用户名: 密码: 验证码:
水稻脆性突变体fp2和矮秆突变体d63的精细定位及基因表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞壁在植物的生长发育、机械支持、物质运输以及防卫反应等方面具有重要作用。而机械强度能够直观反映植物细胞壁的特性,所以研究细胞壁相关组分的合成机制,阐明控制水稻机械强度的分子机理,对于提高水稻的抗倒伏性、抗逆性及秸秆利用率具有重要的理论意义和应用价值。
     本研究对EMS诱变获得的一份水稻脆性突变fp2进行了研究。通过图位克隆技术从fp2突变体中分离了FP2基因,并采用转基因技术对FP2基因进行功能互补验证,同时分析其在不同器官中的基因表达模式。研究结果表明,FP2基因是一个纤维素合酶家族基因—OsCESA7,对植物细胞壁的纤维素合成至关重要。主要研究结果如下:
     1.突变体fp2与野生型E优532相比,幼穗及茎秆的机械强度明显下降,且节间长度缩短,尤其以第一节间长度缩短最明显。
     2.采用F2分离群体对突变体fp2进行了精细定位。fp2受一对隐性单基因控制,本实验室过去已将该基因初步定位于水稻第10染色体长臂上两个分子标记RM271和RM25547之间。在此基础上,本研究根据该区域日本晴和93-11的序列差异,设计Indel标记,利用fp2/日本晴的F2遗传分离群体中2120株隐性单株将该基因精细定位于Indel3-10和Inde12-4间,物理距离大约为28.4kb。
     3.采用Rice Genome Annotation Project网站预测了5个候选基因。在精细定位的基础上,利用GrameneMarkerView (http://www.gramene.org/Oryza_sativa/markerview)网站进行比对,Inde13-10位于BAC克隆AC022457的17175900-17176167间,Inde12-4位于BAC克隆AC022457的17205891-17204299间。继续用Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/)网站对Indel3-10和Inde12-4间的候选基因进行预测,共获得5个TIGR Rice Loci,分别是LOC_Os10g32950, LOC_Os10g32960, LOC_Os10g32970, LOC_Os10g32980, LOC_Os10g32990。
     4.利用NCBI Blastp网站对获得的5个候选基因进行功能注释,结果显示,LOC_Os10g32950是假定未分类的逆转录转座子蛋白,LOC_Os10g32960是假定表达的过氧化物酶组装蛋白12,LOC_Os10g32970是假定表达的真核生物翻译起始因子,LOC_Os10g32980是表达的OsCESA7-纤维素合酶,LOC_Os10g32990是假定表达的类受体蛋白激酶2前体。其中LOC_Os10g32980是一个纤维素合酶基因,与细胞壁中纤维素的合成相关,因此,该基因可能是控制fp2表型的基因。
     5.fp2和野生型在LOC_Os10g32980的DNA和氨基酸序列存在差异。根据LOC_Os10g32980的序列,利用primer premier5.0设计引物,对fp2和野生型进行扩增、测序,证实该基因在第9外显子上存在点突变(GGC→GAC),与之对应的蛋白质的第924位氨基酸也发生了变异(Gly→sp),表明LOC_Os10g32980是导致fp2发生脆性的基因。
     6.FP2是一个组成型表达基因。采用实时荧光定量PCR检测LOC_Os10g32980在不同器官中的表达,结果显示该基因在根、茎、幼穗和叶片中均表达,且存在差异。其中,幼穗中表达量最高,茎中次之,叶片的表达量最低。
     7.互补表达验证结果表明LOC_Os10g32980是FP2基因。以pOsAct2-1-nos为骨架载体,野生型的cDNA序列为目的片段构建互补表达载体,通过农杆菌介导法转化至突变体fp2成熟胚愈伤组织中,获得的转化植株能够恢复野生型表型,进一步证明了LOC_Os10g32980是FP2基因。
     8.对fp2和野生型的mRNA二级结构和蛋白质跨膜结构进行分析,结果显示点突变导致LOC_Os10g32980基因的mRNA二级结构存在差异,而蛋白质跨膜结构没有变化。
     本论文还对另一份水稻矮秆突变体d63进行了研究。株高和分蘖是组成水稻株型的重要农艺性状,和光合效率、抗倒伏等密切相关,是影响水稻产量的重要因素之一上世纪60年代,矮秆基因的有效应用使水稻产量有了一次质的飞跃,由此引发了水稻株高矮化分子机理的热门研究。因此,水稻株高的分子机理研究对水稻育种具有重要的理论和应用意义。本研究中,我们在SARⅢ二倍体与明恢63杂交得到的双胚苗株系中发现了一株自然突变的矮秆突变体,暂命名为d63,并从农艺性状调查、表型观察、遗传分析和基因定位等方面进行了研究。主要研究结果如下:
     1.矮秆突变体d63来源于双胚苗田间自然突变。突变体d63与野生型相比,株高明显降低,大约为野生型的一半;分蘖显著增加,大约是野生型的3倍;结实率和千粒重等都有显著降低。
     2.生理学分析表明,突变体d63和野生型对施加的外源赤霉素(GA3)和油菜素内酯(BR)的反应一致;GA3诱导的无胚种子的a-淀粉酶活性与野生型无差异。表明突变表型与GA3和BR的合成途径没有相关性。
     3.细胞学切片观察表明,与野生型相比,突变体d63茎秆的薄壁细胞体积变小,且细胞内淀粉粒数目减少;维管束发育迟缓。
     4.遗传分析表明,突变体d63受一对隐性单基因控制。本研究利用d63分别和日本晴、93-11做杂交构建遗传群体,并对其F2遗传分离群体进行表型调查,结果发现正常植株和突变植株的比例符合3:1的孟德尔分离规律,说明d63受一对隐性单基因控制。
     5.采用图位克隆的方法将该基因定位于水稻第8染色体短臂上靠近端粒的区域。本研究利用d63/日本晴的F2遗传分离群体中751株隐性单株,对突变体d63进行分子标记定位,最终将D63基因定位于chr8短臂上靠近端粒的区域,距离标记RM22195大约0.4cM。
