用户名: 密码: 验证码:
高强塑积Q-P-T钢及其强塑性机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进高强度钢的发展趋势是研发更高强度的Fe-Mn-Si系廉价钢并保持足够的塑性,以期实现钢件轻量化,达到节约原材料、节能减排的低碳经济目的。基于此,我们课题组徐祖耀院士在Speer等提出的淬火&分配(Q&P)钢基础上,强调析出强化的重要性,进一步提出了淬火-分配-回火(Q-P-T)热处理新思想。本文根据新型Q-P-T工艺的设计思想,设计出低、中碳含铌钢相关的成分和优化的工艺,开发出高于目前先进高强度钢25000 MPa%的强塑积,达到或超过新一代先进高强钢强塑积的理论预测值(30000 MPa%),并揭示其高强度高塑性机制。此外,不同温度下(-85~450℃)的力学性能测试及显微组织表征为拓展Q-P-T钢的使用范围打下了实验基础。主要的研究内容和成果如下。
     1.设计出四种不同C(0.2和0.4 wt.%)或Nb(0.03和0.08 wt.%)含量的Fe-Mn-Si基Q-P-T钢,参考约束条件下碳平衡(CCE)理论,选择在室温时得到最大奥氏体量的最佳淬火温度,对试样分别进行了传统的淬火&回火(Q&T)和新型的Q-P-T热处理。拉伸结果表明,经Q&T处理的试样,碳含量的增加使其力学性能遵循通常的高强度-低塑性的规律。然而经Q-P-T处理后的试样却发现,碳含量的增加同时提高钢的强度和塑性,这不同于通常的高强度-低塑性规律。其中,成分为Fe-0.42C-1.46Mn-1.58Si-0.03Nb的试样其强塑积为31627 MPa%(抗拉强度为1558 MPa,延伸率达到20.3%),超过下一代先进高强度钢所定义的理论强塑积值。此外,与Q&T处理相比,同成分的钢经Q-P-T处理后,在稍微降低抗拉强度的前提下显著提高其延伸率。
     2.经X射线衍射(XRD)分析、扫描电镜(SEM)和透射电镜(TEM)观察等方法揭示了Q-P-T处理和Q&T处理后试样具有不同力学性能的内在原因。新型Q-P-T工艺和传统Q&T工艺的差别就在于淬火温度(Tq)的不同,前者的淬火温度通常远高于后者(室温),这使得相同成分的试样经Q-P-T处理后能获得更多的残余奥氏体,同时有效地减少了由淬火应力产生的微裂纹,从而显著提高了试样的塑性。在Q-P-T处理的试样中,碳含量增加同时提高其强度和塑性的机理是,高的碳含量提高了马氏体的强度,其包括板条马氏体内更高的位错密度,更小的马氏体领域(Packet)尺寸和更多析出的碳化物;同时提高其塑性的原因是获得更多的残余奥氏体。
     3.通过对中碳Q-P-T拉伸试样施加不同的应变量后,测定了其残余奥氏体的体积分数变化,结果表明,随应变量的增加,残余奥氏体量逐渐减少。此外,低碳和中碳Q-P-T试样的真应力-真应变曲线对比发现,在缩颈前中碳Q-P-T试样具有较长的均匀形变能力;加工硬化指数-真应变曲线清楚地显示两者的TRIP效应的差异,即在均匀形变( n =εu)前,硬化指数(n)在大的应变范围内增加,呈现出宽的平台。因此,中碳Q-P-T试样在拉伸中表现出较明显的TRIP效应。
     4.通过X射线衍射线形分析(XLPA)方法测定了中碳Q-P-T钢中马氏体和残余奥氏体的平均位错密度随应变量的变化。应变增加到3%时,马氏体的平均位错密度从6.65×1014 m–2 (未拉伸)减小到5.25×1014 m–2,而残余奥氏体的平均位错密度从4.21×1014 m–2 (未拉伸)迅速增加到8.77×1014 m–2,且超过了马氏体内位错密度。结果表明,在均匀形变阶段(应变约在12%内),马氏体的位错密度低于未形变前,直到均匀形变以后才逐渐增加,而残余奥氏体中位错密度在整个形变中快速地增加。基于以上结果,提出在形变过程中残余奥氏体吸收位错效应(DARA效应),即在形变的初始阶段,由于外加应力的作用,马氏体中的部分高密度位错可以移动到相邻的残余奥氏体中,这被TEM观察到的横跨马氏体/奥氏体界面的平行的位错列所间接证明。因此,残余奥氏体增塑机制为:残余奥氏体的DARA效应使马氏体在均匀形变阶段处于“未形变状态”,由此有效地提高了马氏体的形变能力;随应变的增大,当局域产生应力集中,由此通过应变诱发马氏体相变产生TRIP效应;随着应变的进一步增大而产生微裂纹,在马氏体条间的残留奥氏体可有效地阻碍裂纹扩展。
     5.在低碳和中碳Q-P-T钢中,一直冷到-70℃时电阻测量仍未发现马氏体相变的迹象,表明残余奥氏体的Ms温度很低;反之升温到200℃时,也未发现残余奥氏体发生分解现象。表明在较宽的温度范围内残余奥氏体具有足够的热稳定性。经不同温度拉伸测定获得中碳Q-P-T钢的Msσ=-20℃,Md≈200℃。低的Msσ有利于在该温度之上时钢件在搬运或制造过程中避免应力诱发马氏体相变的发生,使残余奥氏体在以后的服役中产生TRIP效应。而Md≈200℃,表明钢件在该温度使用时残余奥氏体具有热力学稳定性和TRIP效应的最佳结合。
     6.通过对低碳和中碳Q-P-T钢在-85~450℃范围内进行力学性能测定,发现低碳和中碳Q-P-T钢均存在一个具有最佳强度和塑性的温度范围:100~300℃,尤其是中碳Q-P-T钢在200℃时强塑积高达57738 MPa%。这主要是由于在此温度下中碳Q-P-T钢的残余奥氏体具有较高的热力学稳定性,同时马氏体基体中继续析出弥散分布的NbC和ε碳化物。此外,在所研究的温度范围内,中碳Q-P-T钢的强塑积均比低碳的高。
     7. Si的加入能在室温抑制脆性渗碳体的形成,但不能抑制在较高温度(如350℃)下残留奥氏体分解形成的渗碳体和过渡型ε碳化物开始转变成的渗碳体。
The requirements of the resource and energy savings and the reduction of carbon emission are pushing the development of low-cost Fe-Mn-Si based advanced high strength steel (AHSS). In order to reach a higher product of strength and elongation (PSE) than 25000 MPa% of the advanced high strength steels (AHSS), even to 30000 MPa% of the next generation AHSS predicted by Matlock and Speer, both the composition and process of low and medium carbon steels have been designed in this work based on the novel heat treatment manner, quenching-partitioning-tempering (Q-P-T), proposed by T. Y. Hsu (Xu Zuyao) several years ago. Attentions were paid to understand the relationship between mechanical property and microstructure, in particular the enhancement effect of retained austenite on ductility of Q-P-T steels. The purpose of this dissertation attempts to investigate the mechanism of high PSE (product of strength and elongation) in designed Q-P-T steels with optimized processing parameters. The mechanical performance at different temperature from -85°C to 450°C was also studied to understand the potential application range of the proposed Q-P-T steel. The main achievements are expressed below.
