用户名: 密码: 验证码:
MSCT双低扫描在门静脉成像中的可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、MSCT低管电压扫描对比剂剂量优化的实验研究
     目的:探讨与低管电压(kVp) CT扫描技术匹配的对比剂剂量。材料方法:配制不同对比剂含量的混合溶液(对比剂和生理盐水,单位ml,对比剂为碘海醇300mgI/ml),分别装入5只试管内,0号试管对比剂含量为2%,1-4号管对比剂含量依次较0号试管减少10%,20%,30%,40%,分别为1.8%、1.6%、1.4%、1.2%,再装入标准腹部体膜小孔内,分别行90kVp和120kVp腹部条件扫描,分别测量5只试管内对比剂溶液的CT值,比较不同对比剂含量溶液90kVp管电压时的CT值,以及90kVp各不同对比剂含量溶液的CT值与120kVp0试管对比剂溶液CT值的差异,进行统计学分析。结果:90kVp条件下,0-4号试管的CT值随着对比剂剂量的减少而降低,0和1号试管内对比剂溶液的CT值无统计学意义,0、1与2、3、4号试管间对比剂溶液CT值有统计学意义。90kVp条件下,0、1、2号试管内对比剂溶液的CT值均高于120kVp的0号管,90kVp条件下的3、4号管(即对比剂剂量减少30-40%)对比剂溶液CT值与120kVp的0号管对比剂溶液CT值间无统计学差异,但辐射剂量降低约33%。结论:低管电压扫描时减少30-40%的对比剂剂量,可以达到常规扫描模式的强化效果,同时辐射剂量降低33%。
     二、MSCT低管电压扫描门静脉成像延迟时间的选择
     目的:探讨MSCT90kVp门静脉成像延迟时间的选择。材料方法:46例行腹部CT强化扫描的患者,随机分为A、B两组,每组23例,均行9OkVp.395mAs腹部扫描,对比剂为碘海醇300mgI/ml,注射剂量为1.2ml/kg,速率3.0ml/s,行门脉期扫描时延迟时间分别为A组50s,B组60s,选取门脉期图像进行分析,分别测量肝实质及门静脉CT值,比较A、B两组患者肝实质CT值、门静脉CT值及不同延迟时间肝实质和门静脉CT值差值,进行统计分析。结果:A组门静脉平均CT值为197.2±27.2Hu,B组为178.3±24.0Hu,A组高于B组,二者有统计学差异;A组肝实质平均CT值为109.8±15.3Hu,B组肝实质平均CT值为108.4±12.9Hu,二者无统计学差异;A、B两组门静脉与肝实质的差值分别为87.4±23.8Hu,69.9±30.8Hu,A组高于B组,二者差异有统计学意义。结论:90kVp低管电压腹部CT扫描,门静脉成像延迟时间50s强化效果优于60s。异;ED分别为3.8±O.4mSv,5.7±0.5mSv,二者有统计学差异,90kVp组辐射剂量减少了33%。结论:MSCT双低扫描可用于正常体质量指数患者的门静脉成像,且门静脉显示优于常规扫描,同时降低了辐射剂量,减少了对比剂用量。
PART I Experimental study about optimization of contrast agent dose with low tube voltage MSCT scanning
     Objective:To investigate the feasibility of reducing contrast agent dose with low tube voltage (kVp) high tube current (mAs) CT technical. Materials and methods: Preparation of five different contrast agent solution volume ratio (contrast agents and saline)2%;1.8%;1.6%;1.4%;1.2%, numbered0,1,2,3,4.10%,20%,30%,40%of the contrast media dosage were reduced from1to4, and then put them into the standard abdominal phantom. The tube that contained highest concentration was scanned by120kVp200mAs with abdomen scanning mode. All the5tubes were scanned by90kVp,395mAs with abdomen scanning mode. Comparing the CT values of the different tubes between the two scanning mode. SPSS19.0was used for statistical analysis. Results:If the volume of contrast agent reduced less than20%the measurement value by90kVP CT scanning mode is higher than the maximum concentration values by the conventional CT scanning. The contrast agents reduced by30%that there is no difference between the two scanning style. If the contrast agent reduced by40%the CT value of90kVP scan mode was lower than conventional scanning measurement. The radiation dose was reduced by approximately33%. Conclusion:The contrast agent dose was reduced by30-40%which had no significant effect on the CT values by the low kVp scanning technology.
     PART Ⅱ Optimal delay time for portography at90kVp MSCT
     Objective:To investigate the optimal delay time by90kVp MSCT scanning technology in the portography. Materials and Methods:MSCT scanning were performed in two groups (A, B) and there were23cases in each group.90kVp,395mAs abdominal scanning mode was used. The delay time was50s in group A and60s in group B. The portal venous phase images were analyzed. CT values of the liver parenchyma and the portal vein were measured and the CT values of hepatic parenchyma, portal vein and CT value difference between hepatic parenchyma and portal vein were compared within group A and B. Results:The portal vein CT values of group A were higher than the corresponding values in group B. The liver parenchyma CT values within two groups were not statistically significant. Comparing the difference between the portal vein and liver parenchyma was statistically significant. The value in group A is higher than that in group B. Conclusion:Portography delay time by90kVp abdominal scanning mode50s is better.
     PART Ⅲ Clinical application of low tube voltage and low dosage contrast agent on CT portography
     Objective:The purpose of this study was to investigate feasibility of the low dose CT scanning on portography with normal body mass index (BMI) in patients. Materials and Methods:Portography was performed with two protocols:low kVp, high mAs CT scanning (90kVp,395mAs) with the contrast material volume1.2ml/kg and normal CT scanning (120kVp,200mAs) with the contrast material volume1.5ml/kg. For each protocol there were59cases. The body mass index (BMI) of each protocol was less than25kg/m2. Portal phase CT scans were acquired50s after contrast material injection. CT attenuation (HU+SD) was measured at liver and portal vein. The noise(SD) of image was measured at abdominal aorta at the level of main portal vein, then calculated signal to noise ratio (SNR), contrast to noise ratio (CNR), and effective dose(ED) with each protocol were assessed according to dose-length product (DLP).The image quality was evaluated by two radiologists. The SNR, CNR, ED and image quality were compared and differences were examined for significance by using SPSS (version19.0). P<0.05was considered to indicate a significant difference. The image score conformance according to2physicians was analyzed by Kappa consistency. Results:CNR, SNR were better at90kVp than120kVp images (p<0.05). SD was no significant difference between the two protocols (p>0.05). At90kVp versus120kVp, the ED reduction was33%and there was difference in image quality score between the two protocols, the images at90kVp superior to120kVp (p<0.05). The average amount of contrast agent decreased17.8%. Conclusion:Low dose CT technique in patients with normal BMI, the portography is superior to conventional scanning, while reducing the radiation dose and the amount of contrast agent.
     PART I Experimental study about optimization of contrast agent dose with low tube voltage MSCT scanning
     Objective:To investigate the feasibility of reducing contrast agent dose with low tube voltage (kVp) high tube current (mAs) CT technical. Materials and methods: Preparation of five different contrast agent solution volume ratio (contrast agents and saline)2%;1.8%;1.6%;1.4%;1.2%, numbered0,1,2,3,4.10%,20%,30%,40%of the dosage of contrast media were reduced from1to4, and then put them into the standard abdominal phantom. The tube that contained highest concentration was scanned by120kVp200mAs with abdomen scanning mode. All the5tubes were scanned by90kVp,395mAs with abdomen scanning mode. Comparing the CT values of the different tubes between the two scanning mode. SPSS19.0was used for statistical analysis.
     Results:If the volume of contrast agent reduced less than20%the measurement value by90kVP CT scanning mode is higher than the maximum concentration values by the conventional CT scanning. The contrast agents reduced by30%that there is no difference between the two scanning style. If the contrast agent reduced by40%the CT value of90kVP scan mode was lower than conventional scanning measurement. The radiation dose was reduced by approximately33%. Conclusion:The contrast agent dose was reduced by30-40%which had no significant effect on the CT values by the low kVp scanning technology.
