用户名: 密码: 验证码:
径向束行波管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
径向束行波管是行波管中重要的一类管型,具有宽频带、低电压及小尺寸的重要特点,在卫星通讯、雷达系统等对器件体积重量要求较高的军事领域以及民用领域都有很好的发展和应用前景。为满足现代军事对抗对低电压、小体积的微波放大器件的需求,拓展行波管的应用领域,提高行波管的竞争力,开展对径向束行波管的研究具有十分重要的意义。
     本论文深入分析研究了径向带状电子束的产生、聚焦及与慢电磁波互作用的机理,并在此基础上提出了一种新型慢波系统,为解决径向束行波管在毫米波段的工作难题提供了新的途径。论文的重要工作和创新点总结如下:
     1.给出了径向电子光学系统的设计方法,以及径向电子束聚焦的布里渊磁场的计算方法。在此基础上详细研究了径向带状电子束的产生、传输和聚焦方式,包括新型圆柱侧面发射阴极、环形阳极和径向磁场等。并分别设计了阴极在内、收集极在外的发散型和阴极在外、收集极在内的收敛型电子光学系统。
     2.提出了非周期慢波系统的色散特性和耦合阻抗的计算方法,并将之应用于对数螺旋线慢波系统的研究。分析了对数螺旋线慢波系统的互作用机理,设计了工作电压在30V的微带型平面对数螺旋线行波管,研究了其色散特性和耦合阻抗随结构参数的变化,并通过粒子模拟的方法得到了注波互作用图像,得到了其功率随输入电流和频率的变化曲线,当输入功率40mW时,计算得到了127mW的输出功率,在S波段的3-dB带宽达3GHz。
     3.提出了波导型对数螺旋线径向行波管的概念,以克服微带型平面对数螺旋线慢波系统的工作电压过低、电流偏小以及工作频段较低等缺点,并对其传输特性、色散特性和耦合阻抗进行了研究,研究表明该结构具有应用于W波段径向束行波管的潜力。
     4.引入了平面角度对数曲折线慢波系统的新概念,它具有结构简单、易加工、小型化和便于集成等特点。这种结构是对数螺旋线慢波系统的改进型结构,最大的优点是可以工作在更高的工作频段;另外,不同的角度,对应的工作电压可以低至百伏以内,也可以高至数千伏,这样在相同的直流输入功率下,所需的电子束电流更小,从而避免了对数螺旋线慢波系统对电子注电流必须很大的限制,使阴极的工作寿命更长。采用这种慢波系统分别设计了工作电压为1600V采用收敛电子束和工作电压为800V采用发散电子束的Ka波段行波管,两者的峰值输出功率分别为160W和27W,3-dB功率带宽分别为71.4%和80%,互作用效率分别达到了19.7%与21.7%,前者具有更高的工作电压,因此可以给出更高的功率输出,而后者则具有更充分的互作用,因此具有更高的效率和增益。
     5.为了提高微带角度对数曲折线慢波系统的输出功率,本文提出了角向集成微带角度对数曲折线慢波系统的概念。采用这种慢波线系统的行波管可以获得与常规行波管差不多的功率输出(数百甚至上千瓦),在带宽和工作电压上也具有一定的优势;同时,角向集成微带角度曲折线慢波系统采用完整的径向带状电子束工作,因此较单根微带角度对数周期曲折线慢波系统更易于实现电子束的聚焦。
     6.为了充分发挥平面角度对数曲折线的应用潜力,本文研究了镜像对称的双角度对数曲折线慢波系统,并分别研究了工作电压在800V、工作频段在Ka波段的、采用径向收敛和发散带状电子束的行波管的注波互作用特性。模拟结果表明:采用径向收敛带状电子束时,可以在20~50GHz的频率范围内输出大于30W的功率,最大功率为55W,最大效率可达26%;而采用发散束的行波管,可以在20~45GHz的频率范围内输出大于40W的功率,最大功率为64W,最大效率和增益分别为26.3%和19.5dB,这两种行波管的性能均优于单层的微带平面角度对数曲折线行波管。
     7.详细研究了微带型角度对数曲折线慢波系统的传输特性,包括参数变化对反射与传输参量的影响、介质和导体材料对慢波系统的损耗的影响、以及慢波系统中主要损耗之间的对比等;设计了采用标准同轴连接器的微带角度对数曲折线慢波系统的输入输出结构,实验加工了工作频率在12GHz的慢波系统,在11~13.5GHz的频率范围内,其反射系数数S11小于-10dB,传输损耗大于-1.5dB,驻波系数小于2。在此基础上,对实验模型进行了改进,设计了18GHz的微带角度曲折线,测试表明:其反射系数S11在13~22GHz的频率范围内小于-15dB,损耗S21大于-2.9dB.
