用户名: 密码: 验证码:
反爆炸反应装甲理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年的局部战争表明坦克和装甲车辆等现代装甲目标仍是地面战场上的主要作战系统。随着爆炸反应装甲广泛的应用与装甲目标防护技术的发展,传统反装甲弹药的生存受到了极大的威胁,尤其是双层楔形爆炸反应装甲的出现,几乎使现有的反装甲武器的能力全部丧失。本文在对爆炸反应装甲作用场系统研究的基础上,提出了一种新型分离式反爆炸反应装甲技术方案,使现有反装甲弹药能可靠对付爆炸反应装甲,为新型反装甲弹药的跨越式发展奠定了基础。
     论文在综合分析了国内外爆炸反应装甲的基础上,系统研究了单层、双层平行以及双层楔形爆炸反应装甲各金属靶板的运动规律、干扰方式和干扰时间,建立了爆炸反应装甲作用场理论模型。理论计算和试验验证研究表明,单层爆炸反应装甲金属靶板飞离弹轴的干扰时间与相对装甲板的距离有关,紧贴装甲板放置时干扰时间最短;双层平行爆炸反应装甲比单层爆炸反应装甲金属靶板飞离弹轴的干扰时间提升了5倍;双层楔形爆炸反应装甲比双层平行爆炸反应装甲金属靶板飞离弹轴的干扰时间又提升了38%;通过选择合适的楔形角和装甲板斜置角,双层楔形爆炸反应装甲干扰时间更长,甚至达毫秒量级。
     论文在国内外现有串联反爆炸反应装甲技术的基础上,结合爆炸反应装甲作用场的研究结果,提出了一种新型反爆炸反应装甲方法——分离式反爆炸反应装甲方法,并建立了分离式反爆炸反应装甲理论。详细分析了分离式反爆炸反应装甲方法的分离距离、分离时间、相对分离速度等不同工况下的匹配关系。要使分离式反爆炸反应装甲方法能够应用在各种武器平台,分离距离应大于10m,分离时间控制在毫秒量级以内,相对分离速度要大于150m/s。随后论文对分离式反爆炸反应装甲方法的两个关键技术进行了研究。
     发明了剪切环式爆炸点火快速分离装置。利用密闭爆发器原理和经典内弹道理论建立了快速分离发射过程的理论模型。通过理论计算获得了分离发射过程中各物理参数间的变化规律,并通过静态台架试验进行了验证。同时对分离时,分离过程对主战斗部的干扰进行了研究。结果表明:利用剪切环作为蓄压部件的爆炸点火快速分离时间可控制在毫秒量级以内,相对分离速度大于150m/s。分离式串联战斗部速度越高、质量越大、前级战斗部分离质量越小,快速分离过程对主战斗部稳定性影响越小。
     论文基于M. Held单层爆炸反应装甲引爆判据,利用射流侵彻间隔靶理论和侵彻均质靶理论,并结合数值仿真和试验研究对斜置68°双层楔形爆炸反应装甲引爆机理进行研究。建立了射流侵彻斜置68°双层楔形爆炸反应装甲起爆判定准则。如果射流能穿透40mm的45#钢锭,入孔直径大于①7mm,出孔直径大于Φ4mm,侵彻总深度大于45mm,且射流动能大于4kJ,就可以引爆斜置68°的双层楔形爆炸反应装甲。
     论文最后对分系统和全系统进行了动态试验验证,结果表明:前级战斗部可以实现快速分离,且分离可靠,分离后弹道一致性好;前级战斗部能可靠引爆斜置68°双层楔形爆炸反应装甲,后级主战斗部成功避开作用场的干扰后,击穿主装甲。验证了分离式反爆炸反应装甲技术的可行性。为今后该技术在各种反装甲武器平台的应用提供了极有价值的参考。
In recent years, local war shows that modern armored targets such as tanks and armored vehicles are still major combat system on the ground battlefield. With the application of ERA and the development of armor protection technology, the survival of traditional anti-armor ammunition is under threat, especially with the appearance of double wedge ERA, almost all existing anti-vehicle weapons lost ability. Based on the research of ERA applied field system, this paper raised technical solution of a new separated type anti-ERA, making existing anti-armor ammunition deal with ERA reliably and lying foundation of leapfrog development of new anti-ERA.