     6.利用Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/)网站对RM22195至端粒区域的候选基因进行预测,共获得14个候选基因。含有6个反向表达基因,8个正向表达基因;而LOC_Os08g0108、LOC_Os08g01020、 LOC_Os08g01054和LOC_Os08g01070这4个基因的注释为逆转录转座子蛋白,功能未知。
     7.对突变体d63和野生型的有功能的10个候选基因进行测序和序列比对,发现候选基因LOC_Os08g01110编码区存在点突变,对应的蛋白质也存在氨基酸突变。搜索已发表的矮秆基因,未发现同源序列,推测该基因可能是控制d63突变表型的一个新基因。
     8.对突变体d63和野生型的mRNA二级结构和蛋白质跨膜结构进行分析,结果显示点突变导致基因LOC_Os08g01110的mRNA二级结构发生彻底的改变,而蛋白质跨膜结构没有变化。
Cell wall plays critical roles in plant growth, nutriation transportation, mechanical strength and defense response. Mechanical strength is an important plant agronomic trait. Therefore, it is important to study on synthetic mechanism of cell wall components and molecular regulatory mechanism of rice mechanical strength, which have an important theoretical significance and application value on increasing rice lodging resistant, stress resistance and utilization rate of straw.
     In this dissertation, we isolated the gene FP2from the fp2mutations induced by EMS. Meanwhile, we analysed the function of the gene FP2by transgenetic technology and gene expression pattern of FP2in different organs. The results displayed that the gene FP2was one of the CesA gene families responsible for the cellulose synthesis, OsCESA7. The main results were as follows.
     1. Comparison with the wild type Eyou532, the mutant fp2exhibited not only obviously declined mechanical strength of young panicles and stems, but also shortened internodal length. The top1st internode was particularly shrinked.
     2. Fine mapping was performed for the mutant fp2by map-based cloning. The previous analysis indicated that the mutant fp2was controlled by a single recessive gene. The gene was primary located on the arm of chr10with the region between SSR markers RM271and RM25547. Depending on the primary mapping, we designed new Indel markers on the basis of difference in sequences between Nipponare and93-11.2120F2individuals with FP2gene derived from crossing between fp2and Nipponbare were screened for the fine mapping, and the FP2was located on the arm of chr10between Inde13-10and Inde12-4which distance was narrowed to28.4kb regions.
     3. There are5putative genes predicted by Rice Genome Annotation Project. Based on the fine mapping and website GrameneMarkerView (http:www.gramene.org/Oryza_sativa/markerview) predicted Indel3-10and Indel2-4were located on BAC bank AC022457in17175900-17176167and17205891-17204299respectively. Using Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/),5TIGR Rice Loci were predicted between Indel3-10and Inde12-4. They were LOC_Os10g32950, LOC_Os10g32960, LOC_Os10g32970, LOC_Os10g32980and LOC_Os10g32990.
