用户名: 密码: 验证码:
冲击荷载作用下钢筋混凝土梁的试验及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国际上时有报道的恐怖袭击给社会和人们生命财产安全构成了很大的威胁,地震、海啸,泥石流等自然灾害,及其次生灾害对建筑结构造成严重破坏的事件也屡见报道。钢筋混凝土结构作为普遍采用的工程结构,面对冲击、爆炸等非设计荷载的可能性正日益受到关注,开展钢筋混凝土结构抗冲击性能的研究十分必要。
     1.混凝土材料在高应变率荷载作用时,所表现出来的强非线性特性是研究钢筋混凝土结构抗冲击性能的一个障碍。而冲击荷载作用下,混凝土结构及构件的动态数据获取同样是摆在研究者面前的一道难题。本文设计并完成了一组混凝土圆柱体试件的落锤冲击试验,为了改进测试精度,本文设计、制作并标定了一种以聚四氟乙烯(PVDF)压电薄膜作为敏感元件的应力计。在混凝土圆柱体落锤冲击试验中,应用该传感器成功的获取了混凝土动态应力-应变全曲线。
     2.利用显示有限元软件LS-DYNA,对混凝土圆柱体冲击试验进行了仿真分析,利用PVDF传感器获取的应力-应变全过程曲线,对混凝土连续面盖帽模型(CSCM)进行了参数优化,计算结果表明,采用参数优化后的CSCM模型,其计算结果与试验结果吻合良好。
     3.完成了一组钢筋混凝土铰支约束梁的静载试验,给出了试验梁承载能力、跨中位移、失效耗能以及破坏形态。采用塑性分析方法对加载过程中试验梁跨中截面的混凝土受压区高度变化及轴力进行了计算和分析。静载试验结果表明:铰支约束梁在加载过程中出现明显的压拱效应。随着跨中位移的发展,压拱作用逐渐过渡到以纵向钢筋受拉为主要传力机制的悬索作用。铰支试验梁在加载过程中,通过弯矩-轴力作用将荷载传递到支座,具有良好的耗能特性。采用参数优化的CSCM模型对加载过程进行的数值仿真分析结果同样也印证了这一点,仿真计算结果与试验结果吻合良好。
     4.对相同设计参数的另一组钢筋混凝土铰支约束梁完成了落锤冲击试验,获得锤头冲击力时程、跨中位移时程、梁体支座处钢筋及混凝土应变时程曲线,利用高速摄影机对破坏过程进行了影像记录。这些数据为进一步理解钢筋混凝土在冲击荷载作用下的受力特性、破坏特征,以及为钢筋混凝土结构在冲击荷载作用下的仿真分析提供了数据支持。利用LS-DYNA对冲击加载试验进行了全过程仿真分析,采用参数优化后的混凝土连续面盖帽模型(CSCM)对试验工况进行计算,计算结果表明,优化后的混凝土连续面盖帽模型在低速冲击条件下,具有很好的计算精度。通过改变有限元模型参数的大量计算,得到了不同配筋情况的铰支约束梁临界破坏耗能。通过对计算结果的归纳和分析,给出了铰支约束梁抗冲击的简化计算公式。提出了一种考虑损伤的抗力滞回模型,结合静力试验梁荷载-位移曲线,采用等效单自由度方法对试验梁冲击过程进行了非线性时程分析,计算结果与试验结果吻合良好。
Over the past decade, social security, people’s lives and property were often exposed tothe threat of terrorist attacks. Eathquakes, tsunamis, landslides and other natural disasters, aswell as their secondary disasters which caused severe damage to structures had been reportedfrequently. The probability of reinforced concrete structures exposed to the impact loading,explosion shock and other non-design loading is increasing. Therefore, to carry out the studyof the impact resistance of reinforced concrete structures is very important and necessary.