     Based on comprehensive analysis of ERA at home and abroad, this paper studied movement rule, interference way and interference time of metal target board of single, double parallel and double wedge ERA systematically, and established movement model of ERA applied field. Theoretical calculation and experience verification show that, interference time of single ERA metal target board flying away from missile axis relate to the distance of relative armor plate, interference time is shortest when placing close to armor plate; the interference time of double parallel ERA is5times as much as interference time of single ERA metal target board flying away from missile axis; compared with double parallel ERA, interference time of double wedge ERA metal target board flying away from missile axis increases by38%; by selecting suitable wedge angle and armor plate oblique angle, interference time of double wedge ERA is longer, even reach to millisecond level.
     Based on the existing technology of series anti-ERA, combined with research result of ERA applied field, this paper raised a new anti-ERA method-separated type anti-ERA, and established theory of separated type anti-ERA. This paper also analyzed matching relationship under different working conditions such as separation distance, separation time and relatively separation velocity of separated type anti-ERA method, obtained that to make separated type anti-ERA apply on all kinds of weapons platform, separation distance should be longer than10m, separation time should be controlled within milliseconds, relatively separation velocity should be greater than150m/s. Then this paper studied two key technology of separated type anti-ERA method.
     Shear ring type explosion ignition rapid separating unit was invented. Using the classical interior ballistic theory and the principle of closed bomb vessel establish the theory model of rapid separation launch process. The change law of physical parameters during separation launch process was obtained by theoretical calculation and was verified by static test. At the same time, the interference of separation process on main warhead was studied. The results show that when use shear ring as storage pressure parts, the time of explosion ignition rapid separation can be controlled within milliseconds and relative separation speed is greater than150m/s. when separated type series warhead velocity is higher and its mass is bigger, the separation mass of front warhead is smaller, the rapid separation process has less influence on back warhead's stability.
     Based on M. Held's signal ERA detonation criterion, used the theories of jet penetrating spaced targets and homogeneous target and combined with numerical simulation and experiment research, detonated mechanism of68°oblique double wedge ERA was studied. The detonation equivalent judgment method of jet penetrating68°oblique double wedge ERA was established. If jet can penetrate the40mm45#steel ingot, hand-hole diameter is greater than Φ7mm, the out hole diameter is greater than04mm, the total penetration depth is greater than45mm, and the jet kinetic energy is greater than4kJ, jet can set off68°oblique double wedge ERA.
     The dynamic test was carried on subsystem and the whole system, and the results show that the front warhead can achieve rapid and reliable separation and after the separation, ballistic consistency was good; the front warhead can detonate reliably68°oblique double wedge ERA, the back warhead can avoid successfully interference of the applied field to breakdown main armor. The feasibility of separated anti-ERA technology is verified. It provides a valuable reference for the future application of this technology in all sorts of anti-armor weapons platform.
引文
[1]张自强.装甲防护技术基础[M].北京:兵器工业出版社,2000.
    [2]Yael K C, Arazi C. Non-explosive energetic material and a reactive armor element using same. USP 0011057,2006:4-9.
    [3]刘宏伟.爆炸反应装甲飞板变形及干扰射流模型[D].南京理工大学,2007.
    [4]蔡薇.战斗部分离技术研究[D].南京理工大学,2008.
    [5]郭正祥.爆炸反应装甲的发展方向(上)[J].国外坦克,2008,(10):26-37.
    [6]郭正祥.爆炸反应装甲的发展方向(下)[J].国外坦克,2008,(11):31-37.
    [7]仲崇慧.坦克装甲车辆综合防护系统[J].现代兵器,2006,(8):17-20.
    [8]尚智.坦克装甲的前世今生[J].海陆空天惯性世界,2010,(2):43-54.
    [9]筱虔.反应装甲发展[J].国外坦克,2010,(11):21-25.
    [10]刘立明.第三代坦克的现代化改进[J].国外坦克,2010,(2):14-18.
    [11]王雄高.装甲战车的现代防护[J].国外坦克,2011,(2):38-44.
    [12]Held M. Explosive reactive armor[C].17th International Symposium on Ballistic, Midrand, South Africa:IBC,1998:33-46.
    [13]Vered G R. Evolution of blazer reactive armour and its adaptation to AFVs[J]. Military Technology. MILTECH,1987,12:53-55.