     4. The function annotation of the5putative genes was conducted by NCBI Blastp. The results indicated that LOC_Os10g32950is putatively unclassified retrotransposon protein, LOC_Os10g32960is putatively expressed peroxisome assembly protein12, LOC_Os10g32970is putatively expressed eukaryotic translation initiation factor, LOC_Os10g32980is expressed CESA7-cellulose synthase and LOC_Os10g32990is putatively expressed receptor-like proteinkinase2precursor. The results showed that LOC_Os10g32980is cellulose synthase for the cellulose synthesis, which might result in phenotype of fp2mutant.
     5. DNA and amino acids sequences of LOC_Os10g32980were found to be different between the wild type and fp2. Therefore, we amplified and sequenced the gene LOC_Os10g32980from wild-type plants and fp2respectively. The results of DNA sequencing revealed that the fp2mutant had a point mutation of GGC→GAC at the9th extron of locus Os10g32980. The predicted protein sequences had an amino acid mutation of Gly→Asp at the924amino acid. These results indicated that the locus LOC_Os10g32980was the FP2gene.
     6. FP2is a constitutive expression gene. The expression levels of LOC_Os10g32980were analyzed by real-time PCR in different organs. There were difference in expression levels among the roots, stems, young panicles and leaves. The expression level of the gene was highest in the young panicles, followed in the stems and lowest in the leaves.
     7. Complementation test indicated that the LOC_Os10g32980was the FP2gene. The vector pOsAct2-1-nos containing the cDNA of wild type were introduced into Agrobacterium tumefaciens EHA105, and then transformed into fp2callus. The phenotype of transgenic fp2plants could be rescued. LOC_Os10g32980was further proved to be FP2gene.
     8. The deduced mRNA secondary structure and protein transmembrane structure of LOC_Os10g32980from the wild type and fp2individuals showed that the single point mutation resulted in RNA conformational change, but no influence onprotein transmembrane structure.
     In present experiment, a novel dwarf mutant d63in rice was studied. Tiller number and plant height, which closely related to efficiency of photosynthesis and lodging resistant, and are important traits of plant type and influence grain production in rice. In the1960s, dwarfism gene was adopted to improve crop quality and significantly to increase the grain yield. It is important to reveal the molecular mechanism of plant height, which has an important significance on rice seed breeding. In this study, we reported a dwarf mutant d63 which was a spontaneous mutation derived from the Twin-seedling progenies crossed by diploid SARIII and Minghui63. We researched d63by agronomic traits investigation, phenotype observation, genetic analysis and gene mapping. The main results were as follows.
     1. The dwarf mutant d63was a spontaneous mutation derived from the Twin-seedling progenies. Compared with the wild type, the d63mutant showed multiple abnormal phenotypes, such as dwarfism (about half of the wild type), higher tiller numbers (about3times of wild type), reduced seed-setting and grain weight, etc.
     2. The dwarf mutant d63and wild type had the same response to wild type by dealing with gibberellic acid (GA) and Brassinosteroid (BR). There was no difference in the a-amylase activity of GA3-induced embryoless half-seed derived respectivedly from d63and the wild type respectivedly. The results showed that the biosynthetic pathway of GA3and BR was not responsible for the dwarf phenotype.
     3. Microscopic section observation revealed that the mutant d63exhibited smaller parenchyma cells, decreased starch particles accumulation and delayed vascular bundle development compared with the wild type.
     4. Genetic analysis indicated that the mutant was controlled by a single recessive gene. In this study, two F2populations were developed from the crossing between d63and Nipponbare,d63and93-11, respectively. Investigating the normal plant and mutation plant, the segregating rate was3:1that corresponded to Mendal's law of separation. The results illustrated that the mutant was controlled by a single recessive gene.
     5. The gene was located on the short arm of chr8and near tolemere by map-based cloning. In the study,751F2individuals derived from d63and Nipponbare cross were screened for the fine mapping, and D63was located on the short arm of chr8with the genetic distance of0.4cM to RM22195.
     6. We have analyzed and predicted the target sequence by Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/),14putative genes between marker RM22195and the telomere were predicted. Six of them are reverse expressed genes and the rest of eight genes are positive expressed genes. Among them, LOC Os08g01008、LOC_Os08g01020、LOC_Os08g01054and LOC_Os08g01070are retrotransposon protein of unknown function.
     7. The sequences comparison of the10putative genes from d63and the wild type showed that point mutations exist in the coding region of gene LOC_Os08g01110. There were amino acids changes in corresponding proteins. No homologous sequences of LOC_Os08g01110were found on the target region after searching all published dwarf genes. Therefore, the results suggested that LOC_Os08g01110is a new gene which responsible for phenotypes of d63.