     1. Concrete material under high strain rate loading is demonstrated the strong nonlinearcharacteristics, which is a barrier to study the impact resistance performance of reinforcedconcrete structures. In addition, dynamic data acquisition is still a challenging issue forresearchers. However, for improving the measurement accuracy, a new Polyvinylidenefluoride (PVDF) based stress gauge is developed to measure concrete stresses under impactloading. Calibrated on a split Hopkinson pressure bar (SHPB), the PVDF gauge was then usedto establish dynamic stress-strain curves of concrete cylinders from a series of axial impacttesting on a drop-hammer test facility.
     2. A series of numerical simulations were conducted to FE model of concrete cylindersby explicit finite element program ls-dyna. Using the dynamic stress-strain curves measuredby PVDF gauges, parameters of concrete continuous cap model (CSCM) had been optimized.The simulation results shown that, by using the optimized parameters of CSCM model, thesimulation results coincided with test results pretty well.
     3. In order to study the anti-collapse performance of hinged RC beams, a series of staticloading tests were carried out. During the tests, load-carrying capacity, mid-span displacement,absorbed energy, failure types and crack propagation pattern have been recorded. The heightvariation of the concrete compression zone at mid-span cross-section and the axial force ofthe RC beams were calculated and analyzed, failure mechanism of hinged RC beams understatic loading was also discussed. The static test results showed that: at the beginning of theloading process, compressive arch action within hinged RC beams had been quickly formedwhen the test RC beams exceeded the elastic stage. Subsequently, with the development ofmid-span displacement, the stress state of the hinged RC beams gradual transition to catenaryaction stage. During the loading process, hinged RC beam showed good energy absorptionperformance because external load can be effectively delivered to the nearby support by axialforce and external input energy also can be dissipated by large deformation and cracking of hinged RC beams. By using optimized CSCM model, the numerical simulation analysisresults of loading process also confirmed this.
     4. A series of impact tests on hinged RC beams which have the same sizes andreinforments with the static loading beams are carried out on the large-scale drop-hammer testfacility at Hunan University. During the test, signal of impact force, mid-span displacement,strain of concrete and reinforced bars at supports have been measured. The failure process ofhinged RC beams during the test have been captured by high-speed camera. Thisexperimental study aimed at better understanding of the dynamic behavior of hinged RCbeams under impact loading. These data can also be very helpful for improving thecalculation accuracy of the numerical simulation for RC beams under impact loading. Anumerical simulation are carried out on hinged RC beams subjected to impact loading.Results from the simulations showed acceptable accuracy of optimized CSCM model inlow-speed impact range. By changing the reinforcement ratio of the finite element beamsduring numerical simulations, the critical failure energy of hinged RC beams under impactloading had been captured. Base on the simulation results, a simplify calculation formulaabout hinged RC beam under impact loading had been derived. Meanwhile, a resistancehysteresis model of Hinged RC beam has been proposed. With the resistance hysteresis modeland the load vs mid-span displacement curves measured from static test of hinged RC beams,the impact loading process have been analysed by using single degree of freedom method.