     PART Ⅱ Optimal delay time for portography at90kVp MSCT
     Objective:To investigate the optimal delay time by90kVp MSCT scanning technology in the portography. Materials and Methods:MSCT scanning were performed in two groups (A, B) and there were23cases in each group.90kVp,395mAs abdominal scanning mode was used. The delay time was50s in group A and60s in group B. The portal venous phase images were analyzed. CT values of the liver parenchyma and the portal vein were measured and the CT values of hepatic parenchyma, portal vein and CT value difference between hepatic parenchyma and portal vein were compared within group A and B. Results:The portal vein CT values of group A were higher than the corresponding values in group B. The liver parenchyma CT values within two groups were not statistically significant. Comparing the difference between the portal vein and liver parenchyma was statistically significant. The value in group A is higher than that in group B. Conclusion:Portography delay time by90kVp abdominal scanning mode50s is better.
     PART Ⅲ Clinical application of low tube voltage and low dosage contrast agent in MSCT portography
     Objective:The purpose of this study was to investigate feasibility of the low dose CT scanning on portography with normal body mass index (BMI) in patients. Materials and
     Methods:Portography was performed with two protocols:low kVp, high mAs CT scanning (90kVp,395mAs) with the contrast material volume1.2ml/kg and normal CT scanning (120kVp,200mAs) with the contrast material volume1.5ml/kg. For each protocol there were59cases. The body mass index (BMI) of each protocol was less than25kg/m2. Portal phase CT scans were acquired50s after contrast material injection. CT attenuation (HU±SD) was measured at liver and portal vein. The noise(SD) of image was measured at abdominal aorta at the level of main portal vein, then calculated signal to noise ratio (SNR), contrast to noise ratio (CNR), and effective dose(ED) with each protocol were assessed according to dose-length product (DLP).The image quality was evaluated by two radiologists. The SNR, CNR, ED and image quality were compared and differences were examined for significance by using SPSS (version19.0). P<0.05was considered to indicate a significant difference. The image score conformance according to 2physicians was analyzed by Kappa consistency. Results:CNR, SNR were better at90kVp than120kVp images (p<0.05). SD was no significant difference between the two protocols (p>0.05). At90kVp versus120kVp, the ED reduction was33%and there was difference in image quality score between the two protocols, the images at90kVp superior to120kVp (p<0.05). The average amount of contrast agent decreased17.8%. Conclusion:Low dose CT technique in patients with normal BMI, the portography is superior to conventional scanning, while reducing the radiation dose and the amount of contrast agent.
引文
1. Funama Y, Awai K, Nakayama Y, et al. Radiation dose reduction without degradation of low contrast detectability at abdominal multisection CT with a low-tube voltage technique:phantom study. Radiology,2005; 237:905-910.
    2. Kalva SP, Sahani DV, Hahn PF, Saini S. Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT:a phantom and human study. J Comput Assist Tomogr.2006; 30:391-397.
    3. Schindera ST, Nelson RC, Mukundan S Jr, et al. Hypervascular liver tumors:low tube voltage, high tube current multi-detector row CT for enhanced detection-phantom study. Radiology,2008; 246:125-132.
    4. Nakayama Y, Awai K, Funama Y, et al. Abdominal CT with Low Tube Voltage: Preliminary Observations about Radiation Dose, Contrast Enhancement, Image Quality, and Noise. Radiology 2005; 237:945-951.
    5. Jian-xin Cao, Yi-min Wang, Jin-guo Lu, et al. Radiation and contrast agent doses reductions by using 80-kV tube voltage in coronary computed tomographic angiography: A comparative study. Eur Radiol,83:309-314.
    6.Thomsen HS, Morcos SK. Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT-a pooled analysis of two randomized trials. Eur Radiol, 2009,19(4):891-897.
    7. Daisuke U, Yumi Y, Kazuo A, et al. Baseline incidence and severity of renal insufficiency evaluated by estimated glomerular filtration rates in patients scheduled for contrast-enhanced CT. Acta Radiologica,2011;52:581- 586.
    8. Solomon R, Deray G.How to prevent contrast-induced nephropathy and manage risk patients:practical recommendations. Kidney Int Suppl2006:S51-53.
    9. Nyman U, Bjrk J, Aspelin P, et al. Contrast medium dose-to-GFR ratio:a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol,2008,49:658-667.
    10. Awai K, Nakayama Y, Kakei K, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise.Radiology,2005 Dec; 237(3):945-51.
    11.Yoshiharu N, Kazuo A, Yoshinori F, et al. Lower Tube Voltage Reduces Contrast Material and Radiation Doses on 16-MDCT Aortography. AJR 2006; 187:W490-W497.
    12.Mustafa K, Mert K, Ahmet Y, et al. Carotid CT-angiography:Low versus standard volume contrast media and low kV protocol for 128-slice MDCT. Eur Radiol, 2012,81:2144-2147.
    13. Chuanchen Zhang, Zhaoqi Zhang, Zixu Yan, et al.320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose. Int J Cardiovasc Imaging,2011,27:1059-1068.
    14. Heiken JP, Brink JA, McClenan BL, et al. Dynamic incremental CT:effect of volume and concentration of contrast material and patient weight. Radiology,1995; 195:353-357.
    15. Huda W. Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT [J].Radiology,2000,217(2):430-435.
    16. Yamashita Y, Komohara Y, Takahashi M, et al. Abdominal helical CT:evaluation of optimal doses of intravenous contrast material-a prospective randomized study. Radiology2000; 216:718-723.
    17. Ho LM, Nelson RC, Delong DM. Determining contrast medium dose and rate on basis of lean body weight:does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT? Radiology 2007; 243:431-437.
    18. Hiroshi K, Masayuki K, Satoshi G, et al. Abdominal Multidetector CT in Patients with Varying Body Fat Percentages:Estimation of Optimal Contrast Material Dose.Radiology,2008,249(3):872-877.
    19. Hiroshi K, Masayuki K, Satoshi G, et al. Body Size Indexes for Optimizing Iodine Dose for Aortic and Hepatic Enhancement at Multidetector CT:Comparison of Total Body Weight, Lean Body Weight, and Blood Volume. Radiology,2010,254(1):163-169.
    1.Bhasin DK, Malhi NJ. Variceal bleeding and portal hypertension:much to learn, much to explore. Endoscopy 2002; 34(2):119-128.
    2. Boraschi F, Donati M, Cossu R, et al. Multi-detector Computed Tomography Angiography of the Hepatic Artery in Liver Transplant Recipients. Acta Radiol 2005 (5):455-461.
    3. Matsumoto A. Management of gastric fundal varices. Hepatology 2008; 48(1):343-344.
    4. Agarwal A, Jain M. Multidetector CT portal venography in evaluation of portosystemic collateral vessels. Journal of Medical Imaging and Radiation Oncology, 2008,52:4-9.
    5. Li-Qin Zhao, Wen He, Ming Ji, et al.64-row multidetector computed tomography portal venography of gastric variceal collateral circulation. World J Gastroenterol 2010, 16(8):1003-1007.
    6.Willmann JK, Weishaupt D, Bohm T, et al. Detection of submucosal gastric fundal varices with multi-detector row CT angiography. Gut 2003; 52(6):886-892.
    7.Kang HK, Jeong YY, Choi JH, et al. Three-dimensional multi-detector row CT portal venography in the evaluation of portosystemic collateral vessels in liver cirrhosis. Radiographics 2002,22(5):1053-1061.
    8.Zhao LQ, He W, Chen G. Characteristics of paraesophageal varices:a study with 64-row multidetector computed tomography portal venography. World J Gastroenterol 2008; 14(34):5331-5335.
    9. Zhao LQ, He W, Ji M, et al.64-Row multidetector computed tomography portal venography of gastric variceal collateral circulation. World J Gastroenterol 2010; 16(8):1003-1007.
    10. Heiken JP, Brink JA, McClenan BL, et al. Dynamic incremental CT:effect of volume and concentration of contrast material and patient weight. Radiology,1995; 195:353-357.
    11. Huda W. Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT [J].Radiology,2000,217(2):430-435.
    12. Yamashita Y, Komohara Y, Takahashi M, et al. Abdominal helical CT:evaluation of optimal doses of intravenous contrast material-a prospective randomized study. Radiology2000; 216:718-723.
    13. Ho LM, Nelson RC, Delong DM. Determining contrast medium dose and rate on basis of lean body weight:does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT? Radiology 2007; 243:431-437.
    14. Hiroshi K, Masayuki K, Satoshi G, et al. Abdominal Multidetector CT in Patients with Varying Body Fat Percentages:Estimation of Optimal Contrast Material Dose.Radiology,2008,249(3):872-877.
    15. Hiroshi K, Masayuki K, Satoshi G, et al. Body Size Indexes for Optimizing Iodine Dose for Aortic and Hepatic Enhancement at Multidetector CT:Comparison of Total Body Weight, Lean Body Weight, and Blood Volume. Radiology,2010,254(1):163-169.