    [14]Mayseless M, Erlich Y, Falcovitz Y. Interaction of shaped charge jet with reactive armor [C].8th International Symposium on Ballistic, Orlando Florida, USA:IBC,1984.
    [15]Held M. Comparison of explosive reactive armour against different threat levels[J]. Propellants, Explosives, Pyrotechnics,1999,24(2):76-77.
    [16]Held M. Effectiveness factors for explosive reactive armour systems[J]. Propellants, Explosives, Pyrotechnics,1999,24(2):70-75.
    [17]Held M. Effectiveness of an ERA-sandwich with a large distance between sandwich and target[J]. Propellants, Explosives, Pyrotechnics,2001,26(1):33-36.
    [18]Held M. Time-distance plots for ERA-design[J]. Propellants, Explosives, Pyrotechnics, 2001,26(5):258-262.
    [19]Held M. Stopping power of explosive reactive armours against different shaped charge diameters or at different angles[J]. Propellants, Explosives, Pyrotechnics,2001,26(2): 97-104.
    [20]Held M. Momentum theory of explosive reactive armours[J]. Propellants, Explosives, Pyrotechnics,2001,26(2):91-96.
    [21]Held M. Dynamic plate thickness of ERA sandwiches against shaped charge jets[J]. Propellants, Explosives, Pyrotechnics,2004,29(4):244-246.
    [22]Held M. Shaped charge optimization against ERA targets[J]. Propellants, Explosives, Pyrotechnics,2005,30(3):216-223.
    [23]Held M. Edge effects on ERA-sandwiches[J]. Propellants, Explosives, Pyrotechnics, 2006,29(2):98-101.
    [24]Held M. Stopping power of ERA sandwiches as a function of explosive layer thickness or plate velocities[J]. Propellants, Explosives, Pyrotechnics,2006,31(3):234-238.
    [25]Ismail M M, Rayad A M, Alwany H, et al. Optimization of performance of explosive reactive armors[C].21th International Symposium on Ballistics, Adelaide, Australia. 2004,1:227-231.
    [26]Mayseless M, Marmor E, Gov N, et al. Interaction of a shaped charge jet with reactive or passive cassettes[C].14th International Symposium on Ballistic, Quebec, Canada,1993: 439-448.
    [27]Yadav H S. Interaction of a metallic jet with a moving target[J]. Propellants, Explosives, Pyrotechnics,1988,13(3):74-79.
    [28]Yadav H S, Kamat P V. Effect of moving plate on jet penetration[J]. Propellants, Explosives, Pyrotechnics,1989,14(1):12-18.
    [29]Yadav H S, Bohra B M, Joshi G D, et al. Study on basic mechanism of reactive armour[J]. Defence Science Journal,1995,45(3):207-212.
    [30]Yadav H S. Effect of flyer plate velocity and rate of crater expansion on performance of explosive reactive armour [J]. Defence Science Journal,2002,52:429-438.
    [31]Paik S H, Kim S J, Yoo Y H, et al. Protection performance of dual flying oblique plates against a yawed long-rod Penetrator[J]. International Journal of Impact Engineering, 2007,34(8):1413-1422.
    [32]Mayseless M. Effectiveness of explosive reactive armor[J]. Journal of Applied Mechanics,2011,78(5):1-11.
    [33]曾凡君,李健,梁秀清.反应装甲爆轰阶段对射流干扰机理的研究[J].北京理工大学学报,1994,14(3):286-291.
    [34]董旭意.反应装甲对射流的干扰机理研究[D].南京理工大学,2008.
    [35]曹菊珍.反应装甲对射流侵彻深度的影响[J].兵工学报,1996,17(3):202-205.
    [36]廖海平.聚能侵彻体对双层反应装甲的冲击起爆[D].南京理工大学,2004.
    [37]朱定波,李景云,李德君.爆炸装甲对破甲射流干扰机理的研究[J].兵工学报,1991,6(1):46-53.
    [38]朱鹤荣,周箭隆,阮文俊.爆炸装甲对聚能射流干扰作用的实验与计算[J].弹道学报,1992,4(1):70-76.
    [39]朱鹤荣,陶钢.关于射流引爆薄钢板覆盖炸药临界条件的实验测定和分析[J].兵工学报,1992,7(2):10-23.