引文
[1] ПОПОВН Н, РасторгуевБ С, ЗабегаевА В. Расчет конструкций на динамическиеи специальные нагрузки: Высшая школа,1992:241-245
    [2] Pearson C, Delatte N. Ronan Point Apartment Tower Collapse and its Effect onBuilding Codes. Journal of Performance of Constructed Facilities,2005,19(2):172-177
    [3] Griffiths H, Pugsley A G, Saunders O. Report of the inquiry into the collapse of flats atRonan Point. Canning Town London: Her Majesty's Stationery Office,1968
    [4] Caruso K. http://www.oklahomacitybombing.com,1996-04-19
    [5] Corley W G, Mlakar SR P F, Sozen M A, et al. The Oklahoma City Bombing:Summary and Recommendations for Multihazard Mitigation. Journal of Performanceof Constructed Facilities,1998,12(3):100-112
    [6]何少英.鲁莽运沙船撞断九江大桥,桥面坍塌约200米,4车坠江,9人失踪张德江指示立即启用应急预案全力搜救.广东交通,2007,(06):48-49
    [7] Abrams D A. Effect of rate of application of load on the compressive strength ofconcerete. ASTM J,1917,17(Part II):364-377
    [8] Suaris W, Shah S P. Properties of Concrete Subjected to Impact. Journal of StructuralEngineering,1983,109(7):1727-1741
    [9] Bischoff P H, Perry S H. Compressive Behavior OF Concrete at High-Strain Rates.Mater Struct,1991,24(144):425-450
    [10] Bischoff P H, Perry S H. Impact Behavior of Plain Concrete Loaded in UniaxialCompression. Journal of Engineering Mechanics,1995,121(6):685-693
    [11] Krauthammer T, Elfahal M M, Lim J, et al. Size effect for high-strength concretecylinders subjected to axial impact. International Journal of Impact Engineering,2003,28(9):1001-1016
    [12] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materialsin a split Hopkinson pressure bar test. International Journal of Solids and Structures,2003,40(2):343-360
    [13] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates andpressures:I. experimental characterization. International Journal of Impact Engineering,2001,25(9):869-886
    [14] Lu Y B, Li Q M. About the dynamic uniaxial tensile strength of concrete-likematerials. International Journal of Impact Engineering,2011,38(4):171-180
    [15] Riedel W, Wicklein M, Thoma K. Shock properties of conventional and high strengthconcrete: Experimental and mesomechanical analysis. International Journal of ImpactEngineering,2008,35(3):155-171
    [16] Tu Z, Lu Y. Evaluation of typical concrete material models used in hydrocodes forhigh dynamic response simulations. International Journal of Impact Engineering,2009,36(1):132-146
    [17] Zhang M, Wu H J, Li Q M, et al. Further investigation on the dynamic compressivestrength enhancement of concrete-like materials based on split Hopkinson pressure bartests. Part I: Experiments. International Journal of Impact Engineering,2009,36(12):1327-1334
    [18]董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的实验研究及其本构模型.水利学报,1997,(07):72-77
    [19]陈大年, S T S Al-Hassani,尹志华等.混凝土的冲击特性描述.爆炸与冲击,2001,21(02):89-97
    [20]胡时胜,王道荣,刘剑飞.混凝土材料动态力学性能的实验研究.工程力学,2001,18(05):115-118
    [21]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系.爆炸与冲击,2002,22(03):242-246
    [22]王礼立.爆炸与冲击载荷下结构和材料动态响应研究的新进展.爆炸与冲击,2001,21(02):81-88
    [23]肖诗云,林皋,王哲,等.应变率对混凝土抗拉特性影响.大连理工大学学报,2001,41(06):721-725
    [24]张凤国,李恩征.混凝土撞击损伤模型参数的确定方法.弹道学报,2001,13(04):12-16
    [25]杜成斌,苏擎柱.混凝土材料动力本构模型研究进展.世界地震工程,2002,18(02):94-98
    [26]肖诗云,林皋,逯静洲,等.应变率对混凝土抗压特性的影响.哈尔滨建筑大学学报,2002,35(05):35-39
    [27]张盛东.混凝土本构理论研究进展与评述.南京建筑工程学院学报,2002,62(03):45-53
    [28]姜芳.钢筋混凝土材料动态力学性能的实验研究:[北京理工大学硕士学位论文].北京:北京理工大学土木工程系,2003,12-30.