    16. Kyongtae T, Jay P, James A. et al. Aortic and Hepatic Contrast Medium Enhancement at CT Part II. Effect of Reduced Cardiac Output in a Porcine Model. Radiology,1998,207:657-662.
    17. Awai K, Takada K, Onishi H, et al. Aortic and hepatic enhancement and tumor-to-liver contrast:analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 2002; 224:757-763,
    18. Hiromasa S, Hidekazu O, Norio S, et al. Comparison of two contrast materials with different iodine concentrations in enhancing the density of the aorta, portal vein and liver at multi-detector row CT:a randomized study [J]. Eur Radiol,2004,14:2099-2104.
    19.林森,柳澄,王丽君等,对比剂不同参数选择对肝门静脉成像的影响[J],实用放射学杂志,2009,25(12):1836-1838.
    20. Irie H, Honda H, Kuroiwa T, et al. Effects of concentration and injection rate of contrast media on abdominal CT:possibility for contrast media volume reduction on abdominal multidetector row CT. Radiology 2001;221 (P):110.
    21. Nakayama Y, Imuta M, Fubnama Y, et al. CT portography by multidetector helical CT:comparison of three rendering models[J]. Radiat Med,2003,273-279.
    22.张健生,肖佩玉,孟晓春等,对比剂剂量对多层螺旋CT门静脉成像质量的影响[J],影像诊断与介入放射学,2008,17(1)18-22.
    23. Awai K, Funama Y, Hatemura M, et al, Radiation dose reduction without degradation of low-contrast detectability at abdominal multisection CT with a low-tube voltage technique:phantom study. Radiology,2005; 237(3):905-10.
    24. Awai K, Nakayama Y, Kakei K, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise.Radiology,2005; 237(3):945-51.
    25. Wintersperger B, Jakobs T, Herzog P, et al. Aortoiliac multidetector-row CT angiography with low kV settings:improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol2005; 15:334-341
    26.Huda W, Ros PR, Litwiller AL, et al. Image mottle in abdominal CT. Invest Radiol, 1999;34(4):282-286.
    27. Lieberman KA, Chang J, Roskopf ML. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses. Med Phys,2004; 31(3):588-594.
    28. Awai K, Funama Y, Liu D, et al. Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol, 2006,187(5):W490-497.
    29. Spieler B, Kim D, Graser A, et al. Dual-source dual-energy MDCT of pancreatic adenocarcinoma:initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. AJR Am J Roentgenol,2010,194(1):W27-32.
    30. Daisuke U, Seitaro O, Yoshinori F, et al. Comparison of standard-and low-tube voltage MDCT angiography in patients with peripheral arterial disease. Eur Radiol,2010, 20:2758-2765.
    31. Tschugunow A, Puesken M, Juergens U, Optimization of Scan Delay for Routine Abdominal 64-slice CT with Body Weight-Adapted Application of Contrast Material. Abdomen,2009,181:683-690.
    32. Kazuo A, Shinichi H. Effect of contrast injection protocol with dose tailored to patient weight and fixed injection duration on aortic and hepatic enhancement at multidetector-row helical CT. Eur Radiol,2003,13:2155-2160.
    33. Shigeki I, Mitsuru I, Masataka A, et al. Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances: automatic bolus tracking or empirical scan delay? Eur Radiol,2004,14:1665-1673.
    34.吕粟,周翔平,杨汉丰等,肝硬化患者16层螺旋CT肝内门静脉成像延迟时间的优化.实用放射学杂志,2007,23(5):624-628.
    35.方红,宋云龙,毕永民等,多层螺旋CT肝血管多期成像最佳时相方法选择.中华放射学杂志,2008,42(12):1303-1306.
    36.胡晓峰,刘斌,张家文等,肝纤维化与门静脉、肝实质螺旋CT峰值之间的相关性研究.实用放射学杂志,2007,23(11):1552-1555.
    37.朱智明,陈伟,龙学颖等,多层螺旋CT肝硬化门静脉成像延迟时间的优化.中国医学工程,2007,15(8):681-683.
    38. Jianhai L, Unni K. Udayasankar, Xiangyang T, et al, An Optimal Contrast Dose Indicator for the Determination of Hepatic Enhancement in Abdominal Multidetector Computed Tomography:Comparison of Patient Attenuation Indicator With Total Body Weight and Body Mass Index. J Comput Assist Tomogr,2010,34:874-878.
    39.胡国辉,谭理连,李扬彬等,多层螺旋CT Bolus Tracking技术肝脏门静脉成像的研究.广州医学院学报,2009,37(1):21-25.
    40.方红,宋云龙,张挽时等,多层螺旋CT不同延迟技术的血管成像的比较.中国医学影像学杂志,2008,16(4):259-262.
    41.Shigeki I, Mitsuru I, Masataka A, et al. Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances: automatic bolus tracking or empirical scan delay? Eur Radiol,2004,14:1665-1673.
    42.Henseler KP, Pozniak MA, Lee FT, et al. Three-dimensional CT angiography of spontaneous portosystemic shunts. Radiographics,2001; 21:691-704.
    43.Goshima S, Kanematsu M, Kondo H, et al. MDCT of the liver and hypervascular hepatocellular carcinomas:optimizing scan delays for bolus-tracking techniques of hepaticarterial and portal venous phases. AJR Am J Roentgenol,2006;187:W25-W32.
    44. Munetaka M, Tamaki K, Hajime Y, Usefulness of a Saline Flush for Intravenous 3-Dimensional Computed Tomography Portography Using Multidetector-Row Helical Computed Tomography. J Comput Assist Tomogr,2005,29:780-785.
    45.高燕莉,张镭,翟仁友.螺旋CT门静脉成像增强方法的优化及临床应用.实用放射学杂志,2002,18(6):470-473.
    46. Shigeki I, Mitsuru I, Masataka A, et al. Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances: automatic bolus tracking or empirical scan delay? Eur Radiol,2004,14:1665-1673.
    1.Covey AM, Brody LA, Getrajdman GI, Sofocleous CT, Brown KT. Incidence, patterns, and clinical relevance of variant portal vein anatomy. AJR Am J Roentgenol 2004; 183:1055-1064.
    2. Erbay N, Raptopoulos V, Pomfret EA, Kamel IR, Kruskal JB. Living donor liver transplantation in adults:vascular variants important in surgical planning for donors and recipients. AJR Am J Roentgenol 2003; 181:109-114.
    3. Zafer Koc, Levent Oguzkurt,Serife Ulusan. Portal vein variations:clinical implications and frequencies in routine abdominal multidetector CT. Diagn Interv Radiol 2007; 13:75-80.
    4.Hiromasa Suzuki, Hidekazu Oshima, Norio Shiraki, Chisa Ikeya, Yuta Shibamoto. Comparison of two contrast materials with different iodine concentrations in enhancing the density of the the aorta, portal vein and liver at multi-detector row CT:a randomized study. Eur Radiol 2004 14:2099-2104.
    4. N-s Holalkere, K Matthes, Sp Kalva, et al.64-Slice multidetector row CT angiography of the abdomen:comparison of low versus high concentration iodinated contrast media in a porcine model. The British Journal of Radiology 2011; 84:221-228.
    5. Sebastian L, Stolzmanna P, Florian T, et al. Low kilovoltage cardiac dual-source CT attenuation,noise,and radiation dose. Eur Radiol 2008; 18(9):1809-1817.
    6. Dan Wang, Xiu-hua Hu, Shi-zheng Zhang, et al. Image quality and dose performance of 80 kV low dose scan protocol in high-pitch spiral coronary CT angiography:feasibility study. Int J Cardiovasc Imaging 2012; 28:415-423.
    7. Yoshiharu Nakayama, Kazuo Awai, Yoshinori Funama, et al. Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR 2006; 187:W490-497.
    8. Yoshiharu Nakayama, Kazuo Awai, Yoshinori Funama, et al. Abdominal CT with low tube voltage:preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 2005; 237:945-951.
    9. Yoshiharu Nakayama, Kazuo Awai, Yoshinori Funama, et al. Radiation dose reduction without degradation of low contrast detectability at abdominal multisection CT with a low-tube voltage technique:phantom study. Radiology 2005; 237:905-910.
    10.Daniele Marin, Rendon C, Sebastian T, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT:improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm-initial clinical experience. Radiology 2010; 254:145-153.