     1. Four kinds of Fe-Mn-Si based steels with the addition of different carbon (nominal 0.2 or 0.4wt.% respectively) and niobium (nominal 0.03 or 0.08wt.% respectively) were designed in the present research. Based on the constrained carbon equilibrium (CCE) theory proposed by Speer et al., the maximum fraction of retained austenite as a function of quenching temperature (Tq) was calculated, and the optimized parameters of Q-P-T process were determined. The traditional quenching and tempering (Q&T) process was also employed to these steels designed for comparing with Q-P-T process. The results indicate that medium-carbon Q&T steel has higher ultimate tensile strength and lower elongation than low-carbon Q&T steel, which shows that the effect of carbon content follows the general behavior of high strength-low ductility. However, medium-carbon Q-P-T steel has the ultimate tensile strength of 1558 MPa and elongation of 20.3% (uniform elongation of 12.2%), which reach the theoretical value predicted by Matlock and Speer. Obviously, a novel Q-P-T process makes the effect of carbon content be different from the general behavior of high strength-low ductility. Besides, the strength and elongation of medium-carbon Q-P-T steel also are much higher than 1222 MPa and 15.2% (uniform elongation of 6.13%) of low-carbon Q-P-T steel. These results indicate that a novel Q-P-T process produced a positive effect of carbon content on both strength and ductility.
     2. The origin of different mechanical properties between Q-P-T steels and Q&T steels was revealed by microstructural characterization with XRD, SEM and TEM. The only difference between Q&T and Q-P-T treatment is the quenching temperature (Tq) selected, and Tq in Q-P-T process is much higher than that (room temperature) in Q&T process. Microstructural analysis indicates that the high Tq correspond to the high fraction of retained austenite and low stress caused by quenching. These are favorable for the transformation induced plasticity (TRIP) caused by retained austenite and the low formation probability of micro-crack caused by quenching. The increase of carbon content in Q-P-T specimens is responsible for the high strength due to higher density of dislocation in martensite, smaller packet size of martensite and more carbides distributed in martensite matrix. Meanwhile, the increase of carbon content is responsible for the high ductility due to stronger TRIP effect. These are why Q-P-T steels exhibit much better in both strength and elongation than Q&T steels.
     3. The volume fractions of retained austenite as a function of strain in medium-carbon Q-P-T steels were determined by XRD. The results indicate that the retained austenite fraction decreases with increasing strain, which verifies the occurrence of TRIP effect. While, the low-carbon Q-P-T steel demonstrates a weak TRIP effect owing to less retained austenite in it. The work-hardening exponent-true strain curves of medium-carbon and low-carbon Q-P-T steels clearly demonstrate the difference of their TRIP effects.
     4. The average dislocation densities in both martensite and retained austenite in medium-carbon Q-P-T steel were calculated by X-ray linear profile analysis (XLPA). The XLPA results indicate that the average dislocation density (Mρ) in martensite falls from 6.65×1014 m–2 (0% strain) to 5.25×1014 m–2 (3% strain), while the the average dislocation density (Aρ) in retained austenite rapidly raises from 4.21×1014 m–2 (0% strain) to 8.77×1014 m–2 (3% strain) which exceeds that in martensite. The phenomenon can be explained by the dislocation absorption by retained austenite (DARA) effect proposed in this work, namely, the plenty of dislocations in martensite move into the neighboring retained austenite, in other words, the dislocations are‘absorbed’by nearby retained austenite. Furthermore, the amount of dislocation transported to retained austenite is larger than the amount of dislocation multiplication in martensite, as a consequence, the comprehensive result leads to the decrease of Mρand the rapid increase of Aρ. Since DARA effect makes the martensite be an“undeformation state”, the deformation ability of hard phase martensite is intensified. With further increase of strain, when the amount of transported dislocation to retained austenite is smaller than the dislocation multiplication in martensite, the competitive result leads to the gradual increase of Mρ. While in the case of soft retained austenite phase, Aρstill sharply increases and shows high work–hardening rate. The DARA effect is indirectly verified by TEM observation in which the dislocations athwart from martensite to retained austenite at their interfaces can be clearly observed. Therefore, the mechanism of ductility enhancement by retained austenite can be briefly described as follows. In uniform deformation stage, DARA effect makes the martensite be an“undeformation state”, the deformation ability of hard phase martensite is intensified. With increasing strain, when the stress caused by high dislocation density in local area reaches certain critical value, the strain–induced martensitic transformation will occur, which effectively relaxes the stress concentration in this area and avoids the formation of microcracks, which is the well–known TRIP effect. In sequent larger strain condition, once microcracks form in some high stress concentration areas and propagate, the retained austenite can block the propagation of microcracks, which is the well–known blocking microcrack propagation (BMP) effect.
     5. The retained austenite in low-carbon and medium-carbon Q-P-T steels exhibits excellent thermal stability since it still does not transform to martensite at -70℃, especially the characteristic parameter ( M sσ) of mechanical stability of retained austenite is about -20℃, exhibiting good mechanical stability. In addition, the product of strength and elongation at room temperature for medium-carbon Q-P-T steel can be kept at 300℃, as a result, medium-carbon Q-P-T steel studied in this work can be employed in the range from -20℃to 300℃. Low Msσis favorable for avoiding the occurrence of stress-induced martensitic transformation in carrying or manufacturing of workpieces, and thus strong TRIP effect will be produced by strain-induced martensitic transformation from retained austenite above Msσ. While Md≈200℃, it indicates that the retained austenite in workpieces at/below this temperature exhibits the optimum combination of thermal stability of retained austenite and TRIP effect.
     6. After Q-P-T treatment, both low-carbon and medium-carbon specimens were deformed at different temperature from -85°C to 450°C. a temperature zone with best strength and elongation values were found for both compositions: 100℃~300℃. Within this zone, the PSE of medium-carbon specimen always higher than that of low-carbon specimen, especially at 200°C, the PSE of medium-carbon specimen reaches 57738MPa%! In addition to the further strengthening by carbide precipitation at this temperature, a better plasticity in medium-carbon specimen again verifies the beneficial effect of retained austenite at an elevated temperature.