    [40]孙建,王利霞,刘丰旺.射流在薄钢板上的穿孔规律研究[J].弹箭与制导学报,2006,26(2):57-60.
    [41]马晓青,曾凡君,沈晓军.反应装甲对脱壳穿甲弹干扰及引爆机理研究[J].兵工学报,1995,10(4):10-16.
    [42]李小笠,赵国志,杜忠华.爆炸式反应装甲对长杆体侵彻的干扰作用[J].弹道学报,2006,18(3):74-78.
    [43]毛东方,李向东,任丹萍.平面夹层炸药对射流干扰的数值模拟[J].兵工学报,2007,28(11):1306-1309.
    [44]毛东方,李向东,宋柳丽.V型夹层炸药对射流干扰的数值模拟[J].爆炸与冲击,2008,28(1):86-91.
    [45]刘宏伟,赵国志,黄正祥,等.爆炸式反应装甲飞板变形计算[J].弹道学报,2007,19(4):51-54.
    [46]刘宏伟,赵国志,杜忠华,等.反应装甲飞板转角分析模型[J].弹道学报,2008,20(1):26-29.
    [47]刘宏伟,夏松林,赵靖.V形反应装甲与射流作用过程分析[J].兵器材料科学与工程,2011,34(4):20-22.
    [48]夏松林,刘宏伟,赵靖.双层平行反应装甲与射流作用过程分析[J].力学与实践,2011,33(3):30-33.
    [49]Gurney R W. The initial velocities of fragments from bombs, shell and grenades[R]. Army Ballistic Research Laboratory Aberdeen proving ground MD,1943.
    [50]Henry I G. The gurney formula and related approximations for high-explosive PUB-189[R]. Culver:Hughes Aircraft Company,1967.
    [51]Kennedy J E. Gurney energy of explosives:Estimation of the velocity and impulse imparted to driven metal[R]. Sandia National Laboratories Report, Albuquerque,1970: 70-90.
    [52]Hardesty D R, Kennedy J E. Thermochemical estimation of explosive energy output[J]. Combustion and Flame,1977,28:45-59.
    [53]Keshavarz M H, Semnani A. The simplest method for calculating energy output and gurney velocity of explosives[J]. Journal of hazardous materials,2006,131(1):1-5.
    [54]Held M. Plate velocities for asymmetric sandwiches [J]. Propellants, Explosives, Pyrotechnics,1997,22(4):218-220.
    [55]刘北锁,吴成,孙建.反应装甲设计原理[J].兵工学报,1994,9(3):42-47.
    [56]吴成,蒋建伟,冯顺山.爆炸反应装甲运动规律的数值仿真及研究[J].兵工学报,2002,23(1):35-38.
    [57]甄金朋,刘天生,张硕,等.爆炸反应装甲驱动飞板运动的数值模拟[J].火炸药学报,2010,33(2):78-81.
    [58]刘宏伟,夏松林,赵靖,等.反应装甲结构参数对飞板运动影响[J].兵器材料科学与工程,2011,34(5):41-43.
    [59]沈晓军,马晓青,曾凡君,等.双层反应装甲爆炸后薄板飞散速度工程计算[J].北京理工大学学报,1994,14(4):341-346.
    [60]黄正祥,李刚,陈惠武.双层反应装甲作用场参数数值模拟与实验研究[J].弹道学报,2005,17(4):40-43.
    [61]Held M. Discussion of the experimental findings from the initiation of covered, but unconfined high explosive charges with shaped charge jets[J]. Propellants, Explosives, Pyrotechnics,1987,12(5):167-174.
    [62]Held M, Schwartz W. The importance of jet tip velocity for the performance of shaped charges against explosive reactive armour[J]. Propellants, Explosives, Pyrotechnics, 1994,19(1):15-18.
    [63]Held M. Initiation criteria of high explosives at different projectile or jet densities[J]. Propellants, Explosives, Pyrotechnics,1996,21(5):235-237.
    [64]Held M. Jet initiation tests[J]. Propellants, Explosives, Pyrotechnics,2004,29(5): 267-273.
    [65]Thoma K, Vinckier D, Kiermeier J, et al. Shaped charge jet interaction with highly effective passive sandwich systems-experiments and analysis[J]. Propellants, Explosives, Pyrotechnics,1993,18(5):275-281.