     8. The deduced mRNA secondary structure and protein transmembrane structure of LOC_Os08g01110from d63and the wild type, the results showed that the mutations had a striking influences to RNA conformational, but no influences to protein transmembrane structure.
引文
1. Cosgrove, D.J., Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol,1997.13:p.171-201.
    2. 徐建第,水稻脆性突变体fp2的遗传分析、表型分析和候选基因预测.四川农业大学博士学位论文,2007.
    3. Varner, J.E.and L.S.L., Plant cell wall architecture. Cell,1989.56(2):p.231-239.
    4. 余君、不同预处理工艺对稻壳纤维素酶酶解效果的影响.华中农业大学博士学位论文,2008.
    5. 刘晨娟,脆性水稻秸秆的生物预处理发酵华中农业大学硕士学位论文,2010.
    6. Buchanan B., W.G., and Jones R, Biochemistry and Molecular Bilolgy of Plants. American Society of Plant Physiology,2000.
    7. 李盛本,水稻细胞壁合成调控基因 BC10的克隆与功能研究.中国科学院遗传与发育生物学研究所博士学位论文,2007.
    8. N.C., C., Structure and Biogenesis of the Cell Walls of Grasses. Annu Rev of Plant Physiol Plant Mol Biol,1996.47:p.445-476.
    9. K, N., The role of endoxyloglucan transferase in the organization of plant cell walls. Int Rev Cytol, 1997.173:p.157-206.
    10. Nishitani K., and N.D.J., Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units. J Biol Chem,1991.266:p.6539-6543.
    11. Carpita N.C., and G.D.M., Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J,1993.3:p. 1-30.
    12. Iiyama K., L.T., and Stone B., Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry,1990.29:p.733-737.
    13. Ronald D.H., J.R., and John H.G., Cell wall cross-linking by ferulates and diferulates in grasses. Journal of the Science of Food and Agriculture,1999.79:p.403-407.
    14.李雄彪,吴绮,《植物的细胞壁》.北京出版社,1993.
    15. Turner S.R., and S.C.R., Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell,1997.9:p.689-701.
    16. Zhong R., B.D.H., and Ye Z.H., Fibers. A model for studying cell differentiation, cell elongation, and cell wall biosynthesis. Plant Physiol,2001.126:p.477-479.
    17. Delmer, D.P. and Y. Amor, Cellulose Biosynthesis. The Plant Cell,1995.7:p.14.
    18.张景强,林鹿,孙勇,MitchenG,刘世界,纤维素结构域解结晶的研究进展.林产化学与工业,2008.28(6):p.109-114.
    19. I, T., The sites of cellulose synthesis in algage: diversity and evolution of cellulose-synthesizing enzyme complexes. Journal of Phycology,1999.35:p.635-655.
    20. Nishiyama Y, S.J., Chanzy H, Langan P, Crystal structure and hydrogen bonding system in cellulose la from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 2003.125:p.14300-14306.
    21. Sugiyama J, P.J., Chanzy H., Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 1991.24:p.2461-2466.
    22. Kuga S, T.S., Brown Jr RM, Native folded-chain cellulose II. Polymer,1993.34: p.3293-3297.
    23.程曦,郝怀庆,彭励,植物细胞壁中纤维荣合成的研究进展.热带亚热带植物学报,2011.19(3):p.283-290.
    24. Baker TA, B.S., Polymerases and the replisome:machines within machines, cell,1998.92:p. 295-305.
    25. Brown Jr RM, M., Cellulosemicrofibrils:visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proceedings of the National Academy of Sciences of the USA,1976.73:p.143-147.
    26. Mueller SC, B.J.R., Evidence for an intramembrane component associated with a cellulose microfibril synthesizing complex in higher plants. Journal of Cell Biology,1980.84:p.315-326.
    27. Itoh T, B.J.R., The assembly of cellulose microfibrils in Valonia macrophysa Kutz. Planta,1984.160: p.372-381.
    28. Tsekos I, R.H., Occurrence of the putative microfibril-synthesizing complexes (linear terminal complexes) in the plasma membrane of the epiphytic marine red alga Erythrocladia subintegra Rosenv. Protoplasma,1992.169:p.57-67.
    29. RM, B.J., Cellulose microfibril assembly and orientation:recent developments. Journal of Cell Science Supplement,1985.2:p.13-32.