    [29]王礼立.爆炸力学数值模拟中本构建模问题的讨论.爆炸与冲击,2003,23(02):97-104
    [30]武海军.弹体贯穿钢筋混凝土动态破坏实验研究及数值模拟:[北京理工大学博士学位论文].北京:北京理工大学爆炸与安全国家重点实验室,2003,51-76
    [31]肖诗云,林皋,王哲. Drucker-Prager材料一致率型本构模型.工程力学,2003,20(04):147-151
    [32]肖诗云,林皋,李宏男.混凝土WW三参数率相关动态本构模型.计算力学学报,2004,21(06):641-646
    [33]陈书宇,沈成康.基于ottosen准则的混凝土粘塑性力学模型.固体力学学报,2005,26(01):67-71
    [34]李杰,吴建营.混凝土弹塑性损伤本构模型研究Ⅰ:基本公式.土木工程学报,2005,38(09):14-20
    [35]吴建营,李杰.混凝土弹塑性损伤本构模型研究Ⅱ:数值计算和试验验证.土木工程学报,2005,38(09):21-27
    [36]林皋,闫东明,肖诗云,等.应变速率对混凝土特性及工程结构地震响应的影响.土木工程学报,2005,38(11):1-8
    [37] Holmquist T J, Johnson G R. A computational constitutive model for concretesubjected to large strains, high strain rates, and high pressures. In:14th InternationalSymposium on Ballistics. Canada:Quebel,1993,.591-600
    [38] Forrestal M J, Luk V K, Watts H A. Penetration of reinforced concrete with ogive-nosepenetrators. International Journal of Solids and Structures,1988,24(1):77-87
    [39] Malvar L J, Crawford J E, Wesevich J W, et al. A plasticity concrete material modelfor DYNA3D. International Journal of Impact Engineering,1997,19(9-10):847-873
    [40]王政,倪玉山,曹菊珍,等.冲击载荷下混凝土动态力学性能研究进展.爆炸与冲击,2005,25(06):519-527
    [41]吴胜兴,周继凯.混凝土动态特性及其机理研究.徐州工程学院学报,2005,20(01):15-28
    [42]闫东明,林皋,王哲,等.不同应变速率下混凝土直接拉伸试验研究.土木工程学报,2005,38(06):97-103
    [43]宁建国,商霖,孙远翔.混凝土材料动态性能的经验公式、强度理论与唯象本构模型.力学进展,2006,36(03):389-405
    [44]宁建国,商霖,孙远翔.混凝土材料冲击特性的研究.力学学报,2006,38(02):199-208
    [45]施绍裘,王永忠,王礼立.国产C30混凝土考虑率型微损伤演化的改进Johnson-Cook强度模型.岩石力学与工程学报,2006,25(S1):3250-3257
    [46]齐振伟,蔡清裕,杨涛.应变率相关的混凝土连续损伤本构模型.弹道学报,2007,19(04):55-62
    [47]张志刚,孔大庆,宫光明,等.高应变率下混凝土动态力学性能SHPB实验.解放军理工大学学报(自然科学版),2007,8(06):611-618
    [48] Field J E, Walley S M, Proud W G, et al. Review of experimental techniques for highrate deformation and shock studies. International Journal of Impact Engineering,2004,30(7):725-775
    [49] Hopkinson B. A Method of Measuring the Pressure Produced in the Detonation ofHigh Explosives or by the Impact of Bullets. Philosophical Transactions of the RoyalSociety of London Series A, Containing Papers of a Mathematical or PhysicalCharacter,1914,213:437-456.
    [50] Luerssen G, Greene O. The torsion impact test. Proc Am Soc Testing Mater,1933,33(2):315-333
    [51] Mason W. The yield of steel wire under stresses of very small duration. Proc InstMech Eng,1934,128:409-438
    [52] Mann H. The relation between the tension static and dynamic tests. Proc Am SocTesting Mater,1935,35(2):323-340
    [53] Itihara M. Impact torsion test. Technol Rep Tohoku Univ,1935,11.16-50,489-584.