Being one of the important traveling wave tubes (TWTs), the radial sheet beamTWT has a good development and application prospect in satellite communication,radar systems, for its wide bandwidth, low operating voltage and small size. To meetthe needs of low voltage, small size microwave amplifiers, expand the applicationfields and increase the competitiveness of TWT, it is important to study the radialTWT.
     The production, focusing and beam wave interaction of radial sheet electron beamare researched in this paper, and based on this, a kind of novel slow wave structure(SWS) has been proposed, which supplying a new way to solve the TWT’s problems.The main work and innovation of this dissertation are as follows:
     1. The design method of radial electron optical system is given, and based on this,the production, transmission and focusing of the radial sheet electron beam are studiedin detail.The Brillion focusing magnetic for radial sheet beam is obtained from theMaxwell and Lorenz equations. And two kinds of radial optical systems are designed,that are the divergent type with cathode inside the anodes and the convergent type withcathode outside the anodes.
     2. The calculation methods of the non-periodic SWS’s dispersion characteristicand coupling impedance are proposed, and they were used to the logartithmical helixresearch.The beam wave interaction mechanism of this kind SWS is studied, and themicro-strip type radial logarithmical helix SWS with operating voltage30V isdesigned. Its dispersion characteristic curve and coupling impedance are obtained. Theparticle-in-cell (PIC) simulation results show that it can give an127mW output powerwith the input power40mW, and its3-dB operating bandwidth is about3GHz at Sband.
     3. To overcome the disadvantages of the micro-strip logarithmical helix, such asthe small operating voltage and current, the low frequency band, the waveguide typelogarithmical helix is proposed. Its dispersion characteristic and coupling impedanceare studied, and the results show that it can be used for W band radial TWT.
     4. A novel angular log-periodic meander line SWS, with a simple structure andsmall size, is introduced in this dissertation. Improved from the logarithmic helix, thiskind of SWS can work at a higher frequency. Moreover, the operating voltage istunable from hundreds to thousands Volt for different angles. So its beam current could be smaller than the logarithmic helix needed for the same direct current input power.Two TWTs with radial convergent and divergent sheet electron beam, whose operatingvoltages are1600V and800V respectively, are designed with this kind of SWS. Themaximum output power is160W and26W correspondingly, and the bandwidth is71.6%and80%with electron efficiency19.7%and21.7%.
     5. To increase the output power of this kind of SWS, the conception of angularintegrated angular log-periodic meander line SWS is proposed. The TWT with thiskind of SWS can give an output power as large as the conventional TWTs, and is betterat the bandwidth and operating voltage. Meanwhile, the electron beam of this kindTWT is easier to focus than the single angular log-periodic meander line TWT.
     6. The symmetric double angular log-periodic meander line SWS is studied toexplore the potential amplifying ability. Both the convergent and divergent electronbeams are studied with the same operating voltage800V. With a radial convergentsheet beam, this kind of TWT can give a maximum output power55W, with the3-dBbandwidth over20~50GHz and the biggest efficiency26%. While for the divergentelectron beam, an output power more than40W over the20~45GHz is abtained, andthe maximum efficiency and gain are26.3%and19.5dB respectively.
     7. The transmission and reflect characteristics of the angular log-periodic meanderline SWS are studied in detail. The transmission loss for different metals anddielectrics are calculated. The input and output structures for the angular log-periodicmeander line slow wave structure is designed, and the SWS with operating frequency12GHz is fabricated and tested, the S11less than-10dB, S21larger than-1.5dB andthe voltage stand wave ratio less than2are obtained. Based on the results, a new inputand output structure is designed, and is applied to the18GHz SWS. The experimentresults show that the S11is less than-15dB and S21larger than-2.9dB between thefrequency13~22GHz.