    30. K, O., Structure and phylogeny of cell coverings. Journal of Plant Research,2002.115:p.283-288.
    31. Haigler CH, B.J.R., Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma,1986.134:p.111-120.
    32. Itoh T, B.J.R., Development of cellulose synthesizing complexes in Boergesenia and Valonia. Protoplasma,1988.144:p.160-169.
    33. Tsekos I, O.K., Brown Jr RM, The formation and development of cellulose-synthesizing linear terminal complexes (TCs) in the plasma membrane of the marine red alga Erythrocladia subintegra Rosenv. Protoplasma,1996.193:p.33-45.
    34. H, D.D.P.H.C., The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metab Eng,2002.4(1):p.22-28.
    35. Montezinos D., and B.M., Surface architecture of the plant cell: biogenesis of the cell wall, with special emphasis on the role of the plasma membrane in cellulose biosynthesis. J Supramol Struct, 1976.5:p.277-290.
    36. W, H., Arrays of plasma-membrane "rosettes" involved in cellulose microfibril formation of Spirogyra. Planta,1983.159:p.1432-2048.
    37. D.J, C., Growth of the plant cell wall. Nat Rev Mol Cell Biol,2005.6:p.850-861.
    38.李春秀,齐力旺,王建华,Cellulose synthase gene and cellulose biosynthesis in plants生物技术通报,2005.4:p.5-11.
    39. Ross P., Weinhouse H.,Aloni Y., et al., Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature,1987.325(6101):p.279-281.
    40. Pear J.R., K.Y., Schreckengost W.E., et al, Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA,1996.93:p. 12637-12642.
    41. C., S., Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol,2006.22:p.53-78.
    42. T., R., Higher plant cellulose synthases. Genome Biol,2000.1:p.3001.
    43. Saurin A.J., B.K.L., Boddy M.N., et al, Does this have a familiar RING? Trends Biochem Sci,1996. 21:p.208-214.
    44. Saxena I.M., and B.R.M., Identification of cellulose synthase(s) in higher plants:sequence analysis of processive β-glycosyltransferases with the common motif 'D, D, D35Q(R,Q)XRW. Cellulose, 1997.4:p.33-49.
    45. Marks D.L., D.M., Wu K., et al., Identification of active site residues in glucosylceramide synthase. A nucleotide-binding catalytic motif conserved with processive beta glycosyltransf erases. J Biol Chem,2001.276:p.26492-26498.
    46. Saxena I.M., B.R.M., Jr., and Dandekar T, Structure--function characterization of cellulose synthase: relationship to other glycosyltransf erases. Phytochemistry,2001.57:p.1135-1148.
    47. Taylor N.G., L.S., and Turner S.R., Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell,2000.12:p.2529-2540.
    48. Richmond, T.A.and C.R., The cellulose synthase superfamily. Plant Physiol,2000.124(2):p. 495-498.
    49. Hazen, S.P., J. S. Scott-Craig, et al., Cellulose synthase-like genes of rice. Plant Physiol,2002. 128(2):p.336-340.
    50. Zhu, Y., J. Nam, et al., Agrobacterium-mediated root transformation is inhibited by mutation of Arabidopsis cellulose synthase-like gene. Plant Physiol,2003.133(3):p.1000-1010.
    51. Samuza, A.and C.P.J., Cloning and characterization of cellulose synthase-like gene, PtrCSLD2 from developing xylem of aspen trees. Physiol plant,2004.120(4):p.631-641.
    52. Nam, J., K. S. Mysore, et al., Identification of T-DNA tagged Arabidopsis mutant that are resistant to transformation by Agrobacterium. Mol Gen Genet,1999.261(3):p.429-438.
    53. Favery, B., E. Ryan, et al., KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev,2001.15(1):p.79-89.
    54. Hayashi t., Xyloglucans in the primary cell wall. Annual Review Plant Physiology Plant Molecular Biology,1989.40:p.139-168.
    55. Chanliaud E., B.K.M., Jeronimidis G., et al., Mechanical properties of primary plant cell wall analogues. Planta,2002.215:p.989-996.
    56. Keegstra K., and R.N., Plant glycosyltransferases. Curr Opin Plant Biol,2001.4:p.219-224.
    57. Humphreys, J.M.and C.C., Rewriting the lignin roadmap. Curr Opin Plant Biol,2002.5(3):p. 224-229.
    58. Chabannes M., R.K., Yoshinaga A., et al, In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J,2001.28:p.271-282.
    59. Jones L., E.A.R., and Turner S.R., Cloning and characterization of irregular xylem4 (irx4):a severely lignin-deficient mutant of Arabidopsis. Plant J,2001.26:p.205-216.
