用户名: 密码: 验证码:
汽车侧碰安全性设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来汽车工业飞速发展,中国已经成为汽车产销第一大国,但随着汽车保有量的增多,行车速度的提高,交通事故及其所造成的人员伤亡与财产损失也一直居高不下。尤其是事故发生率最高的侧碰,由于汽车乘员舱侧面车身强度相对于其他区域较弱,侧围缺少有效的吸收碰撞能量的装置,侧碰通常对乘员造成较大的伤害,侧碰安全性设计有一定难度。
     汽车碰撞有限元仿真技术正越来越广泛地应用到汽车开发过程中,碰撞仿真主要存在两个常见矛盾:一个是仿真精度与计算效率之间的矛盾,一个是汽车安全质量与设计成本之间的矛盾。汽车开发过程中为适当提高碰撞分析仿真精度,需要增加有限元模型的单元数量,而这将导致计算效率下降;同时汽车安全的设计质量与碰撞速度、碰撞位置、材料参数、钣金板厚、制造因素、分析模型以及产品的实际应用环境等因素相关,设计质量的提高必然带来生产成本的上升。如何辩证看待这两个矛盾,并在一定程度上进行协调,成为汽车安全性设计研究的重点与难点。
     针对汽车侧碰安全性设计过程中仿真精度与计算效率的矛盾,本文开发了适用于不同设计阶段的具有不同仿真精度及计算效率的侧碰模型;针对汽车侧碰安全性设计过程中设计质量与生产成本之间的矛盾,本文应用质量工程方法对这一问题进行深刻剖析。本文的主要内容与创新点包括:
     (1)参照蜂窝铝的真实窝孔结构,建立了基于壳单元的侧碰移动可变形壁障(MDB)模型:进行窝孔及单元尺寸等比例扩大,合理匹配扩大之后的单元厚度,解决了1:1尺寸建模导致模型规模过大的问题以及确保扩大之后力学性能的一致性;针对动态试验压缩强度大于静态试验的现象,采用简易气囊模拟MDB窝孔中空气受压缩的率效应;设置铝箔的材料失效以及铝箔、前面板之间粘胶的材料失效来模拟侧碰试验中的蜂窝铝失效现象。在整车建模中,对车身侧围碰撞吸能与抗撞传力的关键零部件连接采用实体单元焊点进行模拟,改善了一维梁单元焊点不能有效模拟扭矩的问题;对侧碰关键零件进行冲压成型分析,并将冲压结果—零件厚度变化与有效塑性应变映射至碰撞模型中来模拟冲压效应;应用Cowper-Symonds模型表达材料的应变率效应,模拟侧碰过程中的零件高速承载、材料强化现象。零部件级别与整车级别的试验数据验证了壳单元MDB模型与整车模型的高精度。
     (2)对某轿车侧碰安全性分析进行了拉丁超立方试验设计,提取分析结果的关键车身结构响应与主要假人响应,以车身结构响应作为输入参数,以假人响应作为输出参数,分别构建二者之间的多元线性回归模型与逐步线性回归模型,以及逐步回归模型的等效关系式。多元线性回归模型全面显示了假人响应与各车身结构响应之间的关系,而逐步回归模型则显示了假人响应与影响显著的车身结构响应之间的关系,等效关系式则定量描述了车身结构响应对假人响应的贡献量。在已知侧碰车身结构响应的前提下,回归方程可用来预测假人损伤值,为后文的不带假人的侧碰简化模型提供了分析标准。
     (3)在汽车概念设计阶段,提出了一种基于碰撞真实力学特性的混合单元有限元简化模型(简称HD)建立方法。该模型应用Hughes-Liu梁单元(简称HL梁单元)简化模拟侧碰中主要承受弯曲载荷的车身薄壁梁结构;应用非线性弹簧单元简化模拟侧碰中主要承受轴向载荷的车身薄壁梁结构;应用塑性铰链弹簧单元简化模拟侧围关键接头;应用非线性弹簧单元简化模拟地板等承受切向冲击载荷的大面积薄板冲压件;应用二维壳单元简化模拟主要承受法向载荷的车门大面积薄板冲压件,并保留其接触面的主要特征;对MDB吸能块应用非线性弹簧单元进行简化模拟;对于其他零件则以质量分布与转动惯量等方式进行简化模拟。HD模型在保证了工程分析精度的前提下大幅度提高了计算效率。
     (4)针对工程设计领域的不确定性提出了质量工程方法,该方法包括质量评估与质量改进两大步骤。质量评估由蒙特卡洛模拟技术实现,质量改进由基于概率统计的可靠性优化与六西格玛鲁棒性优化两种不确定性优化方法实现。将质量工程方法应用于汽车侧碰安全轻量化设计这一复杂工程问题,应用拉丁超立方试验设计与Kriging方法构建该问题的近似模型,分别进行了确定性优化、可靠性优化与六西格玛鲁棒性优化,并对三种方法的优化解及其质量进行对比。研究结果表明:确定性优化能找到全局最优解,但不能保证解的质量;可靠性优化与六西格玛鲁棒性优化则能在保证质量的前提下实现优化解。
With the rapid development of the auto industry in our country, China has become the primary country for automobile production and sale, but traffic accidents and the resulting casualties and property losses also increased markedly as the increment of vehicle magnitude and driving speed at the same time. Especially the side collision keeping the highest accident rate, causing greater occupant injury since the region in vehicle body side has a weaker strength than other regions in vehicle compartment and lack of energy absorption devices, side impact safety design remains a difficult topic.