引文
[1]王文祥.微波工程技术[M].北京:国防工业出版社,2009,1-2
    [2] J. Haartsen. Bluetooth-The Universal Radio Interface for Ad Hoc, Wireless Connectivity[J].Ericsson review,1998,3:110-117
    [3] H. Honkasalo, K. Pehkonen, M. T. Niemi, et al. WCDMA and WLAN for3G and Beyond[J].IEEE Wireless Communications,2002,9(2):14-18
    [4] B. Holly Broadbent. A New X-Ray Technique and Its Application to Orthodontia[J]. TheAngle Orthodontist,1931,1(2):45-66.
    [5] M. I. Skolnik. Radar Handbook[M]. New York: McGraw-Hill, Incorporated,1970,1-2
    [6]梁德文.世纪之交的军民两用毫米波技术[J].电讯技术,1999,(6):93-97
    [7]赵正平.固态微波器件与电路的新进展[J].中国电子科学院研究院学报,2007,2(4):329-335
    [8] M. T. Arnous, G. Boeck.4Watt,45%Bandwidth Si-LDMOS High Linearity Power Amplifierfor Modern Wireless Communications Systems[C].20122nd International Conference onAdvances in Computational Tools for Engineering Applications (ACTEA), Zouk-Mosbeh,2012,110-113
    [9] K. Petrosyants, E. Vologdin, D. Smirnov, et al. Si BJT and SiGe HBT Performance ModelingAfter Neutron Radiation Exposure[C].20119th East-West Design&Test Symposium(EWDTS), Sevastopol,2011,267-270
    [10] H. T. Than, W. S. George., S. C. Geovanni. Design and Performance of a600-W C–BandAmplifier Using Spatially Combined GaAs FETs for Satellite Communications[J]. IEEE Jour.Solid-State Circuits,2012,47(10):2309-2315
    [11] F. Yamaki, K. Inoue, N. Ui. A65%Drain Efficiency GaN HEMT With200W Peak PowerFor20V To65V Envelope Tracking Base Station Amplifier[C].2011IEEE MTT-SInternational Microwave Symposium Digest (MTT), Baltimore, MD,2011,1-4
    [12] S. M. Haque, D. J. Hoppe, L. W. Epp. Solid State Power Amplifier and Travelling Wave TubeAmplifier Additive Phase Noise Characterizationat Ka-Band Operation[C].2009IEEE Radarconf., Pasadena,2009,1-4
    [13] H. Bei, Y. Feng. The1000W Microwave Solid State Power Amplifier at Ku Band[C].2011IEEE CIE Inte. Radar Conf., Chengdu,2011,1211–1214
    [14]廖复疆.微波真空电子器件的发展战略[C].中国电子学会真空电子学分会第十九届学术年会论文集,黄山,2013,16-20
    [15]皮尔斯.行波管(吴鸿适,田志仁译)[M].北京:科学出版社,1961,10-239
    [16]电子管设计手册编辑委员会.大功率速调管设计手册[M].北京:国防工业出版社,1979
    [17]电子管设计手册编辑委员会.磁控管设计手册[M].北京:国防工业出版社,1979
    [18]电子管设计手册编辑委员会. O型返波管设计手册[M].北京:国防工业出版社,1985
    [19] V.A. Flyagin, A.V.Gaponov, M.I.Petelin. The Gyrotron[J]. IEEE Transactions on MicrowaveTheory and Techniques,1977,25(6):514-521
    [20] S. P. Bugaev, V. A. Cherepenin, V.I.Kanavets, et al. Relativistic multiwave Cerenkovgenerators[J]. IEEE Transactions on Plasma Science,1990,18(3):525-536
    [21]惠钟锡,杨震华.自由电子激光[M].北京:国防工业出版社,1995
    [22] M. J. Carruthers. The Diary of a TWT Engineer Vacuum Tubes Don't Suck[C].2013IEEE14th International Vacuum Electronics Conference (IVEC), Paris,2013:1-2
    [23] X. Wang, Q. Zhao, J. Luo, et al. An Ammonium Perrhenate Impregnated Ni Sponge OxideCathode[C].2013IEEE14th International Vacuum Electronics Conference (IVEC), Paris,2013:1-2
    [24] G. Gaertner, P. Geittner, H.Lydtin, et al. Emission Properties of Top-Layer Scandate CathodesPrepared by LAD[J]. Applied Surface Science,1997,111:11-17
    [25] R. E. Thomas, J. W. Gibson, G. A. Haas, et al. Thermionic Sources for High-BrightnessElectron Beams[J]. IEEE Transactions on Electron Devices,1990,37(3):850-861