    [54] Taylor G. The testing of materials at high rates of loading. Institution of CivilEngineers,1946,26.486-519
    [55] Volterra E. Alcuni risultati di prove dinamichi sui materiali. Riv Nuovo Cimento,1948,4:1-28
    [56] Kolsky H. An Investigation of the Mechanical Properties of Materials at very HighRates of Loading. Proceedings of the Physical Society Section B,1949,62(11):676
    [57] Harding J, Wood E O, Campbell J D. Tensile testing of materials at impact rates ofstrain. Journal of Mechanical Engineering Science,1960,2(2):88-96
    [58] Duffy J, Campbell J D, Hawley R H. On the Use of a Torsional Split Hopkinson Bar toStudy Rate Effects in1100-0Aluminum. Journal of Applied Mechanics,1971,38(1):83-91
    [59] Lifshitz J M, Gov F, Gandelsman M. Instrumented low-velocity impact of CFRPbeams. International Journal of Impact Engineering,1995,16(2):201-215
    [60] Kishi N, Mikami H, Matsuoka K G, et al. Impact behavior of shear-failure-type RCbeams without shear rebar. International Journal of Impact Engineering,2002,27(9):955-968
    [61]李砚召,王肖钧,郭晓辉,等.部分预应力混凝土梁抗冲击性能试验研究.爆炸与冲击,2006,26(03):256-261
    [62] Zineddin M, Krauthammer T. Dynamic response and behavior of reinforced concreteslabs under impact loading. International Journal of Impact Engineering,2007,34(9):1517-1534
    [63] Cotsovos D M. A simplified approach for assessing the load-carrying capacity ofreinforced concrete beams under concentrated load applied at high rates. InternationalJournal of Impact Engineering,2010,37(8):907-917
    [64] Abde-Rohman M, Sawan J. Impact Effect on R.C. Slabs: Analytical Approach. Journalof Structural Engineering,1985,111(7):1590-1601
    [65] Krauthammer T, Otani R K. Mesh, gravity and load effects on finite elementsimulations of blast loaded reinforced concrete structures. Computers and Structures,1997,63(6):1113-1120
    [66] Low H Y, Hao H. Reliability analysis of reinforced concrete slabs under explosiveloading. Structural Safety,2001,23(2):157-178
    [67] Chr M. Reinforced masonry walls under blast loading. International Journal ofMechanical Sciences,2002,44(6):1067-1080
    [68] Tang T, Saadatmanesh H. Behavior of Concrete Beams Strengthened withFiber-Reinforced Polymer Laminates under Impact Loading. Journal of Compositesfor Construction,2003,7(3):209-218
    [69] Lu Y, Xu K. Modelling of dynamic behaviour of concrete materials under blastloading. International Journal of Solids and Structures,2004,41(1):131-143
    [70] Luccioni B M, Ambrosini R D, Danesi R F. Analysis of building collapse under blastloads. Engineering Structures,2004,26(1):63-71
    [71] Tagel-Din H. Simulation of the Alfred P. Murrah Federal Building Collapse Due toBlast Loads. In: Proc of IASCE Conf on Architectural Engineering, Omaha, Nebraska,2006,368-382
    [72] Baran E, Schultz A E, French C E. Behavior of girder-floor beam connections inprestressed concrete pedestrian bridges subjected to lateral impact loads. Journal ofStructural Engineering,2007,133(11):1670-1681
    [73] Dancygier A N, Yankelevsky D Z, Jaegermann C. Response of high performanceconcrete plates to impact of non-deforming projectiles. International Journal of ImpactEngineering,2007,34(11):1768-1779
    [74] Zineddin M. Simulation of Reinforced Concrete Slab Behavior under Impact Loading.In Proc of AEI Conf on Building intergration Solutions. Denver, Colorado,2008,1-9
    [75] Cotsovos D M, Stathopoulos N D, Zeris C A. Behavior of RC Beams Subjected toHigh Rates of Concentrated Loading. Journal of Structural Engineering,2008,134(12):1839-1851
    [76] Farnam Y, Mahoutian M, Mohammadi S, et al. Experimental and Numerical Studies ofImpact Behavior of Fiber Lightweight Aggregate Concrete. In: Proc Int Conf onCrossing Borders. Vancouver, BC, Canada,2008,1-10
    [77] Chen Y, May I M. Reinforced concrete members under drop-weight impacts.Structures and Buildings,2009,162(1):45-56
    [78] Fujikake K, Li B, Soeun S. Impact Response of Reinforced Concrete Beam and ItsAnalytical Evaluation. Journal of Structural Engineering,2009,135(8):938-950
    [79]方秦,柳锦春,张亚栋,等.爆炸荷载作用下钢筋混凝土梁破坏形态有限元分析.工程力学,2001,18(02):1-8
    [80]方秦,吴平安.爆炸荷载作用下影响RC梁破坏形态的主要因素分析.计算力学学报,2003,20(01):39-42,48
    [81]李砚召,王肖钧,张新乐,等.预应力混凝土结构抗爆性能试验研究.实验力学,2005,20(02):179-185
    [82]王明洋,王德荣,宋春明.钢筋混凝土梁在低速冲击下的计算方法.兵工学报,2006,27(03):399-405
    [83]张巍,李国斌,强士中.预应力混凝土板构件的冲击力学行为分析.兵器材料科学与工程,2006,29(03):33-36
    [84]魏雪英,白国良.爆炸荷载下钢筋混凝土柱的动力响应及破坏形态分析.解放军理工大学学报(自然科学版),2007,8(05):525-529
    [85] CEB. Concrete structures under impact and impulsive loading. Synthesis Report,Bulletin d'Information No.187. Lausanne: Comité Euro-International du Béton,1988.