     Vehicle crash simulation is based on the finite element model, however, the increasing number of model elements requires for computing hardware and software to be enhanced, extend the computing time to solve the simulation accuracy and computational efficiency seems to be a pair of irreconcilable contradictions. How to make dialectical analysis for this issue, building crash models for different stages of development with different simulation accuracy and computational efficiency, to some extent, is of great significance; The real-world engineering problem of vehicle safety design involves in several uncertain factors such as impact velocity, impact location, material parameters, plate thickness, manufacturing factors, analysis model and the application environment of products, these uncertainties often lead to the design goals in a range of fluctuation. The quality of auto safety and cost of production also seems to be a pair of irreconcilable contradictions. How to make dialectical analysis for this issue, to some extent is of great significance.
     For the conflict of the simulation accuracy and computational efficiency in automotive side impact safety design process, the dissertation has developed side impact models for different stages with different simulation accuracy and computational efficiency; for the contradiction between design quality and design costs in automotive side impact safety design process, this dissertation has applied the method of quality engineering to make analysis in depth. The main innovative points of this dissertation are given as follows:
     (1) A FE model of moving deformable barrier (MDB) based on shell element is built by applying the shell element technology according to real structure of the honeycomb. For the situation of huge number of elements caused by shell element modeling as the same size of physics state, cell size and element size is enlarged by the identical scale. The out-of-plane compression simulation is executed to obtain the relationship between the thickness of shell elements comprising a honeycomb and compressive strength, a parameter study using a test piece is performed to achieve the compressive strength of the actual part. The air pressure effect is obtained from the results of punch tests by subtracting static punch test result from dynamic punch test result. Material failure is applied to simulate the failure phenomena of aluminum foil and the glue between the foil and the cover board during the crash. For the problem that one-dimensional beam element can not effectively simulate the torque problem of the spotweld, solid elements for spotweld are constructed to simulate the connection between the key parts of the side impact to impress the spotweld failure; For the problem of thickness change and resulting stress because of metal forming, the result of stamping-part thickness and the effective plastic strain is mapped to the collision model to simulate the stamping effects; For the problem of material strengthen of metal parts during high speed crush, Cowper-Symonds model is applied to express the strain rate effect.
     (2) In this paper,100DOE are conducted by Latin Hypercube experimental design in design of automotive side impact safety, the key response of vehicle structure and main response of dummy are extracted, the multiple linear regression model and the stepwise linear regression model are built between the response of vehicle structural as input parameters and the response of dummy as output parameters, and the equivalent relationship of the stepwise linear regression model is also built. The multiple linear regression model shows the relationship between dummy response and vehicle structural response comprehensively, while the stepwise linear regression model shows the relationship between dummy response and vehicle structural response which contributes significantly, and the equivalent relationship express it quantificationally, which provides reference for the automotive side impact design. The regression equation will be used to predict damage dummy value under the premise that side impact body structure response is known, and used to be the analysis standards for the simplified side impact model without the side impact dummy.
