perspectives in de-NOx SCR catalysis. Appl Catal A. 2001, 222(1-2): 221-236.
    [41]娄伟.改性活性炭低温选择性催化还原NO研究.硕士论文, 2008.
    [42]王雁. CuO/γ-Al 2 O3干法烟气脱硫研究.博士论文, 2005.
    [43]徐光宪,黎乐民.量子化学基本原理和从头计算法(上册).北京:科学出版社, 1980.
    [44]林梦海.量子化学计算方法与应用.北京:科学出版社, 2004.
    [45] Tapan K Ghanty, Ernest R Davidson. Theoretical investigation of electronic structure and ESR hyperfine parameters for the CuH+ molecule. International Journal of Quantum Chemistry. 2000, 77(1): 291-300.
    [46]肖慎修.密度泛函理论的离散变分方法在化学和材料物理学中的应用.北京:科学出版社, 1998.
    [47]孙宝珍,陈文凯,刘书红等.周期性密度泛函理论研究NO在Cu2O(111)表面上的吸附.无机化学学报. 2006, 22(7): 1215-1221.
    [48] Xilin Yin, Huanmei Han, Momoji Kubo, et al. Adsorption of NH3 , NO2 and NO oncopper-aluminate catalyst: an ab initio density functional study. Theor Chem Acc. 2003, 109: 190-194.
    [49] Schroder D, Schwarz H, Wu J, et al. Long-lived dications of Cu(H2 O)2+ and Cu(NH3 ) 2+ do exist. Chemical Physics Letters. 2001, 343(3,4): 258-264.
    [50] Ducr J, Goursot A, Berthomieu D. Comparative Density Functional Theory Study of the Binding of Ligands to Cu+ and Cu2+: Influence of the Coordination and Oxidation State. J. Phys. Chem. A. 2005, 109(2): 400-408.
    [51] Wella A F, Structure Inorganic Chemistry. Oxford: Clarerdon, 1984.
    [52] Benjamin J Lynch, Donald G Truhlar,. Obtaining the right orbitals is the first step to calculating accurate binding energies for Cu+ ion. Chemical Physics Letters. 2002, 361(3,4): 251-258.
    [53]孙岳明,杨萍,曹爱年. NO、CO和O2在铜离子分子筛上吸附的理论研究.物理化学学报. 2001, 17(8): 761-764.
    [54]段玉华,张开明,伏义路等. CO和NO在CuO及CuO(110)表面吸附选择规律研究.物理化学学报. 1995, 11(5): 407-413.
    [55] Sklenak S, Hru?ák J. CuNO 2 and Cu+NO2 Revisited: A Comparative ab Initio and DFT Study. J. Chem. Theory Comput. 2006, 2(4): 997-1008.
    [56] Noguera M, Bertran J, Sodupe M, et al. A Quantum Chemical Study of Cu2+ Interacting with Guanine-Cytosine Base Pair. Electrostatic and Oxidative Effects on Intermolecular Proton-Transfer Processes. Journal of Physical Chemistry A. 2004, 108(2): 333-341.
    [57] Avinash R Sirdeshpande, Lighty J S. Kinetics of the Selective Catalytic Reduction of NO with NH3 over CuO/γ-Al 2 O3 . Ind. Eng. Chem. Res. 2000, 39: 1781-1787.
    [58]孙宝珍,陈文凯,徐香兰等. NO双分子在Cu2O(111)面吸附与解离的理论研究.物理化学学报. 2006, 22(9): 1126-1131.
    [59] Ming Cheng Wu, Wayne Goodman D. Particulate Cu on Ordered Al2 O3 :Reactions with Nitric Oxide and Carbon Monoxide. J. Phys. Chem. 1994, 98(39): 9874-9881.
    [60] Kim T, Song M, Koh H, et al. Surface properties and reactivity of Cu/γ-Al2O3 catalysts for NO reduction by C3 H6: Influences of calcination temperatures and additives. Applied Catalysis A. 2001, 210(1-2): 35-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700