    1. Suess C, Chen X. Dose optimization in pediatric CT:current technology and future innovations[J]. Pediatr Radiol,2002,32(10):729-734.
    2.刘晓东,龚建平,王建玲等,患者体重参数与腹部CT图像质量的关系[J],实用放射学杂志,2007,23(8):1062-1064.
    3. Heiken JP, Brink JA, McClenan BL, et al. Dynamic incremental CT:effect of volume and concentration of contrast material and patient weight. Radiology,1995; 195:353-357.
    4. Huda W. Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT [J].Radiology,2000,217(2):430-435.
    5. Yamashita Y, Komohara Y, Takahashi M, et al. Abdominal helical CT:evaluation of optimal doses of intravenous contrast material-a prospective randomized study. Radiology2000; 216:718-723.
    6. Ho LM, Nelson RC, Delong DM. Determining contrast medium dose and rate on basis of lean body weight:does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT? Radiology 2007; 243:431-437.
    7. Hiroshi K, Masayuki K, Satoshi G, et al. Abdominal Multidetector CT in Patients with Varying Body Fat Percentages:Estimation of Optimal Contrast Material Dose.Radiology,2008,249(3):872-877.
    8. Hiroshi K, Masayuki K, Satoshi G, et al. Body Size Indexes for Optimizing Iodine Dose for Aortic and Hepatic Enhancement at Multidetector CT:Comparison of Total Body Weight, Lean Body Weight, and Blood Volume. Radiology,2010,254(1):163-169.
    9. Kyongtae T, Jay P, James A. et al. Aortic and Hepatic Contrast Medium Enhancement at CT Part II. Effect of Reduced Cardiac Output in a Porcine Model. Radiology,1998, 207:657-662.
    10.吕粟,周翔平,杨汉丰等,肝硬化患者16层螺旋CT肝内门静脉成像延迟时间的优化[J].实用放射学杂志,2007,23(5):624-627.
    11.麦栩榆,胡茂清,金志发等,肝硬化MSCT门静脉成像扫描延迟时间的临床研究[J].中国现代医生,2010,48(16):72-75.
    12. Awai K, Takada K, Onishi H, et al. Aortic and hepatic enhancement and tumor-to-liver contrast:analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 2002; 224:757-763.
    13. Hiromasa S, Hidekazu O, Norio S, et al. Comparison of two contrast materials with different iodine concentrations in enhancing the density of the the aorta, portal vein and liver at multi-detector row CT:a randomized study[J]. Eur Radiol,2004,14:2099-2104.
    14.林森,柳澄,王丽君等,对比剂不同参数选择对肝门静脉成像的影响[J],实用放射学杂志,2009,25(12):1836-1838.
    15. Irie H, Honda H, Kuroiwa T, et al. Effects of concentration and injection rate of contrast media on abdominal CT:possibility for contrast media volume reduction on abdominal multidetectorrow CT. Radiology 2001;221 (P):110.
    16. Nakayama Y, Imuta M, Fubnama Y, et al. CT portography by multidetector helical CT:comparison of three rendering models[J]. Radiat Med,2003,273-279.
    17.张健生,肖佩玉,孟晓春等,对比剂剂量对多层螺旋CT门静脉成像质量的影响[J],影像诊断与介入放射学,2008,17(1)18-22.
    18. Lasser EC, Lyon SG, Berry CC. Reports on contrast media reactions:analysis of data from reports to the U.S. Food and Drug Administration. Radiology,1997; 203:605-610.
    19. Tublin ME, Murphy ME, Tessler FN. Current concepts in contrast media-induced nephropathy. AJR Am J Roentgenol 1998; 171:933-939.
    20. Irie T, Kajitani M, Yamaguchi M, et al. Contrast-enhanced CT with saline flush technique using two automated injectors:how much contrast medium does it save? J Comput Assist Tomogr,2002; 26:287-291.
    21.Schoellnast H, Tillich M, Deutschmann HA, et al. Improvement of parenchymal and vascular enhancement using saline flush and power injection for multi-detector-row abdominal CT. Eur Radiol,2004; 14:659-664.
    22.周志厚,丁海霞,张传玉.生理盐水冲洗在CT门静脉成像中的临床应用研究。中国医疗前沿,2008,3(13):94-95.
    23.高燕莉,张镭,翟仁友.螺旋CT门静脉成像增强方法的优化及临床应用.实用放射学杂志,2002,18(6):470-473.
    24.雷建明,董鹏,全冠民等,对比剂不同流率对门静脉CT血管成像质量的影响.实用放射学杂志,2010,26(2):258-261.
    25.Henseler KP, Pozniak MA, Lee FT, et al. Three-dimensional CT angiography of spontaneous portosystemic shunts. Radiographics,2001; 21:691-704.
    26.Goshima S, Kanematsu M, Kondo H, et al. MDCT of the liver and hypervascular hepatocellular carcinomas:optimizing scan delays for bolus-tracking techniques of hepaticarterial and portal venous phases. AJR Am J Roentgenol.2006; 187:W25-W32.
    27. Munetaka M, Tamaki K, Hajime Y, Usefulness of a Saline Flush for Intravenous 3-Dimensional Computed Tomography Portography Using Multidetector-Row Helical Computed Tomography. J Comput Assist Tomogr,2005,29:780-785.
    28.吕粟,周翔平,杨汉丰等,肝硬化患者16层螺旋CT肝内门静脉成像延迟时间的优化.实用放射学杂志,2007,23(5):624-628.
    29.方红,宋云龙,毕永民等,多层螺旋CT肝血管多期成像最佳时相方法选择.中华放射学杂志,2008,42(12):1303-1306.
    30.胡晓峰,刘斌,张家文等,肝纤维化与门静脉、肝实质螺旋CT峰值之间的相关性研究.实用放射学杂志,2007,23(11):1552-1555.
    31.朱智明,陈伟,龙学颖等,多层螺旋CT肝硬化门静脉成像延迟时间的优化.中 国医学工程,2007,15(8):681-683.
    32. Jianhai L, Unni K. Udayasankar, Xiangyang T, et al, An Optimal Contrast Dose Indicator for the Determination of Hepatic Enhancement in Abdominal Multidetector Computed Tomography:Comparison of Patient Attenuation Indicator With Total Body Weight and Body Mass Index. J Comput Assist Tomogr,2010,34:874-878.
    33.胡国辉,谭理连,李扬彬等,多层螺旋CT Bolus Tracking技术肝脏门静脉成像的研究.广州医学院学报,2009,37(1):21-25.
    34.方红,宋云龙,张挽时等,多层螺旋CT不同延迟技术的血管成像的比较.中国医学影像学杂志,2008,16(4):259-262.
    35. Shigeki I, Mitsuru I, Masataka A, et al. Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances: automatic bolus tracking or empirical scan delay? Eur Radiol,2004,14:1665-1673.
    36.刘学静,武乐斌,柳澄等,多层螺旋CT门静脉造影术准直与螺距匹配及重建方法优化选择.中国医学影像技术,2004,20(12):1933-1936.
    37. Boraschi F, Donati M, Cossu R, et al. Multi-detector Computed Tomography Angiography of the Hepatic Artery in Liver Transplant Recipients. Acta Radiol 2005 (5):455-461.
    38. Renate M, Thomas J, et al. Abdominal MDCT:protocols and contrast considerations. Eur Radiol Suppl 2005,15 (Suppl 5):E78-E90.
    39. Zafer K, Levent O, rife U. Portal vein variations:clinical implications and frequencies in routine abdominal multidetector CT. Diagn Inter Radiol,2007,13:75-80.
    40. Haaga JR. Radiation dose management:weighing risk versus benefit. AJR Am J Roentgenol 2001,177:289-291.
    41. Linton OW, Mettler FA Jr. National conference on dose reduction in CT, with an emphasis on pediatric patients. AJR Am J Roentgenol,2003; 181-.321-329.
    42. Kalra MK, Maher MM, Toth TL, et al. Strategies for CT radiation dose optimization. Radiology,2004; 230:619-628
    43. Mannudeep K, Srinivasa P, Sanjay S, et al. Clinical Comparison of Standard-Dose and 50% Reduced-Dose Abdominal CT:Effect on Image Quality.AJR,2002,179:1101-1106.
    44. Cynthia H, Michael R, Bruesewitz R, et al. CT Dose Reduction and Dose Management Tools:Overview of Available Options. Radiographics,2006,26:503-512.
    45. Awai K, Funama Y, Hatemura M, et al, Radiation dose reduction without degradation of low-contrast detectability at abdominal multisection CT with a low-tube voltage technique:phantom study. Radiology.2005 Dec;237(3):905-10.