     7. The addition of Si can suppress the formation of brittle cementite at room temperature, but cannot suppress the formation of cementite by decomposition of retained austenite or by transformation of transition carbide in relative high temperature, such as at 350°C.
引文
[1]. Lagneborg R. Steel development review and prospects for the future[J]. Scand J Metall. 1997, 26(6): 255-265.
    [2]. Li L, Wollants P, He YL, et al. Review and prospect of high strength low alloy TRIP steel[J]. Acta MetallSin. 2003, 16(6): 457-465.
    [3]. Peter J, Peaslee K D, Robertson D G C. Review of progress in developing continuous steelmaking[J]. Iron and Steel Technology, 2005, 2: 53-60.
    [4]. Weng, Y Q. Progress of theory and controlled technology of ultrafine grained steel[J]. Kang T'ieh/Iron and Steel (Peking), 2005, 40: 1-8.
    [5]. Xiao, G Z, Zhu F X, Di H S. Development and application progress of high strength steel plate for large oil storage tank[J]. Dongbei Daxue Xuebao/Journal of Northeastern University, 2007, 28: 154-157.
    [6]. Huang, T D, Conrardy C, Dong P, et al.. Engineering and production technology for lightweight ship structures, Part II: Distortion mitigation technique and implementation[J]. Journal of Ship Production, 2007, 23: 82-93.
    [7]. Yu Q. Review and prospect of weathering steel[J]. Journal of Iron and Steel Research, 2007, 19:1-4.
    [8].钢铁研究总院.高性能钢的组织调控理论与技术基础研究,编号2010CB630800.国家重点基础研究发展计划(973计划), 2010年1月-2014年8月.
    [9].徐祖耀.自主创新发展超高强度钢[J].上海金属, 2009, 31(2):1-6.
    [10]. Senuma T. Physical Metallurgy of Modern High Strength Steel Sheets[J]. ISIJ International, 2001, 41(6): 520-532.
    [11]. Buzzichelli G, Anelli E. Present Status and Perspectives of European Research in the Field of Advanced Structural Steels[J]. ISIJ International, 2002, 42(12):1354-1363.
    [12].马鸣图.汽车用合金结构钢的现状和研究进展[J].汽车工艺与材料, 2004, 1:1-5.
    [13]. Gladman T, Dulieu D, Mclvor I D. Structure-property relationships in high- strength microalloyedsteel[J]. In: M. Korchynski (Ed.), Microalloying 75 Proceedings, Union Carbide Corporation, New York, 1977, 32-55.
    [14].科恩M.钢的微合金化及控制扎制[M],北京:冶金工业出版社,1990.
    [15].齐俊杰,黄运华,张跃.微合金化钢[M],北京:冶金工业出版社,2006.
    [16].徐祖耀.马氏体相变与马氏体[M],第二版.科学出版社,北京,1999.
    [17].董翰.低合金钢的强化和韧化理论研究.超纯净超细晶合金化高强高韧钢(文集1),钢铁研究总院,北京, 1998.
    [18].哈宽富,编著.金属力学性质的微观理论[M].科学出版社,北京,1983.
    [19]. Matsumura O, Sakuma Y, Takechi H. Trans. ISIJ[J],1987,27:570.
    [20]. Zackay V F, Parker E R, Fahr D, Bush R. Trans. Am. Soc.Mct. [J], 1967, 60(1): 252.
    [21]. Matsumura O, Sakuma Y, Takeehi H. Seripta Metallurgiea[J],1987,21(1):1301.
    [22]. Matsumura O, Sakuma Y, H.Takechi. Trans. ISIJ[J], 1987, 27: 570.
    [23]. Sugimoto K, Kobayashi M, Hashimoto S. Ductility and Strain-Induced Transformation in a High-Strength Transformation-Induced Plasticity-Aided Dual-Phase Steel[J]. Metall. Trans. A, 1992, (23):3085-3091.
    [24]. Sakuma Y, Matsumura, O, Takechi, H. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions[J]. Metallurgical Transactions A, 1991, 22 (2):489-498.
    [25]. Taleb L, Sidoroff F. A micromechanical modeling of the Greenwood-Johnson mechanism in transformation induced plasticity[J] International Journal of Plasticity, 2003, 19 (10):1821-1842.
    [26]. Jacques P J. Transformation-induced plasticity for high strength formable steels[J]. Current Opinion in Solid State and Materials Science, 2004, 8 (3-4): 259-265.
    [27]. Zaefferer S, Ohlert J, Bleck W, A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel[J]. Acta Materialia, 2006,52 (9):2765-2778.
    [28]. Tomota Y, Tokuda H, Adachi Y, Wakita M, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction[J]. Acta Materialia, 2004, 52: 5737-5745.
    [29]. Bhadeshia HKDH. TRIP-Assisted Steels[J]. ISIJ international, 2002, 42(9): 1059-1060.
    [30]. Sakuma Y, Matsumura O, Takechi H. Metall. Mater. Trans. A[J], 1991, 22:489-498
    [31]. Andrews K W. Journal Iron Steel Inst[J], 1965: 721-727.
    [32]. Vasiakos A N, Ohlert J, Giasla K, et al. Low-alloy TRIP steels: a correlation between mechanical properties and the retained austenite stability[J]. Steel research, 2002, 73: 249-252.
    [33]. BarbéL, Meyer M De, De Cooman B. C. Determination of the M sσtemperature of dispersed phase TRIP-aided steels [A], ed. by B C De Cooman. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys [C]. Aachen: WMG, 2001: 65-69.
    [34]. Holloman J H. Journal of Applied Physics[J], 1947,18:1421-1425.
    [35]. Cohen M. Transaction of Americain Society for Metals[J], 1949, 41: 35-42.
    [36]. Zwaag S V D, Zhao L, Kruijver SO, et al. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steel[J]. ISIJ Int., 2002, 42:1565-1570.
    [37]. Sugimoto K, Usui N M K. Effects of volume fraction and stability of retained austenite on ductility of TRIP-Aided dual-Phase Steels[J]. ISIJ Int., 1992, 32, 1311-1318.
    [38]. Pereloma E V, Timokhina I B, Hodgson P D. Transformation behaviour in thermomechanically processed C-Mn-Si TRIP steels with and without Nb [J]. Mater. Sci. Eng., 1999, A273-275: 448-452.
    [39]. Sugimoto K, Iida T, Sakaguchi J. Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel[J] , ISIJ Int., 2000, 40, 902-908.
    [40]. Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51: 2611-2622.