    60. Boerjan W., R.J., and Baucher M., Lignin biosynthesis. Annu Rev Plant Biol,2003.54:p.519-546.
    61. Li, Y., et al., BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell,2003.15(9):p.2020-2031.
    62. Tanaka, K., Three Distinct Rice Cellulose Synthase Catalytic Subunit Genes Required for Cellulose Synthesis in the Secondary Wall Plant Physiology,2003.133(9):p.11.
    63. Yihua Zhou, S.L., Qian Qian and Jiayang Li et al, BC10, a DUF266-containing and Golgi-located type Ⅱ membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). The Plant Journal,2009.57:p.446-462.
    64. Xiong GY, L.R., Zhou YH et al, The rice dynamin related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant J, 2010.64:p.56-70.
    65. Zhang, M., et al., Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J,2010.63(2):p.312-328.
    66. Dai X, Y.C., Chen G, Li X, Zhang Q, Wu C., OsBClL4 encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol,2011.75(4-5):p.333-345.
    67.吴绍华,不同倍性水稻miRNAs及其靶基因的鉴定与表达分析.四川农业大学博士学位论文,2011.
    68. Changjie Yan, S.Y., Xiuhong Zeng, Zhengqiu Zhang, Minghong Gu, Fine Mapping and Isolation of Bc7(t), Allelic to OsCesA4. Journal of Genetics and Genomics,2007.34(11):p.1019-1027.
    69. Zhang, B. and L. Deng, A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol,2009.8:p.16.
    70. Toshihisa Kotake, T.A., and S.K., et al., Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. Journal of Experimental Botany,2011.62(6):p.2053-2062.
    71.曹小迎,两个釉稻半矮秆基因的分子定位研究.扬州大学硕士学位论文,2003.
    72. Peng J, R.D., Hartley, et al,'Green revolution'genes encode mutant gibberellin response modulators. Nature,1999.400:p.256-261.
    73. P, H., The genes of the green revolution. Trends Genet,2003.19:p.5-9.
    74. Iwata N, T.I., Wu HK, Siddinq EA, Rutger JN, List of genes for various traits (with chromosome and main literature). Rice Genet Newsl,1995.12:p.61-93.
    75. Yan JQ, Z.J., He CX, Benmoussa M, Wu P., Quantitativetrait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet,1998.97(1-2):p.267-274.
    76. Bosen Zhang, F.T., Lubin Tan, et al., Characterization of a novel high-tillering dwarf 3 mutant in rice. Journal of Genetics and Genomics,2011.38:p.411-418.
    47.张永华,一株水稻Ds插入半矮秆突变体(sdwrky)的表型和分子鉴定研究.苏州大学硕士学位论文,2010.
    78.谷福林,翟虎渠,万建民等,水稻矮秆性状研究及矮源育种利用[J].江苏农业学报,2003.19(1):p.48-54.
    79. K, T., Internode elongation and dwarfism in some gramineous plantsfJJ. Gamma Field Symp,1977. 16:p.1-18.
    80. Kamijima, O., Tanisaka,T., Kinoshita,T., Gene symbols for dwarfnessfJJ. Rice Genet Newsl,1995. 13:p.19-24.
    81.张帆涛,水稻早熟基基因Ef-cd和矮秆基因D162的精细定位与候选基因分析.四川农业大学博士学位论文,2011.
    82. Kumar, I., A rapid method for identifying different dwarf genes in ricefJJ. Rice Genet Newsl,1984. 1:p.134-135.
    83. Mitsunaga, S., Tashiro,T.,Yamaguchi,J, Identification and characterization of gibberrllin-insensitive mutants selected from among dwarf mutans of rice[J]. Theor Appl Genet,1994.87:p.705-712.
    84. G, P.A. and R., Genetic bedyvior of five induced dwarf mutants in an Indica rice cultivar. Crop Science,1977.17(11-12):p.860-863.
    85.顾铭洪,朱立宏,粳稻矮秆基因遗传分析[J].遗传学报,1981.3(3):p.20-23.
    86.万平,阮洪家,水稻矮秆基因遗传学和分子遗传学研究利用[J].安徽农业科学,1998.26(3):p.198-200.
    87.韩碧文,突变体在植物激素研究中的应用.北京农业大学学报,1993.19(4):p.84-90.