    46. Awai K, Nakayama Y, Kakei K, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise.Radiology,2005;237(3):945-51.
    47. Wintersperger B, Jakobs T, Herzog P, et al. Aortoiliac multidetector-row CT angiography with low kV settings:improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 2005; 15:334-341.
    48.Huda W, Ros PR, Litwiller AL,et al. Image mottle in abdominal CT. Invest Radiol, 1999;34(4):282-286.
    49. Lieberman KA, Chang J, Roskopf ML. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses. Med Phys,2004 Mar;31(3):588-594.
    50. Awai K, Funama Y, Liu D, et al. Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol,2006,187(5):W490-497.
    51. Spieler B, Kim D, Graser A, et al. Dual-source dual-energy MDCT of pancreatic adenocarcinoma:initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. AJR Am J Roentgenol,2010,194(I):W27-32.
    52. Daisuke U, Seitaro O, Yoshinori F, et al. Comparison of standard-and low-tube voltage MDCT angiography in patients with peripheral arterial disease. Eur Radiol,2010, 20:2758-2765.
    53. Daniele M, Rendon C, Sebastian T, et al. Low-Tube-Voltage, HighTube-Current Multidetector Abdominal CT:Improved Image Quality and Decreased Radiation Dose with Adaptive Statistical Iterative Reconstruction Algorithm-Initial Clinical Experience.Radiology,2010,254(1):145-153.
    54. Izuru M, Shohei H, Masaaki A, et al. Adaptive statistical iterative reconstruction for volume-rendered computed tomography portovenography:improvement of image quality. Jpn J Radio,2010,28:700-706.
    55.朱景雨,李惠民,陈兆学等,80kV结合迭代算法进行多层螺旋CT门静脉成像的可行性研究.中华放射医学与防护杂志,2013,33(5):551-554.
    56.王晓梅,边杰,杨俊武等,加权窗宽及加权窗位的选择在双源CT双能门静脉成像中的应用价值.中国临床医学影像学杂志,2013,24(8):560-563.
    57.王宇翔,段慧,李滋聪等,双源CT双能量成像技术在门静脉高压症应用价值的初步探讨.实用放射学杂志,2012,28(6):940-944.
    58. Sebastian T, Rendon C, Srinivasan M, et al. Hypervascular Liver Tumors:Low Tube Voltage, High Tube Current Multi-Detector Row CT for Enhanced Detection-Phantom Study. Radiology,2008,246(1):125-132.
    59. Daniele M, Rendon C, Ehsan S, et al. Hypervascular Liver Tumors:Low Tube Voltage, High Tube Current Multidetector CT during Late Hepatic Arterial Phase for Detection-Initial Clinical Experience. Radiology,2009,251(3):771-779.
    60.赵艳娥,郑玲,张龙江等,双源双能量CT在富血供肝肿瘤成像检查中的临床研究.医学研究生学报,2011,24(8)812-815.
    61. Toru I, Takashi U, Ken-ichi M, et al. CT-maximum intensity projection is a clinically useful modality for the detection of gastric varices. World J Gastroenterol,2005, 11(47):7515-7519.
    62. Kevin P, Myron A, Fred T, et al. Three-dimensional CT Angiography of Spontaneous Portosystemic Shunts. RadioGraphics,2001,21:691-704.
    63.薛彩霞,MSCT门静脉重建技术的临床应用.实用医学影像杂志,2006,7(3):189-191.
    64.张凯,李传福,马祥兴等,16层CT门静脉成像扫描参数及后处理方式的研究.山东大学学报(医学版),2005,43(2):160-163.
    65. Agarwal A, Jain M. Multidetector CT portal venography in evaluation of portosystemic collateral vessels. Journal of Medical Imaging and Radiation Oncology. 2008,52:4-9.
    1. Funama Y, Awai K, Nakayama Y, et al. Radiation dose reduction without degradation of low contrast detectability at abdominal multisection CT with a low-tube voltage technique:phantom study. Radiology.2005; 237:905-910.
    2. Kalva SP, Sahani DV, Hahn PF, Saini S. Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT:a phantom and human study. J Comput Assist Tomogr.2006; 30:391-397.
    3. Schindera ST, Nelson RC, Mukundan S Jr, et al. Hypervascular liver tumors:low tube voltage,high tube current multi-detector row CT for enhanced detection-phantom study. Radiology.2008; 246:125-132.
    4. Nakayama Y, Awai K, Funama Y, et al. Abdominal CT with Low Tube Voltage: Preliminary Observations about Radiation Dose, Contrast Enhancement, Image Quality, and Noise. Radiology 2005; 237:945-951.
    5. Jian-xin Cao, Yi-min Wang, Jin-guo Lu, et al. Radiation and contrast agent doses reductions by using 80-kV tube voltage in coronary computed tomographic angiography: A comparative study. Eur Radiol,83:309-314.
    6.Thomsen HS, Morcos SK. Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT-a pooled analysis of two randomized trials. Eur Radiol. 2009,19(4):891-897.
    7. Daisuke U, Yumi Y, Kazuo A, et al. Baseline incidence and severity of renal insufficiency evaluated by estimated glomerular filtration rates in patients scheduled for contrast-enhanced CT. Acta Radiologica,2011;52:581-586.
    8. Solomon R, Deray G.How to prevent contrast-induced nephropathy and manage risk patients:practical recommendations. Kidney Int Suppl2006:S51-53.
    9. Nyman U, Bjrk J, Aspelin P, et al. Contrast medium dose-to-GFR ratio:a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol,2008,49:658-667.
    10. Awai K, Nakayama Y, Kakei K, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise.Radiology.2005 Dec; 237(3):945-51.
    11.Yoshiharu N, Kazuo A, Yoshinori F, et al. Lower Tube Voltage Reduces Contrast Material and Radiation Doses on 16-MDCT Aortography. AJR 2006; 187:W490-W497.
    12.Mustafa K, Mert K, Ahmet Y, et al. Carotid CT-angiography:Low versus standard volume contrast media and low kV protocol for 128-slice MDCT. Eur Radiol, 2012,81:2144-2147.
    13. Chuanchen Zhang, Zhaoqi Zhang, Zixu Yan, et al.320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose. Int J Cardiovasc Imaging,2011,27:1059-1068.
    14. Heiken JP, Brink JA, McClenan BL, et al. Dynamic incremental CT:effect of volume and concentration of contrast material and patient weight. Radiology,1995; 195:353-357.
    15. Huda W. Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT [J].Radiology,2000,217(2):430-435.
    16. Yamashita Y, Komohara Y, Takahashi M, et al. Abdominal helical CT:evaluation of optimal doses of intravenous contrast material-a prospective randomized study. Radiology2000; 216:718-723.
    17. Ho LM, Nelson RC, Delong DM. Determining contrast medium dose and rate on basis of lean body weight:does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT? Radiology 2007; 243:431-437.
    18. Hiroshi K, Masayuki K, Satoshi G, et al. Abdominal Multidetector CT in Patients with Varying Body Fat Percentages:Estimation of Optimal Contrast Material Dose.Radiology,2008,249(3):872-877.
    19. Hiroshi K, Masayuki K, Satoshi G, et al. Body Size Indexes for Optimizing Iodine Dose for Aortic and Hepatic Enhancement at Multidetector CT:Comparison of Total Body Weight, Lean Body Weight, and Blood Volume. Radiology,2010,254(1):163-169.
    1.Bhasin DK, Malhi NJ. Variceal bleeding and portal hypertension:much to learn, much to explore. Endoscopy 2002; 34(2):119-128.
    2. Boraschi F, Donati M, Cossu R, et al. Multi-detector Computed Tomography Angiography of the Hepatic Artery in Liver Transplant Recipients. Acta Radiol 2005 (5):455-461.
    3. Matsumoto A. Management of gastric fundal varices. Hepatology 2008; 48(1):343-344.
    4. Agarwal A, Jain M. Multidetector CT portal venography in evaluation Of portosystemic collateral vessels. Journal of Medical Imaging and Radiation Oncology, 2008,52:4-9.
    5. Li-Qin Zhao, Wen He, Ming Ji, et al.64-row multidetector computed tomography portal venography of gastric variceal collateral circulation. World J Gastroenterol 2010, 16(8):1003-1007.
    6. Willmann JK, Weishaupt D, Bohm T, et al. Detection of submucosal gastric fundal varices with multi-detector row CT angiography. Gut 2003; 52(6):886-892.