    [41]. Matlock D K, Brautigam V E, Speer J G. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si micro-alloyed bar steel[C]. in Materials Science Forum. 2003. Madrid.
    [42]. Pickering F B, Physical Metallurgy and the Design of Steels. Applied Science Publishers London, 1978.
    [43].张少棠.钢铁材料手册.第2卷,低合金高强度钢,中国标准出版社,北京, 2001
    [44]. Tomita Y. Development of fracture toughness of ultrahigh strength, medium carbon, low alloy steels for aerospace applications, International Materials Reviews, 2000, 45: 27-37.
    [45]. Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001,32: 861-877.
    [46]. Pokrovskaya N G., Petrakov A F, Shal'kevich A B, Modern high-strength structural steels for aircraft engineering[J]. Metal Science and Heat Treatment, 2002,44:520-523.
    [47]. Pokrovskaya N G., Petrakov A F, Shal'kevich A B, Modern high-strength structural steels for workpieces of aviation engineering[J]. Metallovedenie and Termicheskaya Obrabotka Metallov, 2002, 23-26.
    [48]. Davies R G. The deformation behavior of a vanadium-strengthened dual phase steel[J]. Metallurgical Transactions A 1978, 9(1): 41-52.
    [49]. Davies R G. Influence of martensite composition and content on the properties of dual phase steels[J] Metallurgical Transactions A, 1978, 9(5): 671-679.
    [50]. Hüper T, Endo S, Ishikawa N, Osawa K. Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels[J] ISIJ International, 1999, 39(3): 288-294.
    [51]. Son Y I, Lee Y K, Park K T, et al. Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties[J]. Acta Materialia, 2005, 53(11): 3125-3134.
    [52]. Mileiko S T. The tensile strength and ductility of continuous fiber composites[J]. Journal of Materials Science, 1969, 4: 974-977.
    [53]. Koo J Y, Young M J, Thomas G. On the law of mixtures in dual-phase steels[J]. Metallurgical Transactions A, 1980, 11: 852-853.
    [54]. Tomita Y, Okabayashi K, Tensile stress-strain analysis of cold worked metals and steels and dual-phase steels[J]. Metallurgical Transactions A, 1985,16:865-872.
    [55]. Cai X L, Reed A J G, Owen W S. The development of some dual-phase steel structures from different starting microstructures[J]. Metallurgical Transactions A, 1985 16:543-557.
    [56]. Gras?sel O, Frommeyer G, Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels[J]. Materials Science and Technology, 1998, 14(12): 1213-1217.
    [57]. Bouaziz O, Guelton, N. Modelling of TWIP effect on work-hardening[J]. Materials Science and Engineering A, 2001,319-321:246-249.
    [58]. Barnett M R, Twinning and the ductility of magnesium alloys. Part I: "Tension" twins[J]. Materials Science and Engineering A, 2007, 464(1-2):1-7.
    [59]. Frommeyer G, Brux U, Neumann P, Supra-ductile and high-strength manganese- TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ International, 2003, 43: 438-446.
    [60]. 1rvine K J, Picketing F B Low Carbon Bainitic Steels[J]. J. Iran Steel Inst, 1957,187:292-309.
    [61].方鸿生,邓海金.低铬Fe-Mn.B钢粒状贝氏体的组织及其强韧性[J].机械工程材料, 1981, 5(1):5-14.
    [62].方鸿生,郑燕康等.空冷贝氏体型热处理钢[J].金属热处理,1985(9):3-8.
    [63].方鸿生,郑燕康等.发展新型贝氏体钢[J].兵器材料科学与工程,1988(11):1-13.
    [64]. Fang HengShang,Chen XinYun,Development of a Serious of New Air CooledBainitic Steels in China[A] . Geoffrey Tither , Zhang ShouHua HSLA Steels . Processing Properies andApplications[C],Beijing TMSl992:119-125.
    [65].康沫狂,周鹿宾.高强度高韧性低碳贝氏体钢[J].陕西冶金,1989(2):16.
    [66].康沫狂,贾虎生等.新型系列准贝氏体钢[J].金属热处理, 1995, (12):4-5.
    [67]. Caballero F G, Bhadeshia HKDH, Mawella KJA, et al. Very strong low temperature bainite[J]. Mater Sci Technol, 2002, 18(3): 279-284.
    [68]. Garcia-Mateo C, Caballero F G, Bhadeshia HKDH. Development of hard bainite[J]. ISIJ Int. 2003, 43 (8):1238-1243.
    [69]. Caballero F G, Bhadeshia HKDH. Very strong bainite[J]. Curr Opin Solid State Mater Sci, 2004, 8 (3-4):251-257.
    [70]. Bhadeshia HKDH. High performance bainitic steels[J]. Mater Sci Forum. 2005, 500-501: 63-74.
    [71]. Garcia-Mateo C, Caballero F G, Bhadeshia HKDH. Mechanical properties of low-temperaturebainite[J]. Mater Sci Forum. 2005, 500-501:495-502.
    [72]. Matas S, Hehemann R F. Retained austenite and the tempering of martensite[J]. Nature, 1960, 187: 685-686.
    [73]. Rao, B V, Thomas G. Transmission Electron Microscopy Characterization of Dislocated "Lath" Martensite[C], Proc. Inter. Conf. Martensitic Transformations-79, MIT., 1979, 12-16.
    [74]. Thomas, G. M. Sarikaya. Lath Martensites in Carbon Steels Are They Bainitic Proc. Inter. Conf. Solid to Solid Phase Transformations, 1981, Ed H. I. Aaronson., D. E. Langhlin, R. E. Sekerkay and C. M. Wayman, TMS-AIME., 1982, 999-1004.
    [75]. Hsu T Y. Discussion of carbon during the formation of low-carbon martensite[J], Scripta Metallurgica,,1983,17:1285-1288.
    [76]. Krauss G. Steels: Heat Treatment and Processing Principles, ASM International,Metals Park, OH, USA, 1990.
    [77]. Matlock D K, Br?utigam V E, Speer J G. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel[J]. Mater Sci Forum. 2003, 426-432(2): 1089-1094.
    [78]. Speer J G, Streicher A M, Matlock D K, et al. Quenching and partitioning: a fundamentally new process to create high strength TRIP sheet microstructures. In: Symposium on the Thermodynamics, Kinetics, Characterization and Modeling of Austenite Formation and Decomposition[J]. ISS and TMS, Warrendale, PA, 2003, 505-522.
    [79]. Gerdemann F L H, Speer J G, Matlock D K. Microstructure and hardness of 9260 steel heat-treated by thequenching and partitioning process. In: MS&T2004 Conference Proceedings. Association for Iron and Steel Technology[J]. New Orleans, 2004, 439-449.