    [26] J. Zhao, N. Li, J. Li, et al. High Current Density and Long Life Nanocomposite ScandateDispenser Cathode Fabrication[C]. IEEE Transactions on Electron Devices,2011,58(4):1221-1228
    [27]邵文生,李娜,李兴辉,等.用于太赫兹真空器件的大电流密度阴极[J].真空电子技术,2013,1:20-26
    [28] A. Staprans, E.W.McCune, J.A.Ruetz. High-Power Linear-Beam Tubes[J]. Proceedings of theIEEE,1973,61(3):299-330
    [29] T. A. Heddle. A Method of Designing a Compensated Solenoid Giving ApproximatelyUniform Field[J]. British Journal of Applied Physics,1952,3:95-97
    [30]吉尔默.行波管原理[M].北京:北京真空电子技术研究所,115
    [31]蔡竺吟,吕国强,杨蕾,等.行波管周期永磁聚焦系统的设计[J].真空电子技术,2006,2:25-27
    [32]巩华荣,宫玉彬,唐昌建,等.周期永磁聚焦行波管离子噪声的粒子模拟[J].电子科技大学学报,2004,33(3):258-261
    [33]赵国庆,岳玲娜,王文祥,等.带开口磁环的周期永磁聚焦系统的2维模拟[J].强激光与粒子束,2008,20(1):96-98
    [34] A. Baig, Jian-xun Wang, L.R.Barnett, et al. Beam Transport Modeling of PPM Focused THzSheet Beam TWT Circuit[C].2011IEEE International Vacuum Electronics Conference(IVEC), Bangalore,2011,351-352
    [35] J. P. Clarke, N. J. Cranford. Periodic Permanent Magnet Structure with Increased UsefulField[P]. United States Patent,4731598,1988-03-15
    [36]阿良莫夫斯基,黄高年.电子注与电子枪[M].电子管技术编辑组,1974,303-304
    [37] D. J. Blattner, F. E. Vaccaro, C. L. Cuccia, et al. Medium-Power L-and S-BandElectrostatically Focused Traveling-Wave Tubes[J]. RCA-Rev,1959,20:426-441
    [38] E. F. Belohoubek, W. W. Siekanowicz, F.E.Vaccaro. Design and Performance of anElectrostatically Focused5-Kw X-Band Traveling-Wave Tube[J]. IEEE Transactions onElectron Devices,1964,11(3):102-114
    [39] J. A. DAYTON, H. G. KOSMAHL, P. RAMINS. Experimental Verification of aComputational Procedure for the Design of M-Refocuser-MDC Systems[J]. IEEETransactions on Electron Devices,1981,28(12):1480-1489
    [40] H. G. Kosmahl. Modern Multistage Depressed Collectors-A Review[J]. Proceedings of theIEEE,1982,70(11):1325-1334
    [41] J. P. Laico, H. L. McDowell, C. R. Moste. A Medium Power Traveling-Wave Tube for6,000-Mc Radio Relay[J]. Bell System Technical Journal,1956,35(6):1285-1346
    [42] J. Lai, Y. Gong, Y. Wei, et al. An Electron Optical System for Sheet Beam Vacuum ElectronDevices[C].2011China-Japan Joint Microwave Conference Proceedings, Hangzhou,2011,451-453
    [43] M. A. Basten, J. H. Booske. Two-Plane Focusing of High-Space-Charge Sheet Electron BeamsUsing Periodically Cusped Magnetic Fields[J]. Journal of Applied Physics,1999,85(9):6313-6322
    [44] J. H. Booske, M. A. Basten. Demonstration via Simulation of Stable Confinement of SheetBeam Propagation in a Planar Free-Electron Laser Configuration[J]. IEEE Transaction onPlasma Science,1999,27(1):134-135
    [45] S. Humphrises Jr, S. J. Russel, B. E. Calsten, et al. Focusing of High-Perveance PlanarElectron Beams in Miniature Wigger Magnet Array[J]. IEEE Transaction on Plasma Science,2005,33(2):882-891
    [46]赵鼎.关于闭合及偏置PCM结构的约束带状电子注可行性研究[J].物理学报,2010,59(3):1712-1720
    [47] J. Lai, Y. Gong, H. Yin, et al. Computer Aided Design of Depressed Collector for TWTs Usinga New Numerical Methodology[C]. Progress in Electromagnetics Research SymposiumProceedings, Xi’an,2010,1513-1517