     (3) In the automotive concept design phase, we propose an establishing method of side impact simulation model composed of the mixing elements to simplify the finite element model based on the true mechanical properties (HD as an abbreviation). The HD model applies Hughes-Liu beam element (HL beam element) to simplify the thin-walled beams mainly exposed to bending loads in side impact; applies nonlinear spring elements to simplify the thin-walled beams mainly exposed to axial loads in side impact; applies plastic hinge spring elements to simplify the vehicle body joints; applies nonlinear spring elements to simplify the large sheet panels mainly exposed to shear loads such as floor; applies two-dimensional shell element to simulate large sheet panels under normal loads, and retains the main features of the contact surface; applies nonlinear spring elements to simplify the energy absorbing MDB blocks; applies mass distribution and moment of inertia to simplify other parts such chassis etc. HD model ensures the accuracy in engineering simultaneity greatly improves the computational efficiency.
     (4) Quality engineering method is proposed for the uncertainty in the field of engineering design, the method includes two steps:quality assessment and quality improvement. Quality assessment is achieved by the methods of Monte Carlo descriptive sampling; quality improvement is achieved by the methods of probabilistic optimization. Quality engineering method is used in lightweight design of automotive side impact safety, the approximate model of side impact is built by Latin Hypercube experimental design and Kriging model method. Deterministic optimization, reliability optimization and Six Sigma robust optimization are executed for the approximate model, the comparison of the optimal solutions and their quality is conducted for three methods. The results show that deterministic optimization algorithm tend to search for "peak" solutions while cannot ensure the quality of solutions; Reliability optimization and Six Sigma robust optimization tend to search for optimal solutions under the premise of guaranteeing quality.
引文
[1]http://www.mps.gov.cn/n16/n1252/n1837/n2557/2843627.html中国公安部网站
    [2]http://www.auto-stats.org.cn/ReadArticle.asp?NewsID=6840汽车工业协会统计信息网站
    [3]http://www.mps.gov.cn/n16/n85753/n85870/2758752.html中国公安部网站
    [4]Rapin, M.P., (1970) Vehicle Structural Crashworthiness. In Proceedings of 1970 International Automobile Safety Conference Compendium, Detroit, Michigan, pp. 927-940
    [5]Kamal, M.M. (1970) Analysis and Simulation of vehicle to Barrier Impact, Society of Automotive Engineers, SAE Paper No.700414
    [6]钟志华,汽车耐撞性分析的有限元法,汽车工程,1994,16(1):1-6
    [7]廖兴涛.基于代理模型的汽车碰撞安全性仿真优化研究[湖南大学硕士学位论文].长沙:湖南大学,2006
    [8]Haug, E. (1981) "Engineering safety analysis via destructive numerical experiments", EUROMECH 121, Polish Academy of Sciences, Engineering Transactions 29(1),39-49
    [9]HexWeb. Honeycomb Attributes and Properties. Hexcel Corporation,1999
    [10]Zaouk, A.K. and D. Marzougui. Development and Validation of a US Side Impact Moveable Deformable Barrier FE Model. The George Washington University, Washington,2002
    [11]Kojima S., Yasuki T., Mikutsu S., Takatsudo T. A Study on Yielding Function of Aluminium Honeycomb. In:5th European LS-DYNA Users Conference, Birmingham,2005