    [80]. Gerdemann FLH. Microstructure and hardness of 9260 steel heat-treated by the quenching and partitioning process[D] Aachen University of Technology, Germany, 2004.
    [81]. Clarke A J, Speer J G, Miller M K, et al.. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia, 2008, 56: 16-22.
    [82]. Rizzo F C , Edmonds D V, He K. et al. Carbon enrichment of austenite and carbide precipitation during the Quenching and Partitioning (Q&P) process[C]. in Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005. 2005. Phoenix, AZ.
    [83]. Speer J G, Edmonds D V, Rizzo F C, et al, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8: 219-237.
    [84]. Edmonds D V, He K, Rizzo F C, De Cooman B C, Matlock D K, Speer J G. Quenching and partitioning martensite-A novel steel heat treatment[J]. Materials Science and Engineering: A, 2006, 438-440: 25-34.
    [85].徐祖耀.钢热处理的新工艺[J].热处理. 2007, 22(1): 1-11.
    [86].徐祖耀.钢的组织控制与设计(一) [J].上海金属2007, 29(1): 1-8.
    [87].徐祖耀.钢的组织控制与设计(二) [J].上海金属. 2007, 29(2): 1-8.
    [88].徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀) (QPT)工艺[J].热处理. 2008, 2(2): 1-5.
    [89]. Hsu T Y. Design of structure, composition and heat treatment process for high strength steel. Mater Sci Forum[J], 2007, 561-565(3): 2283-2286.
    [90]. Zhong N, Wang X D, Wang L, Rong Y H, Enhancement of the mechanical properties of a Nb-microalloyed advanced high strength steel treated by quenching-partitioning-tempering process[J]. Materials Science and Engineering A, 2009,506:111-116.
    [91]. Wang X D, Zhong N, Rong Y H, Hsu T Y. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. Journal of Materials Research, 2009, 24(1): 260-267.
    [92]. Sarikaya M, Jhingan A K, Thomas G, Retained austenite and tempered martensite embrittlement in medium carbon steels[J]. Metall. Trans. A, 1983, 14: 1121-1133.
    [93]. Moor E De, Lacroix S, Clarke A J, et al.. Effect of Retained Austenite Stabilized via Quench and Partitioning on the Strain Hardening of Martensitic Steels[J]. Metallurgical and Materials Transactions A, 2008, 39: 2586-2595.
    [94]. Speer J G, Rizzo F C, Matlock D K, et al, The "quenching and partitioning" process: Background and recent progress[J]. Materials Research, 2005, 8: 417-423.
    [95]. De Cooman B C, Speer J G, Microstructure -properties relationships in quench and partition(Q&P) steel, implications for automotive anti-instrusion applications, Proc. 3rd Inter. Conf. on Advanced Structural Steels, 2006, Inst. Metals and Materials, Gyeongju, Korea,798-805.
    [96]. Hong S C, J.C. Ahn, S.Y. Nam, et al. Mechanical properties of high-Si plate steel produced by the quenching and partitioning process[J]. Metals and Materials International, 2007, 13: 439-445.
    [97]. Edmonds D V, He K, Miller M K, et al. Microstructural features of 'quenching and partitioning': A new martensitic steel heat treatment[C]. in Materials Science Forum. 2007. Vancouver.
    [98]. Rizzo F, Martins A R, Speer J G, et al. Quenching and partitioning of Ni-added high strength steels[C]. in Materials Science Forum. 2007. Vancouver.
    [99]. Thomas, G A, Speer J G, Matlock D K, Considerations in the application of the "quenching and partitioning" concept to hot rolled AHSS production[J]. Iron and Steel Technology, 2008, 5: 209-217.
    [100]. Streicher A M, Speer J G, Matlock D K, et al. Quenching and partitioning response of a Si-added TRIP sheet steel. In: J.G. Speer, Editor, Proceedings of the International Conference on Advanced High Strength Sheet Steels for Automotive Applications, AIST, Warrendale, PA, 2004, 51-62.
    [101].戎咏华,王晓东.高强度钢的组织设计与控制[C].第七届全国固态相变及凝固会议论文摘要集. 2006, 53-56.
    [102]. Matlock D K, Speer J G, Design conditions for the next generations of advanced high strength sheet steels, The 3rd International Conference on Advanced Structural Steels, Gyeongju, Korea, 2006, 774-781.
    [103]. Mileiko S T, The tensile strength and ductility of continuous fibre composites[J]. Journal of materials science, 1969, 4: 974-977.
    [104]. Hollomon J H, Tensile deformation, Trans. AIME, 1945, 162: 268-290.
    [1]. Pereloma E V. Transformation behaviour in thermomechanically processed C-Mn-Si steels with and without Nb[J]. Materials. Science. Engeneering, A, 1999, 273-275: 448-452.
    [2]. Bouet M, Root J, Yue S. The effect of Mo in Si-Mn Nb bearing TRIP steels[J]. Materials Science Forum, 1998, 284-286: 319-326.
    [3].范雄.金属X射线学[M].北京:机械工业出版社, 1989. 159-163.
    [4]. Durnin J, Ridal K A. Determination of retained austenite in steel by X-ray diffraction[J]. Journal of the Iron and Steel Institute, 1968, (1): 60-67.
    [5].梁新邦,李久林,陶立英等. GB/T 228-2002,金属材料室温拉伸试验方法[S].北京:中国标准出版社, 2002.
    [1]. Marder A R, Krauss G. Themorphology ofmartensite in iron-carbon alloys[J]. Trans. ASM, 1967, 60: 651-660.
    [2]. Marder J M, Marder A R. The morphology of iron-nickel massive martensite[J]. Trans. ASM, 1969, 62: 1-10.
    [3]. Morito S, Tanaka H, Konish R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789-1799.
    [4]. Kitahara H, Uej R, Tsuj i N, et al. Crystallographic features of lathmartensite in low-carbon steel[J]. Acta Mater.,2006, 54: 1279-1288.
    [5]. Morito S, Saito H, Ogawa T, et al. Effect of austenite grain size on thermophology and crystallography of lath martensite in low carbon steels[J]. ISIJ Inter., 2005, 45(1):91-94.
    [6]. Maki T, Tsuzaki T, Tamura I. Themorphology ofmicrostruc-ture composed of lathmartensites in steels [J]. Trans. Iron Steel Inst. Jpn., 1980, 20: 207-214.
    [7]. Gordon P, Cohen M, Rose R S. Effect of quenching-bath temperature on the tempering of high speed steel[J]. Trans. ASM., 1944, 33:411-454.
    [8].徐祖耀.奥氏体的稳定化及其对热处理的作用[J].北京钢铁工业学院学报,1957, (4):26-33.