    88. Yotoka, T., Fujioka,S., Bioysnthesis and metbaolism of brassinosteroids. Annu Rev Plnat Biol,2003. 54:p.137-164.
    89. Dvaies, P.J et al., Plant Homrones:Physiology, Bioehemistyr and Moleeular Biology. Dordreeht, The Netherlands:Kluwer Aeademie Publishers,1995.
    90.夏令,水稻半矮秆突变体sd-sl和矮秆突变体d-ss的遗传和定位分析.厦门大学硕士学位论文,2007.
    91. Ross.J.J.,I.C.Mereft and J.B.Reid., Gibberellin mutants. Plant Physiol,1997.100:p.550-560.
    92.武涛,曹家树,虞慧芳,赤霉素合成基因的克隆以及其相关矮化突变体.细胞生物学杂志,2005.27:p.157-164.
    93. Mitsunaga S, T.T., Yamaguchi J, Identification and characterization of gibbetellin-insensitive mutants selected from among dwarf mutants of rice. TAG,1994.87:p.705-712.
    94. Sasaki A, I.H., Gomi K,et al, Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science,2003.299:p.1896-1898.
    95. Yamaguchi, S., Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene synthase B from pumpkin(Cucurbita maxima L.). Plant J,1996.10: p.203-213.
    96. Hedden P, P.A., Gibbereltin metabolism:New insights revealed by the genes[J]. Trends Plant Sci, 2000.5:p.523-530.
    97. N, K.S.S.T., Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiol,1989.30:p.963-969.
    98. Monna L, K.N., Yoshino R, et al., Positional cloning of rice semidwarfing gene, sd-1:rice 'green revolution gene'encodes a mutant enzyme involved in gibberellin synthesis. DNA Res,2002.9:p. 11-17.
    99. Spielmeyer, W., M.H.Ellis and P.M.Chandler, Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA,2002.99(13):p.9043-9048.
    100. Itoh, H., et al., A rice semi-dwarf gene, Tan-Ginbozu(D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol,2004.54(4):p.533-547.
    101. Sakamoto, T., K. Miura, H. Itoh, T, An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol,2004.134:p.1642-1653.
    102. S, Y., Gibberellin metabolism and its regulation. Annu Rev Plant Biol,2008.59:p.225-251.
    103.李文强,水稻矮秆基因d62和光叶基因gll的图位克隆及功能研究.浙江大学博士学位论文,2010.
    104. Hartweck, L.M.and N.E.O., Rice GIBBERELLIN INSENSITIVE DWARF 1 is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell,2006.18(2):p.278-282.
    105. Ashikari M, W.J.-Z., Yano M,et al, Rice gibberellin-insensitive dwarf mutant gene dwarf1 encodes thea-subunit of GTP-binging protein[J]. Proc Natl Acad Sci USA,1999.96:p.10284-10289.
    106. Ueguchi-Tanaka M, A.M., Nakajima M, et al, Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellin. Nature,2005.437(7059):p.693-698.
    107. Gomi, K., Sasaki,A., Itoh,H., etc., GID2,an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice[J]. Plant J, Feb,2004.37(4):p.626-634.
    108. Ikeda A, U-T.M., Sonoda Y,et al, Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell,2001.13(5):p.999-1010.
    109.隋炯明,水稻半矮秆基因sdt3的精细定位和sdg的克隆和功能分析.扬州大学博士学位论文,2006.
    110.陈刚,一个水稻矮秆少蘖基因DLT2(t)的遗传分析及精细定位.扬州大学硕士学位论文,2010.
    111. Mitchell JW, M.N., Worley JF,et al, Brassins--a new family of plant hormones from rape pollen. Nature,1970.225:p.1065-1066.
    112. Grove MD, S.G., Rohwedder WK, et al, Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature,1979.281:p.216-217.
    113. Gomez-Roldan,V., Fermas,S., Brewer,P.B., etc., Strigolactone inhibition of shoot branching[J]. Nature,2008.455(7210):p.189-194.
    114. Mori M, N.T., Ooka H, et al, Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol,2002.130(3):p.1152-1161.
    115.Choe, S., Brassinosteroid biosynthesis and inactivation. Physiologia Plantarum,2006.126:p. 539-548.
    116.FUjioka S, Y.T., Biosynthesis and metabolism of brassinoster oids. Annu Rev Plant Biol,2003.54:p. 137-164.
    117. Bishop, G.J., Harrison,K., and Jones,J.D., The tomato Dwarf gene is isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family [J]. Plant Cell,1996. 8:p.959-969.
    118. Shimada, Y., Fujioka,S., Miyauchi,N., et al., Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis [J]. Plant Physiol,2001.126: p.770-779.