    [12]M. Asadi, B. Walker and H. Shirvani, Evaluation of New Finite Element Model for IIHS Side Impact Barrier. In:Japan LS-DYNA users Conference, Nagoya, Japan,2007
    [13]Advanced Finite Element Model for AE-MDB Side Impact Barrier. In:6th European LS-DYNA Users Conference,2007
    [14]Tore Tryland, Alternative Models of the Offset and Side Impact Deformable Barriers. In:9th International LS-DYNA Users Conference,2006
    [15]Kojima S., Yasuki T., Application of Shell Honeycomb Model to IIHS MDB Model. In:6th European LS-DYNA Users Conference,2006
    [16]陈晓东,苏清祖,程勇,朱西产.汽车侧碰移动变形壁障有限元模型的开发.汽车工程,2003,25(3):260-263
    [17]王永宁.铝蜂窝模型及其在汽车碰撞壁障数值模拟中的应用[上海交通大学硕士学位论文].上海:上海交通大学,2007
    [18]Jiwoong Ha, Jung-Han Song, Hoon Huh, et al. Front Side Member Crash Analyses Considering Dynamic Failure of a Spot Weld. ME-Conference Papers, 28-Jun-2011
    [19]何文,张维刚,钟志华.汽车碰撞仿真研究中点焊连接关系的有限元模拟.机械工程学报,2005,41(9)73-77
    [20]施欲亮,朱平,沈利冰等.基于碰撞仿真的点焊连接关系有限元模拟方法.机械工程学报,2007,43(7)226-230
    [21]F. Seeger, M. Feucht, Th. Frank, et al. An Investigation on Spot Weld Modelling for Crash Simulation with LS-DYNA. In:4th LS-DYNA Anwenderforum, Bamberg,2005
    [22]Skye Malcolm, Emily Nutwell. Spotweld Failure Prediction using Solid Element Assemblies. In:5th European LS-DYNA Users Conference, Birmingham,2007
    [23]Trevor Dutton, Richard Sturt, Paul Richardson, et al. The Effect of Forming on Automotive Crash Results. SAE Paper NO,2001-01-3050
    [24]D. Cornette, A. Galtier. Influence of the Forming Process on Crash and Fatigue Performance of High Strength Steels for Automotive Components. SAE Paper NO, 2002-01-0642
    [25]孙成智,陈光龙,林忠钦.冲压成型工艺对薄壁构件碰撞性能影响的仿真研究.汽车工程,2004,26(2)233-235
    [26]刘迪辉,李光耀,李洪周.一种用于汽车碰撞模拟的网格变量映射算法及其验证.机械工程学报,2009,45(12)218-223
    [27]Kumar Mahadevan, Paul Liang, Jim Fekete. Effect of Strain Rate in Full Vehicle Frontal Crash Analysis. SAE Paper NO,200101-0625
    [28]Michael Dietenberger, Murat Buyuk, Cing-Dao kan. Cevelopment of a High Strain-Rate Dependent Vehicle Model. In:4th LS-DYNA Anwenderforum, Bamberg,2005
    [29]付锐,魏郎.汽车碰撞数值模拟中应变率效应问题的讨论.中国公路学报,1999,32(3)
    [30]王国春,成艾国,高晖等.材料应变率对汽车碰撞性能影响的研究.汽车工程,2010,32(6)233-235
    [31]Hansun Chan, James R. Hackney, Richard M.Morgan, et al. An Analysis of NCAP Side Impact Crash Data. In:Proceedings of the 16th Conference on the Enhanced Safety of Vehicles, Paper 98-S11-O-12
    [32]Kim, D.S., Lee, C.H., Lee, M.S.,1998. Vehicle design parameter study for side impacts using full vehicle simulation. In:Proceedings of the 16th Conference on the Enhanced Safety of Vehicles, Paper 98-S8-W-16
    [33]ANINDYA D, CHRIS O C. Prediction of front TTI in NHTSA side impact using a regression-based approach. SAE Paper No,2000-01-0636
    [34]AKIKO A, TAKAYYUKI S, SHINJI F. Aggressivity reducing structure of large vehicles in side vehicle-to vehicle crash. SAE Paper No.2005-01-1355
    [35]Allan F Tencer, Robert Kaufman, Christopher Mack, et al. Factors Affecting Pelvic and Thoracic Forces in Near - Side Impact Crashes:a Study of US-NCAP, NASS, and CIREN Data. Accident Analysis and Prevention.2005, (37)287-293
    [36]张君媛,丁如芳,邱少波,等.汽车侧面碰撞中内板参数与乘员伤害值的相关性分析.汽车工程,2007,29(6)462-473
    [37]王鹏.基于侧面碰撞安全性的车辆侧面刚度匹配研究[湖南大学硕士学位论文].长沙:湖南大学,2007
    [38]张学荣,苏清祖.侧面碰撞乘员损伤影响因素分析.汽车工程,2008,30(2)146-150
    [39]张维刚,邹正宽,王祥.侧面碰撞中B柱侵入速度及变形模式对乘员损伤影响的研究.湖南大学学报,2009,36(8)28-32
    [40]王祥.汽车侧面碰撞安全性设计与优化[湖南大学硕士学位论文].长沙:湖南大学,2009