    [48] C. K. Chong, D. A. Layman, R. J. Stolz, et al. Development of high power K/Ka-band helixTWT[C].2012IEEE Thirteenth International Vacuum Electronics Conference (IVEC),Monterey,2012,119-120
    [49] W. N. Cain, R. W. Grow. The Effects of Dielectric and Metal Loading on the DispersionCharacteristics for Contrawound Helix Circuits Used in High-Power Traveling-Wave Tubes[J].IEEE Transaction on Electron Devices,1990,37(6)1566-1578
    [50] S. K. Datta, V. B. Naidu. Equivalent Circuit Analysis of a Ring-Bar Slow-Wave Structure forHigh-Power Traveling-Wave Tubes[J]. IEEE Transactions on Electron Devices,2009,56(2):3184-3190
    [51]王文祥,宫玉彬,魏彦玉,等.大功率行波管新型慢波线技术的进展[J].真空电子技术.2002,6:13-18
    [52]刘漾,宫玉彬,徐进,等.一种角向加载螺旋线的圆波导慢波结构[P].中国,发明专利,201020666835,2011年06月22日
    [53] M. Cusick, R. Begum, D. Gajaria, et al. Wide Band Ka-Band Coupled-Cavity Traveling WaveTube (CCTWT) Development[C].2012IEEE Thirteenth International Vacuum ElectronicsConference (IVEC), Monterey,2012,225-226
    [54] F. He, J. Luo, M. Zhu, et al. Theory, Simulations, and Experiments of the Dispersion andInteraction Impedance for the Double-Slot Coupled-Cavity Slow Wave Structure in TWT[J].IEEE Transactions on Electron Devices,2013, PP(99):1-8
    [55] M. Chodorow, R. A. Craig. Some New Circuits for High-Power Traveling-Wave-Tubes[J].Proceedings of the IRE,1957,45(8):1106-1118
    [56] S. Bhattacharjee, J. H. Booske, C. L. Kory, et al. Folded Waveguide Traveling-Wave TubeSources for Terahertz Radiation[J]. IEEE Transactions on Plasma Science,2004,32(3):1002-1014
    [57] H. Gong, Y. Gong, Tao Tang, et al.1KW Ka-band Folded Waveguide Traveling-WaveTube[C].2011IEEE International Vacuum Electronics Conference (IVEC), Bangalore,2011,331-332
    [58] B. D. Mcvey, M. A. Basten, J.H.Booske, et al. Analysis of Rectangular Waveguide-Gratingsfor Amplifier Applications[J]. IEEE Transactions on Microwave Theory and Techniques,1994,42(6):995-1003
    [59] Y. M. Shin, A. Baig, L. R. Barnett, et al. System Design Analysis of a0.22-THzSheet-BeamTraveling-Wave Tube Amplifier[J]. IEEE Transactions on Electron Devices,2012,59(1):234-240
    [60] Y. Liu, J. Xu, Y. Wei, et al. Design of a V-Band High-Power Sheet-Beam Coupled-CavityTraveling-Wave Tube[J]. Progress in Electromagnetics Research,2012,123:31-45
    [61] Y. Liu, L. Yue, Y. Tian, et al. V-Shape Folded Rectangular Groove Waveguide forMillimeter-Wave Traveling-Wave Tube[J]. IEEE Transaction on Plasma Science,2012,40(4):1027-1031
    [62] X. Xu, Y. Wei, F. Shen, et al. Sine Waveguide for0.22-THz Traveling-Wave Tube[J]. IEEETransaction on Electron Devices Letter,2011,32(8):1152-1154
    [63] F. Shen, Y. Wei, X. Xu, et al. U-shaped Microstrip Meander-line Slow-wave Structure forKa-band Traveling-wave Tube[J]. International Conference on Microwave and MillimeterWave Technology,2012,1:1-2
    [64] V. S. Savel’yev, G. I. Kushcenko. Experimental Investigation of a TWT with a Radial ElectronStream[J]. Radio Engineering and Electronic Physics,1970,15(12):2267-2272
    [65] A. H. Gottfried, L. J. Jasper Jr.,J. J. Tancredi. Planar Ring Bar Traveling Wave Tube[P]. UnitedStates Patent,3971966,1976-07-27