    [66]James H R, Haskins P J, Cook M D. Prompt shock initiation of cased explosives by projectile impact[J]. Propellants, Explosives, Pyrotechnics,1996,21(5):251-257.
    [67]Wisniewski A. Explosive sensitivity influence on one-and two-layered reactive armors' behavior[J]. Journal of applied mechanics,2010,77(5):144-153.
    [68]Koch A, Haller F. Sensitivity of era-boxes initiated by shaped charge jets[C].19th International Symposium of Ballistics, Interlaken, Switzerland,2001:1077-1082.
    [69]曾凡君,马晓青,梁秀清.射流起爆双层反应装甲机理与起爆判据测试[J].北京理工大学学报,1996,16(6):621-625.
    [70]李文彬,赵志国,王晓鸣.杆式侵彻体冲击起爆反应装甲影响因素研究[J].南京理 工大学学报,2003,27(3):230-233.
    [71]沈晓军,王晓鸣,张先锋.射弹冲击引爆反应装甲数值模拟研究[J].弹箭与制导学报,2005,25(4):897-899.
    [72]王玉玲,余文力,肖秀友.反应装甲冲击引爆试验研究[J].火炸药学报,2005,28(3):70-72.
    [73]王健,曹红根,周箭隆.EFP侵彻爆炸反应装甲过程研究[J].南京理工大学学报,2008,32(1):9-12.
    [74]Held M. Anti-ERA shaped charge warhead system[C].18th International Symposium on Ballistics, San Antonio, USA.1999.
    [75]马晓青,曾凡君,陈美菱.反“反应装甲”新技术研究[J].兵工学报,1994,9(4):75-79.
    [76]王强,陈志跃,魏辽洋.反新型反应装甲弹药引信的一个重要判定准则[J].探测与控制学报,2009,31(增刊):11-12.
    [77]武海军,陈利,王江波.反应装甲对射流干扰的数值模拟研究[J].北京理工大学学报,2006,26(7):565-568.
    [78]恽寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社,2005:1-122.
    [79]李茂山.超声波测距原理及实践技术[J].实用测试技术,1994,1(12):20.
    [80]潘宗预,潘登.超声波测距精度的探讨[J].湖南大学学报(自然科学版),2002,29(3):18-21.
    [81]苏炜,龚壁建,潘笑.超声波测距误差分析[J].传感器技术,2004,23(6):8-11.
    [82]张河,孙全意.动态激光定距技术在迫弹上的应用研究[J].激光杂志,2003,24(2):63-65.
    [83]张祥金,张河,陈炳林.脉冲激光鉴相体制提高激光定距精度的几种方法[J].探测与控制学报,2007,29(2):77-80.
    [84]张祥金.脉冲激光近程定距系统设计理论及应用研究[D].南京:南京理工大学机械工程学院,2007.
    [85]刘爱国,察毫.微波超视距雷达对海面舰船目标距离的探测[J].西安电子科技大学学报(自然科学版),2009,36(4):471-475.
    [86]徐存东.CW93-200型微波测距仪距离计算的数学模式[J].中国无线电管理,1998,(6):25-27.
    [87]崔占忠,白玉贤.电容引信恒定炸高方案探讨[J].兵工学报,1994,9(3):81-84.
    [88]胡俊雄,夏红娟,白灏.导弹电容引信总体技术研究[J].制导与引信,2009,29(4):21-26.
    [89]姬龙,黄正祥,顾晓辉,等.爆炸点火快速分离过程的理论与实验研究[J].弹道学 报,2012,24(4):86-89.
    [90]丘尔巴诺夫E B.挤进时期内弹道学与挤进压力计算[M].杨敬荣,译.北京:国防工业出版社,1997.
    [91]张丁山,阮文俊,王浩,等.爆轰快速点火实验研究及机理分析[J].爆炸与冲击,2011,31(2):185-190.
    [92]李海元,栗保明,李鸿志,等.等离子体点火密闭爆发器中火药燃速特性的研究[J].爆炸与冲击,2004,24(2):145-150.
    [93]薛奡炜,肖正刚,应三九,等.发射药等离子体点火与常规点火性能的比较[J].弹道学报,2009,21(3):61-64.