    119.闫其涛,毛万霞等,植物基因分离的图位克隆技术[J].分子植物育种,2005(4):p.585-590.
    120. Mori M, N.T., Ooka H, Ishizaka M, Yokota T, Sugimoto K, et al, Isolation and Characterization of a Rice Dwarf Mutant with a Defect in Brassinosteroid Biosynthesis [J]. Plant Physiology,2002.130: p.1152-1161.
    121. Hong, Z., Ueguchi-Tanaka,M., Umemura,K., etc., A rice brassinosteroid-deficient mutant, ebisu dwarf(d2), is caused by a loss of function of a new member of cytochrome P450[J]. Plant Cell,2003. 15(12):p.2900-2910.
    122. Tanabe S, A.M., Fujioka S,et al., A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11 with reduced seed length[J]. Plant Cell,2005.17(3):p.776-790.
    123. Hong,Z., Ueguchi-Tanaka,M., Fujioka,S., et al, The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone[J]. Plant Cell,2005.17:p. 2243-2254.
    124. Tae-Wuk Kim, S.G., Yu Sun, et al, Brassinosteroid signal transduction from cell surface receptor kinases to nuclear transcription factors. Nat Cell Biol,2009.11(10):p.1254-1260.
    125. Kim TW, W.Z., Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol,2010.61:p.681-704.
    126. Yamamuro, C., Ihara,Y.,Wu,X.,et al, Loss of function of a rice brassinosteroid insensitivel homolog prevents internode elongation and bending of the lamina joint [J]. Plant Cell,2000.12:p. 1591-1606.
    127. Tong, H., Jin,Y.,Liu,W.,etc, DWARF AND LOW-TILLERING,a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice[J]. Plant J,2009.58(5):p.803-816.
    128. Ishikawa, S., Maekawa, M. and Kyozuka, J. et al., Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol,2005.46:p.79-86.
    129. Zou J, C.Z., Zhang S, Zhu L, et al., Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa). Planta,2005.222(4):p.604-612.
    130. Zou, J., Zhang, S., Zhang, W.,et al, The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary bud. Plant J,2006. 48:p.687-696.
    131.Arite, T., Iwata, H., Ohshima, K., et al., DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J,2007.51:p.1019-1029.
    132. Hao Lin, R.W., Qian Qian, et al, DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth. Plant Cell,2009.5(11):p. 1512-1525.
    133.Zhenyu Gao, Q.Q., Xiaohui Liu, et al., Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol,2009.71:p.265-276.
    134. Gao, Z., Liu, X., Guo, L., Qian, Q, et al., Identification of a novel tillering dwarf mutant and fine mapping of the TDDL (T) gene in rice (Otyza sativa L.). Chin. Sci. Bull.,2009a.54:p.2062-2068.
    135. Bosen Zhang, F.T., Lubin Tan, et al, Characterization of a novel high-tillering dwarf 3 mutant in rice. Journal of Genetics and Genomics,2011.38:p.411-418.
    136.陈华夏,邢永忠,水稻Dwarfl移码突变的新突变体定遗传,2011.33(4):p.397-403.
    137.李正理,《植物制片技术》.北京:科学出版社,1978.Q94-34/285-2.
    138. Li, J., Thomson, M., McCouch, S., Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics,2004.168:p.2187-2195.
    139. Blackburn, E.H., Structure and function of telomeres. Nature,1991.350:p.569-573.
    140. Greider, C.W., Telomere length regulation. Annu Rev Biochem,1996.65:p.337-365.
    141. Lukowitz W, G.C.S., Scheible W R, Positional cloning in Arabidopsis. Why it feels good to have a genome initiative work-ing for you. Plant Physiol,2000.123:p.795-805.
    142. Yano M, K.Y., Ashikari M, et al., Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000.12:p. 2473-2483.
    143. Takahashi Y, S.A., Sasaki T, et al, Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a sub-unit of protein kinase CK2. Proc Natl Acad Sci USA,2001.98(14):p. 7922-7927.
    144. Yamanouchi U, Y.M., Lin H X, et al, A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA,2002.99(11):p.7530-7535.
    145. Monna L, K.N., Yoshino R, et al, Positional cloning of rice semidwarfing gene, sd-1:Rice "Green Revolution Gene " encodes a mutant enzyme involved in gibberellin synthesis. DNA Res,2002.9:p. 11-17.
    146. Wenqiang Li, J.W., Shili Weng, et al, Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta,2010. 232:p.1383-1396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700