    7.Kang HK, Jeong YY, Choi JH, et al. Three-dimensional multi-detector row CT portal venography in the evaluation of portosystemic collateral vessels in liver cirrhosis. Radiographics 2002,22(5):1053-1061.
    8.Zhao LQ, He W, Chen G. Characteristics of paraesophageal varices:a study with 64-row multidetector computed tomography portal venography. World J Gastroenterol 2008; 14(34):5331-5335.
    9. Zhao LQ, He W, Ji M, et al.64-Row multidetector computed tomography portal venography of gastric variceal collateral circulation. World J Gastroenterol 2010; 16(8):1003-1007.
    10. Heiken JP, Brink JA, McClenan BL, et al. Dynamic incremental CT:effect of volume and concentration of contrast material and patient weight. Radiology 1995; 195:353-357.
    11. Huda W. Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT [J].Radiology,2000,217(2):430-435.
    12. Yamashita Y, Komohara Y, Takahashi M, et al. Abdominal helical CT:evaluation of optimal doses of intravenous contrast material-a prospective randomized study. Radiology2000; 216:718-723.
    13. Ho LM, Nelson RC, Delong DM. Determining contrast medium dose and rate on basis of lean body weight:does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT? Radiology 2007; 243:431-437.
    14. Hiroshi K, Masayuki K, Satoshi G, et al. Abdominal Multidetector CT in Patients with Varying Body Fat Percentages:Estimation of Optimal Contrast Material Dose.Radiology,2008,249(3):872-877.
    15. Hiroshi K, Masayuki K, Satoshi G, et al. Body Size Indexes for Optimizing Iodine Dose for Aortic and Hepatic Enhancement at Multidetector CT:Comparison of Total Body Weight, Lean Body Weight, and Blood Volume. Radiology,2010,254(1):163-169.
    16. Kyongtae T, Jay P, James A. et al. Aortic and Hepatic Contrast Medium Enhancement at CT Part II. Effect of Reduced Cardiac Output in a Porcine Model. Radiology,1998,207:657-662.
    17. Awai K, Takada K, Onishi H, et al. Aortic and hepatic enhancement and tumor-to-liver contrast:analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 2002; 224:757-763.
    18. Hiromasa S, Hidekazu O, Norio S, et al. Comparison of two contrast materials with different iodine concentrations in enhancing the density of the aorta, portal vein and liver at multi-detector row CT:a randomized study [J]. Eur Radiol,2004,14:2099-2104.
    19. Lin Sen, Liu Cheng, Wang Lijun, et al, The Influence of Different Parameter Selection of Contrast Agent on the Portal Imaging [J], J Pract Radiol,2009,25 (12): 1836-1838.
    20. Irie H, Honda H, Kuroiwa T, et al. Effects of concentration and injection rate of contrast media on abdominal CT:possibility for contrast media volume reduction on abdominal multidetector row CT. Radiology 2001;221 (P):110.
    21. Nakayama Y, Imuta M, Fubnama Y, et al. CT portography by multidetector helical CT:comparison of three rendering models[J]. Radiat Med,2003,273-279.
    22. Zhang Jiansheng, Xiao peiyu, Meng Xiaochun, et al., The optimal dose of the contrast media for spiral CT portography [J], Journal of Diagnostic Imaging & Interventional Radiology,2008,17 (1) 18-22.
    23. Awai K, Funama Y, Hatemura M, et al, Radiation dose reduction without degradation of low-contrast detectability at abdominal multisection CT with a low-tube voltage technique:phantom study. Radiology.2005; 237(3):905-10.
    24. Awai K, Nakayama Y, Kakei K, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise.Radiology.2005; 237(3):945-51.
    25. Wintersperger B, Jakobs T, Herzog P, et al. Aortoiliac multidetector-row CT angiography with low kV settings:improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 2005; 15:334-341.
    26.Huda W, Ros PR, Litwiller AL, et al. Image mottle in abdominal CT. Invest Radiol, 1999;34(4):282-286.
    27. Lieberman KA, Chang J, Roskopf ML. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses. Med Phys,2004 Mar;31(3):588-594.
    28. Awai K, Funama Y, Liu D, et al. Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol,2006, 187(5):W490-497.
    29. Spieler B, Kim D, Graser A, et al. Dual-source dual-energy MDCT of pancreatic adenocarcinoma:initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. AJR Am J Roentgenol,2010,194(l):W27-32.
    30. Daisuke U, Seitaro O, Yoshinori F, et al. Comparison of standard-and low-tube voltage MDCT angiography in patients with peripheral arterial disease. Eur Radiol,2010, 20:2758-2765.
    31. Tschugunow A, Puesken M, Juergens U, Optimization of Scan Delay for Routine Abdominal 64-slice CT with Body Weight-Adapted Application of Contrast Material. Abdomen,2009,181:683-690.
    32. Kazuo A, Shinichi H. Effect of contrast injection protocol with dose tailored to patient weight and fixed injection duration on aortic and hepatic enhancement at multidetector-row helical CT. Eur Radiol,2003,13:2155-2160.
    33. Shigeki 1, Mitsuru I, Masataka A, et al. Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances: automatic bolus tracking or empirical scan delay? Eur Radiol,2004,14:1665-1673.
    34. Lv Su, Zhou Xiangping, Yang Hanfeng, et al. Optimisition of the Scan Delay-time of Intra-hepatic Portography using 16-slice Spiral CT in Patients with Liver Cirrhosis. J Pract Radiol,2007,23 (5):624-628.
    35. Fang Hong, Song Yunlong, Bi Yongmin, et al. Choice of optimal phase for Liver angiography and multi-phase scannjng with multi-slice spiral CT. China J Radiol,2008, 42 (12):1303-1306.
    36. Hu Xiaofeng, Liu Bin, Zhang Jiawen, et al. Correlation between Hepatic Fibrosis and the Peak Value of Portal Vein and Liver Parenchyma on Spiral CT. J Pract Raiol,2007, 23 (11):1552-1555.
    37. Zhu Zhiming, Chen Wei, Long Xueying, et al. Optimization Of scan delay time for multi-slice spiral CT angiography of portal venous in liver cirrhosis. China Medical Engineering,2007,15(8):681-683.
    38. Jianhai L, Unni K. Udayasankar, Xiangyang T, et al, An Optimal Contrast Dose Indicator for the Determination of Hepatic Enhancement in Abdominal Multidetector Computed Tomography:Comparison of Patient Attenuation Indicator With Total Body Weight and Body Mass Index. J Comput Assist Tomogr,2010,34:874-878.
    39. Hu Guohui, Tan lilian, Li yangbin, et al. Study of Multi-slice Spiral CT Portography with Bolus-tracking Trigger Scan Technology. Academic Journal of Guangzhou Medical College,2009,37(1):21-25.
    40. Fang Hong, Song Yunlong, Zhang Wanshi, et al. Comparison of Different lnjedion Tedniques in Multi-slice Spiral CT Angiography. Chinese J Med Imaging,2008,16 (4):259-262.
    41.Shigeki I, Mitsuru I, Masataka A, et al. Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances: automatic bolus tracking or empirical scan delay? Eur Radiol,2004,14:1665-1673.
    42.Henseler KP, Pozniak MA, Lee FT, et al. Three-dimensional CT angiography of spontaneous portosystemic shunts. Radiographics.2001; 21:691-704.
    43.Goshima S, Kanematsu M, Kondo H, et al. MDCT of the liver and hypervascular hepatocellular carcinomas:optimizing scan delays for bolus-tracking techniques of hepaticarterial and portal venous phases. AJR Am J Roentgenol.2006;187:W25-W32.
    44. Munetaka M, Tamaki K, Hajime Y, Usefulness of a Saline Flush for Intravenous 3-Dimensional Computed Tomography Portography Using Multidetector-Row Helical Computed Tomography. J Comput Assist Tomogr,2005,29:780-785.
    45.Gao Yanli, Zhan Lei, Di Renyou. Optimization of injection protocol for spiral CT portography and its clinical application. J Pract Radiol,2002,18 (6):470-473.
    46. Shigeki I, Mitsuru I, Masataka A, et al. Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances:automatic bolus tracking or empirical scan delay? Eur Radiol,2004, 14:1665-1673.
    1.Covey AM, Brody LA, Getrajdman GI, Sofocleous CT, Brown KT. Incidence, patterns, and clinical relevance of variant portal vein anatomy. AJR Am J Roentgenol 2004; 183:1055-1064.