    [9]. Sarikaya M, Thomas G, Steeds J W, et al. Solute elementpartitioning and austenite stabilization in steels [A]. In: Proc. Inter. Con.f Solid to Solid Phase Transformations-1981 [C]. Ed by H. I. Aaronson, Warrendale PA, The Metal.l Soc., 1982,1421-1425.
    [10]. Bhadeshia HKDH. Bainite in Steels[M]. London, The In-s.t Materials. Cambridge Press, 2001:373,385.
    [11]. DeCooman B C, Ed. Proc. InternationalConference on TR-IP-AidedHigh Strength FerrousAlloys[C]. Garbracht Redaktions and Industrie Press Service, Bad Harzberg, Germany, 2002.
    [12]. Matlock D K,. Krauss G, Speer J G. Microstructures and properties ofdirect-cooled forging steels[J]. Materials ProcessingTechnology, 2001,117:324-328.
    [13]. Matlock D K, Brautigam V E, Speer J G. Applica-tion of the quenching and partitioning (Q&P) process to a medium-carbon high Simicroalloyed bar steel[J]. Mater. Sc.i Forum, 2003,426-432:1089-1094.
    [14]. Speer J G, Matlock D K, DeCooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater.,2003,51:2611-2622.
    [15]. Rizzo F C, Edmonds D V, He K, et al. Carbon enrichment of austenite and carbide precipitation during the quenching and partition-ing (Q&P) process[A]. Proc. Inter. Con.f Solid to Solid Phase Transformations in Inorganic Materials-2005 [C]. vo.l 1. Diffusional Transformations, Ed by James M.Howe, David E. Laughlin, Jong K. Lee, Ulrich Dahmen and William A. Soffa, TMS, 2005, 535-544.
    [16]. Clarke A, Speer J G, Matlock D K, et al. Edmonds D V, He K.Microstructure and carbon partitioning in a 0.19% C-1.59%Mn-1.63% Si TRIP sheet steel subjected to quenching and partitioning (Q&P) process[A]. Proc. Inter.Con.f Solid-to-Solid Phase Trans-formations in InorganicMaterials-2005[C]. vo.l 2. Dis-placiveTransformations, Ed by JamesM. Howe, DavidE. Laughlin, Jong K. Lee, Ulrich Dahmen andW illiam A. Soffa, TMS, 2005, 99-108.
    [17]. Rizzo, F C, Edmonds D V, He K, et al. Carbon enrichment of austenite and carbide precipitation during the Quenching and Partitioning (Q&P) process. in Proceedings of an InternationalConference on Solid-Solid Phase Transformations in Inorganic Materials 2005. 2005. Phoenix, AZ.
    [18]. Speer, J G. High strength advanced sheet steels for automotive applications: The "tempering and partitioning" process promises high strength and expansion[J]. Promete Alta Resisteacia e Alongamento, 2005. 61. 103-105.
    [19]. Speer, J G, Rizzo F C, Matlock D K, et al, The "quenching and partitioning" process: Background and recent progress[J]. Materials Research, 2005. 8:417-423.
    [20]. DeCooman B C, Speer J G. Quench and partitioning steel: A new AHSS concept for automotive anti-intrusion applications[J]. Steel Research International, 2006. 77:634-640.
    [21]. Edmonds D V, He K, Rizzo F C, et al, Quenching and partitioning martensite-A novel steel heat treatment[J]. Materials Science and Engineering A, 2006. 438-440. 25-34.
    [22]. Edmonds D V, He K, Miller M K, et al. Microstructural features of 'quenching and partitioning': A new martensitic steel heat treatment[C]. in Materials Science Forum. 2007. Vancouver.
    [23]. Hong S C., Ahn J C, Nam S Y, et al. Mechanical properties of high-Si plate steel produced by the quenching and partitioning process[J]. Metals and Materials International, 2007. 13: 439-445.
    [24]. Rizzo F, Martins A R, Speer J G, et al. Quenching and partitioning of Ni-added high strength steels[C]. in Materials Science Forum. 2007. Vancouver.
    [25]. Gladman, T. The physical metallurgy of microalloyed steels[M], London, The Institute of Materials. 1997.
    [26].董翰.低合金钢的强化和韧化理论研究,超纯净超细晶合金化高强高韧钢(文集1),钢铁研究总院,北京,1998.
    [27]. Chunfang Wang, Maoqiu Wang, Jie Shi. Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scritpa Mater, 2008, 58,492-495.
    [28]. Grange R A. Strengthening steel by austenite grain refinement[J]. Trans. ASM,1966,59:26-48.
    [29]. Morito S, Yoshida H, Maki T. Effect of block size on the strength of lath martensite in low carbon steels[J]. Mater. Sci. Eng, A, 2006, 438-440: 237-240.
    [30].惠卫军,董瀚,翁宇庆. 42CrMoVNb细晶高强度钢的力学行为[J].材料热处理学报, 2005,26:57-61.
    [31]. Xu Z Y. Design of structure, composition and heat treatment process for strength steel[J]. Mater Sci Forum[J], 2007, 2283: 561.
    [32]. Zhong N, Wang X D, Wang L, et al. Enhancement of the mechanical properties of a Nb-microalloyed advanced high strength steel treated by quenching-partitioning-tempering process[J]. Materials Science and Engineering A, 2009,506:111-116.
    [33]. Wang X D, Zhong N, Rong Y H, Hsu T Y. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. Journal of Materials Research, 2009, 24(1): 260-267.
    [34]. Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta metall. 1959,7: 59-60.
    [35].戚正风.金属热处理原理[M].北京:机械工业出版社, 1987.
    [36]. Clarke A J, Speer J G, Miller M K, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia, 2008. 56: 16-22.
    [37]. Santofimia M J, Zhao L, Sietsma J. Model for the interaction between interface migration and carbon diffusion during annealing of martensite-austenite microstructures in steels[J]. Scripta Materialia, 2008, 59:159-162.
    [38]. Clarke A J, Speer J G, Matlock D K, et al. Influence of carbon partitioning kinetics on final austenie fraction during quenching and partitioning[J]. Scripta Materialia,2009, 61:149-152.
    [39]. Santofimia M J, Speer J G, Clarke A J, et al. Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing[J]. Acta Materialia, 2009. 57: 4548-4557.
    [40]. Zhong N, Wang X D, Rong Y H, et al. Interface migration between martensite and austenite during quenching and partitioning (Q&P) process[J]. J. Mater. Sci. & Technol., 2006, 22: 751-754.
    [41]. Zhong N, Wang X D, Rong Y H, et al. Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching–partitioning–tempering process[J]. Materials Science and Engineering A, 2009, 506: 111-116.