    [94]Kaste P, Birk A, Kinkennon A, et al. Analysis of burning rate phenomena and extinguished solid propellants from an interrupted closed bomb with plasma igniter[J]. IEEE Trans Magn,2001,37(1):173-177.
    [95]Kappenk K, Beyer R. Progress in understanding plasma-propellant interaction[J]. Propellants, Explosives, Pyrotechnics,2003,28(1):32-36.
    [96]张丁山,阮文俊,王浩,等.爆轰快速点火过程的数值仿真与实验研究[J].兵工学报,2010,31(4):423-428.
    [97]金志明.枪炮内弹道学[M].北京:北京理工大学出版社,2004:9-117.
    [98]应三九,肖正刚,徐复铭.密闭爆发器实验中发射药燃烧全过程压力曲线的修正方法[J].火炸药学报.2007,30(4):62-64.
    [99]黄振亚,赵军,饶立胜.发射药燃速压力指数对火炮内弹道的影响[J].弹道学报.2007,19(4):1-5.
    [100]王芳,刘春美,冯顺山.多定向及同步爆炸驱动试验研究[J].兵工学报,2009,30(2):233-236.
    [101]翁春生.计算内弹道学[M].北京:国防工业出版社,2006:1-63.
    [102]徐文旭,张靖,齐占元,等.子母抛射内弹道仿真研究[J].兵工学报.2006,27(5):797-801.
    [103]沈仲书,刘亚飞.弹丸空气动力学[M].北京:国防工业出版社,1984.
    [104]翁春生,张小兵,袁亚雄,等.药粒破碎对压力异常影响的实验研究[J].爆炸与冲击,1998,18(1):15-20.
    [105]窦磊,翁春生,金志明.火药破碎敏感度的数值计算[J].火炸药学报,2003,26(2):27-31.
    [106]Bahl K L, Vantine H C, Weingart R C. Shock initiation of bare and covered explosives by projectile impact[R]. Lawrence Livermore National Lab, CA(USA),1981.
    [107]James H R. Critical energy criterion for the shock initiation of explosives by projectile impact[J]. Propellants, Explosives, Pyrotechnics,1988,13(2):35-41.
    [108]James H R, Haskins P J, Cook M D. Prompt shock initiation of cased explosives by projectile impact[J]. Propellants, explosives, pyrotechnics,1996,21(5):251-257.
    [109]Bree J L M J. Disposal of GP bombs by EFP attack[C].15th International Symposium on Ballistics Jerusalem. Israel,1995:369-372.
    [110]梁争峰,胡焕性.爆炸成形弹丸技术现状与发展[J].火炸药学报,2004,27(4).
    [111]Quidot M, Hamaide S, Groux J, et al. Fragment impact initiation of cast PBXs in relation with shock sensitivity tests [C].10th International Detonation Symposium, Massachusetts, USA.1993:113-121.
    [112]Rindner R M. Response of Explosives to Fragment Impact[C]. Annals of the New York Academy of Sciences,2006,152(1):250-268.
    [113]李会敏,刘彤.破片冲击引爆带盖板装药的数值模拟方法研究[J].弹道学报,2008,20(1):35-38.
    [114]张先锋.聚能侵彻体对带壳炸药引爆研究[D].南京理工大学,2005.
    [115]Held M. Initiation phenomena with shaped charge jets[J].9th International Symposium on Detonation,1989, (2):1416-1426.
    [116]Mader C L, Pimbley G H. Jet initiation and penetration of explosives [J]. Journal of Energetic Materials,1983,1(1):3-44.
    [117]Chick M C, Bussel T, Frey R B, et al. Initiation of munitions by shaped charge jets[C]. 9th International Symposium on Ballistics.1986:421-430.
    [118]Held M. Initiation criteria of high explosives attacked with projectiles of different densities [C]. International Annual Conference Fraunhofer-Institute fur Chemische Technology,1996:42-42.
    [119]王儒策,赵国志.弹丸终点效应[S].北京:北京理工大学出版社,1993.
    [120]魏惠之,朱鹤松,汪东晖,等.弹丸设计理论[M].北京:国防工业出版社,1985.
    [121]肖强强.聚能装药对典型土壤/混凝土复合介质目标的侵彻研究[D].南京理工大学,2012.
    [122]祖旭东.典型橡胶复合靶板抗射流侵彻机理研究[D].南京理工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700