    [66] T. Wessel-Berg. Basics of Radial Sheet Beam Interactions with Potential Applications in theMicrowave K and W Bands[J]. AIP Conf. Proc.,2006,807:55-64
    [67] I. Langmuir, K. B. Blodgett. Currents Limited by Space Charge between Coaxial Cylinders[J].Phys. Rev.,1923,22:347–356
    [68] X. Chen, J. Dickens, L. L. Hatfield, et al. Approximate Analytical Solutions for TheSpace-Charge-Limited Current in One-Dimensional and Two-Dimensional CylindricalDiodes[J]. Physics of Plasmas,2004,11:3278-3282
    [69] CST Corp. CST PS Tutorials[EB/OL]. Available: http://www.cst-china.cn/
    [70]谢东,刘庆想.平面螺旋线外的磁场研究[J].大学物理,2005,24(9):23-28
    [71] V. H. Rumsey. Frequency Independent Antennas[J]. IRE International Convention Record,1957,5:114-118
    [72] P. E. Mayes. Frequency-Independent Antennas and Broad-Band Derivatives Thereof[J].Proceedings of the IEEE,1992,80(1):103-112
    [73] R. H. DuHamel, D. Isbell. Broadband Logarithmically Periodic Antenna Structures[J]. IREInternational Convention Record,1957,5:119-128
    [74] D. H. Werner, P. L. Werner. Frequency-Independent Features of Self-Similar FractalAntennas[J]. Radio Science,1996,31(6):1331-1343
    [75] R. A. Silin, V. P. Sazonov. Zamedlyayushchiye Sistemy (Slow-wave structure)[J]. Sov. Radio,Moscow,1966
    [76] V. A. Solntsev. Planar Spiral Systems with Waves of Constant Radial Phase Velocity[J].Journal of Communications Technology and Electronics,1994,39(8):42-48
    [77] V. A. Solntsev. Properties of Spatial Harmonics Selection in Pseudoperiodic Waveguides[C].2003IEEE MTT-S International Conference on Microwave Symposium Digest, Philadelphia,PA,2003,2:829-832
    [78]徐翱.变周期慢波系统的研究[D].成都:电子科技大学,2009,24-28
    [79]何俊.毫米波新型曲折波导行波管的研究[D].成都:电子科技大学,2010,19-20
    [80] V. S. Savel’yev. Interaction of a Radically Diverging Electron Stream and a RadicallyTraveling Electromagnetic Wave[J]. Radio Engineering and Electronic Physics,1967,6:941-947.
    [81] V. I. Molyavko, K. P. Yatsuk, V. M. Mitrofanov. Investigation of Surface Waves in RadialHelix Structure[J]. Radio Engineering and Electronic Physics,1969,14(8):1194-1200
    [82] T. Machida, W. Suzuki, M. Yoshida, et al. Development of Ka-Band500W CW Helix TWT[J].2011IEEE International Vacuum Electronics Conference (IVEC), Bangalore,2011,17-18
    [83] R. E.柯林,吕继尧.微波工程基础[M].北京:人民邮电出版社,1981,127-128
    [84]王文祥.微波工程技术[M].北京:国防工业出版社,2009,48-49
    [85]清华大学《微带电路》编写组.微带电路[M].北京:人民邮电出版社,1976,4-28
    [86]庞和喜.波导内壁表面粗糙度对电磁波传输性能的影响研究[D].西安:西安电子科技大学,2008,33-55
    [87] R. L. David. CRC Handbook of Chemistry and Physics[M]. CRC Press LLC,2002,1402
    [88]满坤电子. RT/duroid5870/5880High Frequency Laminates [EB/OL].http://www.gz-mankun.com/technology/performance/c_l/2009-11-06/72.html, November6,2009
    [89] R. L. David. CRC Handbook of Chemistry and Physics[M]. CRC Press LLC,2002,1619
    [90]唐玉芳.微带线损耗的理论研究与工程应用[D].南京:南京理工大学,2009,34-49
    [91] CAS. CAS官方数据库[DB/OL]. http://www.cas-no.org/1344-28-1,2013
    [92]拉姆惠勒.近代无线电中的场与波(张世璘等译)[M].北京:人民邮电出版社,1958,403-404
    [93]益民.光刻技术[J].微电子学.1973,4:25-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700