    [86] Tedesco J W, Ross C A. Strain-Rate-Dependent Constitutive Equations for Concrete.Journal of Pressure Vessel Technology,1998,120(4):398-405
    [87] Williams M S. Modeling of Local Impact Effects on Plain and Reinforced Concrete.ACI Structural Journal,1994,91(2):178-187
    [88] PIEZO. Piezo film sensor: technical manual.1998
    [89] Kawai H. The piezoelectricity of polyvinyldene fluoride. Jorunal of Applied Physics,1969,8(7):975-976
    [90] Bauer F. Method and device for polarizing ferroelectric matreials. United States Patent.4611260,1986-09-09
    [91] F Bauer H M. State-of-the-Art in the Research Work of Piezoelectric PVF2PolymerShock Gauges. Institut Franco-Allemand de Recherches, Saint-Louis (France)1987,627-630
    [92] Setchell R E. Response of polyvinylidene fluoride (PVF2) gauges to structuredwaveforms. In: Proc of APS Conf on Shock Waves of Condensed Matter. NorthHolland,1987:623-626
    [93] Luo H, Hanagud S. PVDF Film Sensor and Its Applications in Damage Detection.Journal of Aerospace Engineering,1999,12(1):23-30
    [94] Wang Y C, Chen Y W. Application of piezoelectric PVDF film to the measurement ofimpulsive forces generated by cavitation bubble collapse near a solid boundary.Experimental Thermal and Fluid Science,2007,32(2):403-414
    [95] Vinogradov A M. Basic Characteristics, Modeling and Applications of PVDF. In: Procof the11th ASCE Aerospace Division International Conference. Long Beach, CA,USA,2008
    [96] Shirinov A V, Schomburg W K. Pressure sensor from a PVDF film. Sensors andActuators A: Physical,2008,142(1):48-55
    [97] Sirohi J, Chopra I. Fundamental Understanding of Piezoelectric Strain Sensors.Journal of Intelligent Material Systems and Structures,2000,11(4):246-257
    [98] Yu Y, Wang Y, Dong W, et al. Strain properties analysis and wireless collection systemof PVDF for structural local health monitoring of civil engineering structures. In: Procof the Second International Conference on Smart Materials and Nanotechnology inEngineering, Weihai, China,2009
    [99]席道瑛,郑永来. PVDF压电计在动态应力测量中的应用.爆炸与冲击,1995,15(2):174-179
    [100]刘剑飞,胡时胜. PVDF压电计在低阻抗介质动态力学性能测试中的应用.爆炸与冲击,1999,19(03):229-234
    [101]巫绪涛,胡时胜,田杰. PVDF应力测量技术及在混凝土冲击实验中的应用.爆炸与冲击,2007,27(5):411-415
    [102]马秀娟,王礼立. PVDF压电计在低应力下的动态标定.宁波大学学报(理工版),2005,18(04):435-438
    [103]李焰,张向荣,谭红梅,等.国产PVDF压电薄膜的冲击加载及卸载响应研究.高压物理学报,2004,18(03):261-266
    [104] Song G, Gu H, Mo Y L. Smart aggregates: multi-functional sensors for concretestructures-a tutorial and a review. Smart Materials and Structures,2008,17(3):033001
    [105] Meng Y, Yi W J. Application of a PVDF-based stress gauge in determining dynamicstress-strain curves of concrete under impact testing. Smart Materials&Structures,2011,20(6):065004
    [106] Chen R L, Wang B T. The use of polyvinylidene fluoride films as sensors for theexperimental modal analysis of structures. Smart Materials and Structures,2004,13(4):791