    [42]. Matlock D K, Speer J G. Lee H C ed., The 3rd International Conference on Advanced Structural Steels. Korea: The Korean Institute of Metals and Materials, 2006: 774.
    [43]. Mileiko S T, Speer J G. J Mater Sci[J], 1969, 4: 974.
    [44].许为宗.超高强度增强塑性淬火-碳分配钢的组织设计.上海交通大学硕士论文[D], 2010.
    [45]. Morris Jr J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel [J]. ISIJ Int, 2003; 43: 410.
    [46]. Guo Z, Lee C S, Morris Jr J W. On coherent transformations in steel[J]. Acta Mater, 2004; 52: 5511.
    [47]. Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science, 2000; 287: 1463.
    [48]. Canale L C F, Tootten G E, Canale L C F, et al. Failure Analysis of Heat Treated Steel Components, ASM International publishing, Inc. Ohio, USA, 2008:255-284.
    [49]. Callister Jr W D. Materials Science and Engineering: An Introduction 2th ed.[M], John Wiley & Sons, New York, 1985.
    [1]. Roberts M J. Effect of transformation substructure on the strength and toughness of Fe-Mn alloys[J]. Metallurgical Transactions A, 1970, IA(12): 3287-3294.
    [2]. Smith D w'Hehemann R F. Influence of structural parameters on the yield strength of tempered martensite and lower bainite[J]. Journal of the Iron and Steel Institute, 1971, 209(part5): 476-481.
    [3]. Swarr T E, KlatlSS G. The effect of structure on the deformation of as—quenched and tempered martensite in an Fe-0.2 pet alloy[J]. Metallurgical Transactions A, 1976, 7A(1): 41-48.
    [4]. Inoue T, Matsuda S, Okamura Y, et al. The fracture of a low carbon tempered martensite[J]. Trans. JIM, 1970, 11:36.
    [5]. Kelly P M. Acta Metall[J], 1965,13:635.
    [6]. Marder A R, Krauss G. The morphology of martensite in iron-carbon alloys[J]. Trans. ASM, 1967, 60:651.
    [7]. Schastlivtsev V M, Blind L B, Rodionov D P, et al. Structure of a martensitic in region in constructional steels[J]. Phys. Met. Metall, 1988,66:123-132.
    [8]. Matsuda S, Inoue T, Mimura H, et al. In: Proc. of Int. Sympo. on Toward Improved Ductility and Toughness. Kyoto, Japan, 1971:47.
    [9]. Kelly PM, Jostsons A, Blake RG. The orientation relationship between lath martensite and austenite in low carbon, low alloy steels[J]. Acta Metall, 1990,38:1075.
    [10]. Morito S, Tanaka H, Konishi R,et al. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia, 2003, 51:1789-1799.
    [11]. Kitahara H, Ueji R, Ueda M, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia, 2006,54(5):1279-1288.
    [12]. Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels. Materials Science and Engineering A, 2006, 438-440(25): 237-240.
    [13]. Naylor J P. The influence of the lath morphology on the yield stress and transition temperature of martensitic-bainitic steels. Metallurgical Transactions A, 1979, 10A(7): 861-873.
    [14]. Naylor J P, Blondeau R B. The respective roles of the packet size and the lath width on toughness. Metallurgical Transactions A, 1 976, 7A(6): 891-894.
    [15]. Tomota Y., Tokuda H, Y. Adachi, M. Wakita, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction[J]. Acta Materialia, 2005, 52: 5737-5745.
    [16]. Srinivasan G R, Wayman C W. Transmission electron microscope study of the bainite transformation in iron-chromium-carbon alloys[J]. Acta Metall, 1968, 16:609.
    [17]. Wayman C M, Hanafee J E, Read T A. On the crystallography of martensite, the {225} transformation in alloys of iron[J]. Acta Metall[J], 1961,9:391.
    [18]. Wakasa K, Wayman C M. The morphology and crystallography of ferrous lath martensite studies of Fe-20% Ni-5% Mn optical microscopy[J]. Acta Metall, 1981, 29:937- 991,1013.
    [19]. Kelly P M, Jostsons A, Blake R G. The orientation relationship between lath martensite and austenite in low carbon, low alloy steels[J]. Acta Metall, 1990, 38:1075.
    [20]. Kelly P M. Crystallography of lath martensite in steels[J]. Mater Trans JIM, 1992, 33:235.
    [21]. Miyamoto G, Takayama N, Furuhara T. Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis[J]. Scripta Materialia, 2009, 60:1113.1116.
    [22]. Gourgues A F, Flower H,Lindley T. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures[J]. Mater. Sci. Technol, 2000, 16:26-40.
    [23]. Sonderegger B, Mitsche S, Cerjak H. Martensite laths in creep resistant martensitic 9–12%Cr steels– calculation and measurement of misorientations[J]. Mater. Characterization, 2007, 56:874-882.
    [24]. Miyamoto G., Takayama N, Furuhara T. Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis[J]. Scripta Mater, 2009. 60:1113-1116.
    [25]. Gourgues A F. Application of electron backscatter diffraction to the study of phase transformations[J]. Int. Mater. Rev, 2007, 52:65.
    [26]. Wang C F, Wang M Q, Shi J,et al. Effect of microstructure refinement on the toughness of lowcarbon martensitic steel[J]. Scr Mater, 2008, 58:492.
    [27]. Wang C F, Shi J, Cao W Q. Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel[J]. Materials Science and Engineering A, 2010, 527:3442-3449.
    [28]. Barcelo F, de Carlan Y, Bechade J L, et al. Orientation relationship in Eurofer martensitic steels[J]. Phase Trans, 2009, 82: 808-820.
    [29]. Nolze G, Irrational orientation relationship derived from rational orientation relationships using EBSD data[J]. Cryst. Res. Technol, 2006, 41:72.
    [30]. Wang C F, Wang M Q, Shi J,et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel[J]. J Mater Sci Technol, 2007, 23:659-64.
    [31]. Morris J J W, Guo Z, Krenn C R, et al., The limits of strength and toughness in steel[J]. ISIJ Int, 2001, 41:599-611.
    [32]. Morris J J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel[J]. ISIJ Int., 2003,43:410-9.
    [33]. Bhadeshia, H K D H. 52nd Hatfield Memorial Lecture Large chunks of very strong steel[J]. Materials science and technology, 2005, 21(11): 1293-1302.
    [34]. Garcia–Mateo C, Caballero F G, Bhadeshia H K D H. Acceleration of low-temperature bainite[J]. ISIJ. Int, 2003 43:1238.
    [35]. Garcia–Mateo C, Caballero F G, Bhadeshia H K D H. Low temperature bainite[J]. J. Phys. IV, 2003,112:285.