    2. Erbay N, Raptopoulos V, Pomfret EA, Kamel IR, Kruskal JB. Living donor liver transplantation in adults:vascular variants important in surgical planning for donors and recipients. AJR Am J Roentgenol 2003; 181:109-114.
    3. Zafer Koc, Levent Oguzkurt, Serife Ulusan. Portal vein variations:clinical implications and Frequencies in routine abdominal multidetector CT. Diagn Interv Radiol 2007; 13:75-80.
    4.Hiromasa Suzuki, Hidekazu Oshima, Norio Shiraki, Chisa Ikeya, Yuta Shibamoto. Comparison of two contrast materials with different iodine concentrations in enhancing the density of the aorta, portal vein and liver at multi-detector row CT:a randomized study. Eur Radiol 2004 14:2099-2104.
    4. N-s Holalkere, K Matthes, Sp Kalva, et al.64-Slice multidetector row CT angiography of the abdomen:comparison of low versus high concentration iodinated contrast media in a porcine model. The British Journal of Radiology 2011; 84:221-228.
    5. Sebastian L, Stolzmanna P, Florian T, et al. Low kilovoltage cardiac dual-source CT attenuation,noise,and radiation dose. Eur Radiol 2008; 18(9):1809-1817.
    6. Dan Wang, Xiu-hua Hu, Shi-zheng Zhang, et al. Image quality and dose performance of 80 kV low dose scan protocol in high-pitch spiral coronary CT angiography:feasibility study. Int J Cardiovasc Imaging 2012;28:415-423.
    7. Yoshiharu Nakayama, Kazuo Awai, Yoshinori Funama, et al. Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR 2006; 187:W490-497.
    8. Yoshiharu Nakayama, Kazuo Awai, Yoshinori Funama, et al. Abdominal CT with low tube voltage:preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 2005;237:945-951.
    9. R. Gnannt, A. Winklehner, R. Goetti, et al. Low kilovoltage CT of the neck with 70 kVp:comparison with a standard protocol. AJNR 2012; 2:1-6.
    10. Christon M. Heyer, Patrick S. Mohr, Stefan P. Lemburg, et al. Image quality and radiation exposure at pulmonary CT angiography with 100-or 120-kVp protocol: prospective randomized study. Radiology 2007; 245:577-583.
    11. Daisuke Utsunomiya, Seitaro Oda, Yoshinori Funama, et al. Comparison of standard-and low-tube voltage MDCT angiography in patients with peripheral arterial disease. Eur Radiol 2010; 20:2758-2765.
    12. Yoshiharu Nakayama, Kazuo Awai, Yoshinori Funama, et al. Radiation dose reduction without degradation of low contrast detectability at abdominal multisection CT with a low-tube voltage technique:phantom study. Radiology 2005; 237:905-910.
    13. Daniele Marin, Rendon C. Nelson, Sebastian T. Schindera, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT:improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm-initial clinical experience. Radiology 2010; 254:145-153.
    14. Takeshi Nakaura, Kazuo Awai, Seitaro Oda, et al. Low-kilovoltage, high-tube-current MDCT of liver in thin adults:pilot study evaluating radiation dose, image quality, and display settings. AJ R 2011; 196:1332-1338.
    15. Sebastian T. Schindera, Rendon C. Nelson, Srinvasan Mukundan, et al. Hypervascular liver tumors:low tube voltage, high tube current multi-detector row CT for enhanced detection-phantom study. Radiology 2008; 246:125-132.
    16. Daniele Marin, Rendon C. Nelson, Ehsan Samei, et al. Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection-initial clinical experience. Radiology 2009; 251:771-779.
    1. Suess C, Chen X. Dose optimization in pediatric CT:current technology and future innovations [J]. Pediatr Radiol,2002,32(10):729-734.
    2. Liu Xiaodong, Gong Jianping, Wang Jianling, et al. The relationship between the parameters of body weight and image quality in abdominal CT. J Pract Radiol,2007,23 (8):1062-1064.
    3. Heiken JP, Brink JA, McClenan BL, et al. Dynamic incremental CT:effect of volume and concentration of contrast material and patient weight. Radiology 1995; 195:353-357.
    4. Huda W. Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT [J].Radiology,2000,217(2):430-435.
    5. Yamashita Y, Komohara Y, Takahashi M, et al. Abdominal helical CT:evaluation of optimal doses of intravenous contrast material-a prospective randomized study. Radiology2000; 216:718-723.
    6. Ho LM, Nelson RC, Delong DM. Determining contrast medium dose and rate on basis of lean body weight:does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT? Radiology 2007; 243:431-437.
    7. Hiroshi K, Masayuki K, Satoshi G, et al. Abdominal Multidetector CT in Patients with Varying Body Fat Percentages:Estimation of Optimal Contrast Material Dose.Radiology,2008,249(3):872-877.
    8. Hiroshi K, Masayuki K, Satoshi G, et al. Body Size Indexes for Optimizing Iodine Dose for Aortic and Hepatic Enhancement at Multidetector CT:Comparison of Total Body Weight, Lean Body Weight, and Blood Volume. Radiology,20l0,254(1):163-169.
    9. Kyongtae T, Jay P, James A. et al. Aortic and Hepatic Contrast Medium Enhancement at CT Part II. Effect of Reduced Cardiac Output in a Porcine Model. Radiology,1998, 207:657-662.
    10. Lv Su, Zhou Xiangping, Yang Hanfeng, et al. Optimisition of the Scan Delay-time of Intra-hepatic Portography using 16-slice Spiral CT in Patients with Liver Cirrhosis. J Pract Radiol,2007,23(5):624-628.
    11. Mai xuyu, Hu Maoqing, Jin Zhifa, et al. Clinical Study of The Optimal Scan Delay Time in Multislice Spiral CT Portography of Cirrhosis. China Modern Doctor, 2010,48(16):72-75.
    12. Awai K, Takada K, Onishi H, et al. Aortic and hepatic enhancement and tumor-to-liver contrast:analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 2002; 224:757-763.
    13. Hiromasa S, Hidekazu O, Norio S, et al. Comparison of two contrast materials with different iodine concentrations in enhancing the density of the the aorta, portal vein and liver at multi-detector row CT:a randomized study[J]. Eur Radiol,2004,14:2099-2104.
    14. Lin Sen, Liu Cheng, Wang Lijun, et al, The Influence of Different Parameter Selection of Contrast Agent on the Portal Imaging [J], J Pract Radiol,2009,25 (12): 1836-1838.
    15. Irie H, Honda H, Kuroiwa T, et al. Effects of concentration and injection rate of contrast media on abdominal CT:possibility for contrast media volume reduction on abdominal multidetectorrow CT. Radiology 2001;221 (P):110.
    16.Nakayama Y, Imuta M, Fubnama Y, et al. CT portography by multidetector helical CT:comparison of three rendering models[J]. Radiat Med,2003,273-279.
    17. Zhang Jiansheng, Xiao peiyu, Meng Xiaochun, et al., The optimal dose of the contrast media for spiral CT portography [J], Journal of Diagnostic Imaging & Interventional Radiology,2008,17 (1) 18-22.
    18. Lasser EC, Lyon SG, Berry CC. Reports on contrast media reactions:analysis of data from reports to the U.S. Food and Drug Administration. Radiology 1997; 203:605-610.
    19. Tublin ME, Murphy ME, Tessler FN. Current concepts in contrast media-induced nephropathy. AJR Am J Roentgenol 1998; 171:933-939.
    20. Irie T, Kajitani M, Yamaguchi M, et al. Contrast-enhanced CT with saline flush technique using two automated injectors:how much contrast medium does it save? J Comput Assist Tomogr.2002; 26:287-291.
    21.Schoellnast H, Tillich M, Deutschmann HA, et al. Improvement of parenchymal and vascular enhancement using saline flush and power injection for multi-detector-row abdominal CT. Eur Radiol.2004; 14:659-664.
    22. Zhou Zhihou, Ding Haixia, Zhang Chuanyu. Retrospective study of the treatments of complex and brachy syndactyly. China Healthcare Innovation,2008,3(13):94-95.
    23. Gao Yanli, Zhan Lei, Di Renyou. Optimization of injection protocol for spiral CT portography and its clinical application. J Pract Radiol,2002,18 (6):470-473.
    24.Lei Jianming, Dong Peng, Quan Guanming, et al. Influence of Velocity of Flow of Contrast Media on Spiral CT Portography. J Pract Radiol,2010,26 (2):258-261.