    [107] LSTC. LS-DYNA KEYWORD USER'S MANUAL VERSION971, CA: LivermoreSoftware Technology Corporation,2007
    [108]白金泽. LS-DYNA3D理论基础与实力分析.北京:科学出版社,2005,1-11
    [109] ANSYS/LS-DYNA中国技术支持中心. ANSYS/LS-DYNA算法基础和使用方法.北京:北京理工大学,1999,23-27
    [110] Hallquist J O. LS-DYNA THEORY MANUAL. Livermore: LSTC,2006
    [111] Hughes T J R, Taylor R L, Sackman J L, et al. A finite element method for a class ofcontact-impact problems. Computer Methods in Applied Mechanics and Engineering,1976,8(3):249-276
    [112] Wilkins M L. Calculations of Elastic Plastic Flow. Methods of Computational Physics,1964,3:211
    [113] Burton D E. Physics and Numerics of the TENSOR Code. Livemore, CA: LawrenceLivemore National Laboratory,1982
    [114] Hentz S, Donz F V, Daudeville L. Discrete element modelling of concrete submitted todynamic loading at high strain rates. Computers&Structures,2004,82(29-30):2509-2524
    [115] Whirley R G, Hallquist J O. UCRL-MA-107254. Livermore, CA: LawrenceLivermore National Laboratory,1991
    [116] Nilson H. State-of-the-Art Report on Finite Element Analysis of Reinforced Concrete.New York: American Society of Civil Engineers,1982
    [117] ASCE-ACI Joint Committee447. Finite Element Analysis of Reinforced Concrete II.New York: American Society of Civil Engineers,1991
    [118] Zukas J A. High Velocity Impact Dynamics. New York: Wiley,1990
    [119] Govindjee S, Kay G J, Simo J C. Anisotropic modelling and numerical simulation ofbrittle damage in concrete. International Journal for Numerical Methods inEngineering,1995,38(21):3611-3633
    [120] Gebbeken N, Ruppert M. A new material model for concrete in high-dynamichydrocode simulations. Archive of Applied Mechanics,2000,70(7):463-478
    [121]张凤国,李恩征.大应变、高应变率及高压强条件下混凝土的计算模型.爆炸与冲击,2002,22(03):198-202
    [122] Murray Y D, Abu-Odeh A, Bligh R. Evaluation of LS-DYNA Concrete MaterialModel159. Report No. FHWA-HRT-05-063. McLean, VA: Federal HighwayAdministration,2007
    [123] Krieg R. A simple constitutive description for cellular concrete, in ReportSCDR-72-0883. Albuquerque, NM: Sandia National Laboratories,1972
    [124] Shugar T A, Holland T J, Malvar L J. Applications of Finite Element Technology toReinforced Concrete Explosives Containment Structures. In: Proc of The25th DoDExplosive Safety Seminar. Anaheim, CA.1992,133–159
    [125] Simo J C, Ju J-W, Pister K S, et al. Assessment of Cap Model: Consistent ReturnAlgorithms and Rate-Dependent Extension. Journal of Engineering Mechanics,1988,114(2):191-218
    [126] Rubin M B. Simple, Convenient Isotropic Failure Surface. Journal of EngineeringMechanics,1991,117(2):348-369
    [127] Koiter W T. Stress–strain relations, uniqueness and variational theorems forelastic–plastic materials with a singular yield surface. Quarterly of AppliedMathematics,1953,11.350-354
    [128] Beton C. CEB-FIP model code1990. Trowbridge, Wiltshire, UK: Redwood Books,1993