    [36]. Streicher A M, Speer J G, Matlock D K, et al. Quenching and partitioning response of a Si-added TRIP sheet steel. In: J.G. Speer, Editor, Proceedings of the International Conference on Advanced High Strength Sheet Steels for Automotive Applications, AIST, Warrendale, PA, 2004, 51-62.
    [37]. Wang X D, Zhong N, Rong Y H, et al. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. Journal of Materials Research, 2009, 24(1): 260-267.
    [38]. Zhong N, Wang X D, Wang L, et al. Enhancement of the mechanical properties of a Nb-microalloyed advanced high strength steel treated by quenching-partitioning- temperingprocess[J]. Materials Science and Engineering A, 2009, 506:111-116.
    [39]. Chatterjee S, Bhadeshia HKDH. TRIP-assisted steels: cracking of high-carbon martensite[J]. Mater. Sci. Technol, 2006, 22:645.
    [40]. Lee C G, Kim S J, Kim T H. Effects of volume fraction and stability of retained austenite on formability in a 0.1 C-1.5 Si-1.5 Mn-0.5 Cu TRIP-aided cold-rolled steel sheet[J]. Mater. Sci. Eng. A, 2004, 371:16-23.
    [41]. Hollomon J H. Tensile deformation[J], Trans. AIME, 1945, 162: 268-290.
    [42]. Li W, Xu W Z, Wang X D, et al. Measurement of microstructural parameters of nanocrystalline Fe-30 wt.%Ni alloy produced by surface mechanical attrition treatment[J]. Journal of Alloys and Compounds, 2009, 474(1-2): 546-550.
    [43]. Woo W, Balogh L, Ungár T, et al. Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis[J]. Materials Science and Engineering: A, 2008, 498(1-2): 308-313.
    [44]. Stokes A. A numerical Fourier-analysis method for the correction of widths and shapes of lines on X-ray powder photographs[J]. Proceedings of the Physical Society, 1948, 61: 382-391.
    [45]. Kim Y S, Kim S S, Cheong Y M, et al. Determination of dislocation density and composition ofβ-Zr in Zr-2.5 Nb pressure tubes using X-ray and TEM[J]. Journal of nuclear materials, 2003, 317(2-3): 117-129.
    [46]. Sherif M, Mateo C G, Sourmail T, et al. Stability of retained austenite in TRIP-assisted steels[J]. Materials science and technology, 2004, 20(3): 319-322.
    [47]. Bhadeshia H K D H. TRIP-assisted steels?[J]. ISIJ international, 2002, 42(9): 1059-1060.
    [48]. Horváth G, Chinh N Q, Gubicza J, et al. Plastic instabilities and dislocation densities during plastic deformation in Al-Mg alloys[J]. Materials Science and Engineering: A, 2007, 445-446:186-192.
    [49]. Kelly P M, Zhang M X. Edge-to-edge matching-a new approach to the morphology and crystallography of precipitates[J]. Mater. Forum, 1999, 23:41-52.
    [1]. Han J M, Kim Y G. The role of deformation twinning on mechanical properties of an auatenitic Fe-30Mn-1.2Al-0.3C alloy[J]. Acta. Metall. Mater., 1991, 39(9): 2169-2175.
    [2]. Sugimoto K I, Kobayashi M, Hashimoto S I, Ductility and strain-induced transformation in a high-strength transformation—induced plasticity-aided dual-phase steel[J] Metallurgical Transactions A,1992, 23(11):3085-3091.
    [3]. Wang X D, Zhong N, Rong Y H, et al. Novel ultrahigh-strength nanolath martensitic steel byquenching-partitioning-tempering process[J]. Journal of Materials Research, 2009, 24(1): 260-267
    [4]. Zhong N, Wang X D, Wang L, et al. Enhancement of the mechanical properties of a Nb-microalloyed advanced high strength steel treated by quenching-partitioning- tempering process[J]. Materials Science and Engineering A, 2009, 506:111-116.
    [5]. Wang X D, Xu W Z, Guo Z H, Wang L, Rong Y H, Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching-partitioning- tempering process[J]. Materials Science and Engineering A, 2010,527(15):3373-3378.
    [6].陆学善.相图与相变[M].合肥:中国科学技术出版社, 1990: 323-500.
    [7]. Tsuktani I, Hashimoto S I, Inoue T,Effects of Silicon and Manganese Addition on Mechanical Properties of High-strength Hot-rolled Sheet Steel Containing Retained Austenite[J], ISIJ International,1991,31(9):992-1000.
    [8]. Sakuma Y, Matlock D K, Krauss G. Intercritically annealed and isothermally transformed 0.15Pct C containing 1.2Pct Mn and 4 Pct Ni:part two:Effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation[J]. Metallurgical Transaction A, 1992(23):1233-1241.
    [9]. Vasiakos A N, Ohlert J, Giasla K, et al. Low-alloy TRIP steels: a correlation between mechanical properties and the retained austenite stability[J]. Steel research, 2002, 73: 249-252.
    [10]. Wang X D, Huang B X, Rong Y H, et al. Microstructure and stability of retained austenite in TRIP steels[J]. Materials Science and Engineering A, 2006, 438-440:300-305.
    [11]. Jack K H. Structural transformations in the tempering of high-carbon martensitic steels[J]. J Iron Steel Inst., 1951, 169: 26-36.
    [12]. Li H Y, Lu X W, Wu X C, et al. Bainitic Transformation during the Two-step Quenching and Partitioning Process in a Medium Carbon Steel Containing Silicon[J]. Materials Science and Engineering A, 2010, 527(23):6255-6259.
    [13]. Wilson D V, Russell B. The contribution of precipitation to strain aging of low carbon steels[J]. Acta Metall. 1960, 8(7): 468-479.
    [14]. Ohmori Y, Tamura I. Metall. Trans. A[J], 1992,23:2737-2751.
    [15]. Tan Y. Acta Metallurgica Sinica[J], 1985,21:181-186.
    [16]. Edmonds D V, He K, Miller M K, et al. 5th Int. Conf. on Processing and Manufacturing of Advanced Materials[C], Vancouver, Canada, 2006:4819-4825.
    [17]. Li H Y, Lu X W, Li W J, et al. Microstructure and Mechanical Properties of an Ultra-high Strength 40SiMnNiCr Steel during the one-step Quenching and Partitioning Process[J]. Metall. Mater. Trans. A, 2010, 41(5):1284-1300.
    [18]. Grassel O, Kruger L, Frommeyer G. Higll strength Fe-Mn-Al(Si) TRIP/TWIP steels development-properties-application[J]. Int J.Plasticity, 2000,16:1391-1409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700