    25.Henseler KP, Pozniak MA, Lee FT, et al. Three-dimensional CT angiography of spontaneous portosystemic shunts. Radiographics.2001; 21:691-704.
    26.Goshima S, Kanematsu M, Kondo H, et al. MDCT of the liver and hypervascular hepatocellular carcinomas:optimizing scan delays for bolus-tracking techniques of hepaticarterial and portal venous phases. AJR Am J Roentgenol.2006; 187:W25-W32.
    27. Munetaka M, Tamaki K, Hajime Y, Usefulness of a Saline Flush for Intravenous 3-Dimensional Computed Tomography Portography Using Multidetector-Row Helical Computed Tomography. J Comput Assist Tomogr,2005,29:780-785.
    28. Lv Su, Zhou Xiangping, Yang Hanfeng, et al. Optimisition of the Scan Delay-time of Intra-hepatic Portography using 16-slice Spiral CT in Patients with Liver Cirrhosis. J Pract Radiol,2007,23(5):624-628.
    29. Fang Hong, Song Yunlong, Bi Yongmin, et al. Choice of optimal phase for Liver angiography and multi-phase scannjng with multi-slice spiral CT. China J Radiol,2008, 42 (12):1303-1306.
    30. Hu Xiaofeng, Liu Bin, Zhang Jiawen, et al. Correlation between Hepatic Fibrosis and the Peak Value of Portal Vein and Liver Parenchyma on Spiral CT. J Pract Raiol,2007, 23 (11):1552-1555.
    31. Zhu Zhiming, Chen Wei, Long Xueying, et al. Optimization Of scan delay time for multi-slice spiral CT angiography of portal venous in liver cirrhosis. China Medical Engineering,2007,15(8):681-683.
    32. Jianhai L, Unni K. Udayasankar, Xiangyang T, et al, An Optimal Contrast Dose Indicator for the Determination of Hepatic Enhancement in Abdominal Multidetector Computed Tomography:Comparison of Patient Attenuation Indicator With Total Body Weight and Body Mass Index. J Comput Assist Tomogr,2010,34:874-878.
    33. Hu Guohui, Tan Iilian, Li yangbin, et al. Study of Multi-slice Spiral CT Portography with Bolus-tracking Trigger Scan Technology. Academic Journal of Guangzhou Medical College,2009,37(1):21-25.
    34. Fang Hong, Song Yunlong, Zhang Wanshi, et al. Comparison of Different lnjedion Tedniques in Multi-slice Spiral CT Angiography. Chinese J Med Imaging,2008,16 (4):259-262.
    35. Shigeki I, Mitsuru I, Masataka A, et al. Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances: automatic bolus tracking or empirical scan delay? Eur Radiol,2004,14:1665-1673.
    36. Liu Xuejing, Wu Lebin, Liu Cheng, et al. Optimal choice of collimation, pitch and reconstructive methodin multislice spiral CT portography. Chin J Med Imaging Technol, 2004,20 (12):1933-1936.
    37. Boraschi F, Donati M, Cossu R, et al. Multi-detector Computed Tomography Angiography of the Hepatic Artery in Liver Transplant Recipients. Acta Radiol 2005 (5):455-461.
    38. Renate M, Thomas J, et al. Abdominal MDCT:protocols and contrast considerations. Eur Radiol Suppl 2005,15 (Suppl 5):E78-E90.
    39. Zafer K, Levent O, rife U. Portal vein variations:clinical implications and frequencies in routine abdominal multidetector CT. Diagn Inter Radiol,2007,13:75-80.
    40. Haaga JR. Radiation dose management:weighing risk versus benefit. AJR Am J Roentgenol 2001,177:289-291.
    41. Linton OW, Mettler FA Jr. National conference on dose reduction in CT, with an emphasis on pediatric patients. AJR Am J Roentgenol,2003; 181:321-329.
    42. Kalra MK, Maher MM, Toth TL, et al. Strategies for CT radiation dose optimization. Radiology,2004; 230:619-628
    43. Mannudeep K, Srinivasa P, Sanjay S, et al. Clinical Comparison of Standard-Dose and 50% Reduced-Dose Abdominal CT:Effect on Image Quality.AJR,2002,179:1101-1106.
    44. Cynthia H, Michael R, Bruesewitz R, et al. CT Dose Reduction and Dose Management Tools:Overview of Available Options. Radiographics,2006,26:503-512.
    45. Awai K, Funama Y, Hatemura M, et al, Radiation dose reduction without degradation of low-contrast detectability at abdominal multisection CT with a low-tube voltage technique:phantom study. Radiology.2005; 237(3):905-10.
    46. Awai K, Nakayama Y, Kakei K, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology.2005; 237(3):945-51.
    47. Wintersperger B, Jakobs T, Herzog P, et al. Aortoiliac multidetector-row CT angiography with low kV settings:improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol2005; 15:334-341.
    48.Huda W, Ros PR, Litwiller AL,et al. Image mottle in abdominal CT. Invest Radiol, 1999;34(4):282-286.
    49. Lieberman KA, Chang J, Roskopf ML. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses. Med Phys,2004; 31(3):588-594.
    50. Awai K, Funama Y, Liu D, et al. Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol,2006, 187(5):W490-497.
    51. Spieler B, Kim D, Graser A, et al. Dual-source dual-energy MDCT of pancreatic adenocarcinoma:initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. AJR Am J Roentgenol,2010,194(1):W27-32.
    52. Daisuke U, Seitaro O, Yoshinori F, et al. Comparison of standard-and low-tube voltage MDCT angiography in patients with peripheral arterial disease. Eur Radiol,2010, 20:2758-2765.
    53. Daniele M, Rendon C, Sebastian T, et al. Low-Tube-Voltage, HighTube-Current Multidetector Abdominal CT:Improved Image Quality and Decreased Radiation Dose with Adaptive Statistical Iterative Reconstruction Algorithm-Initial Clinical Experience.Radiology,2010,254(1):145-153.
    54. Izuru M, Shohei H, Masaaki A, et al. Adaptive statistical iterative reconstruction for volume-rendered computed tomography portovenography:improvement of image quality. Jpn J Radio,2010,28:700-706.
    55. Zhu Jingyu, Li Huimin, Chen Zhaoxue, et al. Feasibility of MSCT portal vein imaging with 80 kV combined iterative method. Chin J Radiol Med Prot,2013,33 (5): 551-554.
    56. Wang Xiaomei, Bian jie, Yang Junwu, et al. The appHcafions of blending width and blending center in dual energy portal vein imaging with DSCT. J Chin Clin Med Imaging,2013,24 (8):560-563.
    57. Wang Yuxiang, Duan Hui, Li Zicong, et al. Preliminary application of dual-energy imaging technology of dual-source CT in portal hypertension. J Prac Radiol,2012,28 (6):940-944.
    58. Sebastian T, Rendon C, Srinivasan M, et al. Hypervascular Liver Tumors:Low Tube Voltage, High Tube Current Multi-Detector Row CT for Enhanced Detection-Phantom Study. Radiology,2008,246(1):125-132.
    59. Daniele M, Rendon C, Ehsan S, et al. Hypervascular Liver Tumors:Low Tube Voltage, High Tube Current Multidetector CT during Late Hepatic Arterial Phase for Detection-Initial Clinical Experience. Radiology,2009,251(3):771-779.
    60. Zhao Yane, Zheng Ling, Zhang Longjiang, et al. Dual-source dual-energy CT of hypervascular liver tumors during the hepatic arterial phase. J Med Postgra,2011,24 (8) 812-815.
    61. Toru I, Takashi U, Ken-ichi M, et al. CT-maximum intensity projection is a clinically useful modality for the detection of gastric varices. World J Gastroenterol,2005,11 (47):7515-7519.
    62. Kevin P, Myron A, Fred T, et al. Three-dimensional CT Angiography of Spontaneous Portosystemic Shunts. RadioGraphics,2001,21:691-704.
    63. Xue Caixia, Clinical application of MSCT portography reconstruction technique. JPMI,2006,7 (3):189-191.
    64. Zhan Kai, Li Chuanfu, Ma Xiangxing, et al.16 detector-row CT:parameters and postprocessing of portography. Journal of Shandong University(Health Sciences), 2005,43(2):160-163.
    65. Agarwal A, Jain M. Multidetector CT portal venography in evaluation of portosystemic collateral vessels. Journal of Medical Imaging and Radiation Oncology. 2008,52:4-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700