    [129] Joy S, Moxley R. Vicksburg, Material Characterization, WSMR-534-inch Concrete,In: Report to the defense Special Weapons Agency. MS: USAE WaterwaysExperiment Station,1993
    [130] Malvar L, Crawford J, Morrill K. K&C concrete material model release IIIdautomatedgeneration of material model input, In: K&C Technical Report TR-99-24-B1Glendale,CA,2000
    [131] Yonten K, Manzari M T, Marzougui D, et al. An assessment of constitutive models ofconcrete in the crashworthiness simulation of roadside safety structures. InternationalJournal of Crashworthiness,2005,10(1):5-19
    [132] Murray Y D. Users Manual for LS-DYNA Concrete Material Model159. In: ReportNo. FHWA-HRT-05-062. McLean, VA, Federal Highway Administration,2007
    [133] XYZ SCIENTIFIC APPLICATION I. TrueGrid Manual Version2.1.0,2001
    [134] Malvar L J, Ross C A. Review of Strain Rate Effects for Concrete in Tension. ACIMaterials Journal,1998,95(6):735-739
    [135] ASCE7. Minimum design for buildings and other structures. Reston, Virginia:American Society of Civil Engineers,2010
    [136] DOD. Design of Building to Resist Progressive Collapse. Unified Facility Criteria(UFC4-023-03). Washington (DC): Department of Defense,2009
    [137] Omika Y, Fukuzawa E, Koshika N, et al. Structural Responses of World Trade Centerunder Aircraft Attacks. Journal of Structural Engineering,2005,131(1):6-15
    [138]隗玮.衡阳大火20名消防官兵殉职.消防月刊,2003,12:7
    [139] Yi W J, He Q F, Xiao Y, et al. Experimental Study on Progressive Collapse-ResistantBehavior of Reinforced Concrete Frame Structures. ACI Structural Journal,2008,105(4):433-439
    [140] Su Y, Tian Y, Song X. Progressive Collapse Resistance of Axially-Restrained FrameBeams. ACI Structural Journal,2009,106(5):600-607
    [141] Tian Y, SU Y. Dynamic Response of Reinforced Concrete Beams FollowingInstantaneous Removal of a Bearing Column. International Journal of ConcreteStructures and Materials,2011,5(01):19-28
    [142]何庆锋,易伟建.考虑悬索作用钢筋混凝土梁柱子结构抗倒塌性能试验研究.土木工程学报,2011,44(04):1-8
    [143]苏幼坡,王兴国,宋晓胜,等.钢筋混凝土框架梁拱效应的试验研究.西安建筑科技大学学报(自然科学版),2009,41(04):477-484
    [144]陈明辉,宋晓胜,苏幼坡.配筋率对钢筋混凝土框架梁极限承载力的影响—拱效应试验研究.自然灾害学报,2010,19(01):44-48
    [145] Park R, Gamble W L. Reinforced Concrete Slabs. New York: John Wiley&Sons,2000
    [146]混凝土结构设计规范(GB50010-2000).北京:建筑工业出版社,2002
    [147]何庆峰.钢筋混凝土框结构抗倒塌性能试验研究:[湖南大学博士学位论文].长沙:湖南大学土木工程学院,2009,21-39
    [148] Biggs J M. Introduction to structural dynamics. New York, N.Y.: McGraw-Hill,1964,1-25
    [149] Sozen M A. Hysteresis in structural elements. Journal of Applied Mechanics,1974,8:63-98
    [150] Saiidi M, Sozen M A. Simple and Complex Models for Nonlinear Seismic Responseof Reinforced Concrete Structures, In: Civil Engineering Studies SRS-465. Urbana,1979
    [151] Newmark N M, Rosenblueth E. Fundamentals of earthquake engineering. EnglewoodCliffs, N.J.: Prentice-Hall,1971
    [152] Park R, Paulay T. Reinforced concrete structures. New York: Wiley,1975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700