    [41]Ulrich Stuhec, Suwei Zhou, Behrooze Shahidi, Hans Zimmer, M. Prabhuwaingankar, "CAE Concept Design:a Key Enabler in Virtual Product Development". In:Human-Computer Interaction International 2005, Las Vagas, Nevada, July 22-27,2005
    [42]R Schweiger. Some aspects on upfront CAE and CAD/CAE-integration. Barcelona:NAFEMS,2006
    [43]H Vander Auweraer, J Leuridan. The new paradigm for testing in todays product development process.In: Proc of the ISMA2004. Leuven,2004,1151-1170
    [44]H Shiozaki, Y Kamada, S Kurita,et al.CAE based vehicle development to reduce development time. In:Proc of the JSAE Annual Congress. Yokohama,2005,1-6
    [45]R Hadjit, M Brughmans, H Shiozaki. Application of fast body optimization procedures to shorten car development cycles. In:Proc of the JSAE Annual Congress. Yokohama,2005,13-18
    [46]B Torstenfelt, A Klarbring. Conceptual optimal design of modular car product families using simultaneous size shape and topology optimization. Finite Elements in Analysis and Design,2007,43:1050-1061
    [47]S Donders, Y Takahashi, R Hadjit,et al. A reduced beam and joint concept modeling approach to optimize global vehicle body dynamics. Finite Elements in Analysis and Design,2009,45:439-455
    [48]D Mundo, R Hadjit, S Donders, et al. Simplified modeling of joints and beam-like structures for BIW optimization in a concept phase of the vehicle design process. Finite Elements in Analysis and Design,2009,45:456-462
    [49]C Ledermann, C Hanske, J Wenzel, et al. Associative parametric CAE methods in the aircraft pre-design. Aerospace Science and Technology,2005,9(7):641-651
    [50]SFE Concept. Powerful tool for fast parametric engineering design. http://sfel.extern.tu-berlin.de/concept/concept.html,2010-03-25
    [51]A. Hanschke, S. Zhou, M. Lee, et al. Parametric Model Knowledgebase for Vehicle Design to Improve the Early Vehicle Attribute Assessments, Proceeding of International Auto Body Congress (IABC), Berlin, Germany, June 17-19,2007
    [52]Suk-jae Hahm, Yong-hee Won and Dong-seok Kim. Frontal Crash Feasibility Study Using MADYMO 3D Frame Model. SAE Paper NO,1999-01-0072
    [53]Karim Hamza, Kazuhiro Saitou. Design for Crashworthiness of Vehicle Structures via Equivalent Mechanism Approximations and Crush Mode Matching. ASME International Mechanical Engineering Congress and Exposition, California, USA, November 13-20,2004
    [54]Yucheng Liu, M. L. Day. Development of Simplified Truck Chassis Model for Crashworthiness Analysis. In:9th International LS-DYNA Users Conference, 2008
    [55]Kamal, M. M., "Analysis and Simulation of Vehicle to Barrier Impact," SAE Paper No.700414,1970
    [56]Magee, C. L. - Keynote Address, "Design for Crash Energy Management Present and Future Developments," In:The Seventh International Conference on Vehicle Structural Mechanics, April 1988
    [57]Lim, G. G., and Paluszny A., "Side Impact Research," XXII Fisita Congress-SAE Publication P-211, Paper No.885055, Sept.1988
    [58]Green, J. E., "Computer Simulation of Car-To-Car Collisions," SAE Paper No. 770015, February-March 1977
    [59]乔淑平,李卓森,黄金陵.在概念设计阶段用FEM进行车身设计的研究.汽车技术,2000,4:6-8
    [60]黄金陵,娄永强,龚礼洲.轿车车身结构概念模型中接头的模拟.机械工程 学报,2000,36(3):78-81
    [61]庄蔚敏,陈东平.概念设计阶段轿车参数化分析模型及控制参数优化研究.汽车技术,2003,5:5-8
    [62]庄蔚敏,兰凤崇,于多年,等.轿车参数化分析模型的构造及在车身开发中的应用.机械工程学报,2004,40(7):145-149
    [63]戴轶.轿车概念设计CAE关键技术应用研究报告.中国科学院技术科学论坛第二十三次学术报告会议,2006
    [64]林逸,刘静岩,张君媛,张建伟,王宇.微型客车车身结构正面碰撞参数化模型的建立.汽车工程,2006
    [65]伍广.汽车侧面碰撞的质量-弹簧模型和有限元简化模型的研究[湖南大学硕士学位论文].长沙:湖南大学,2010
    [66]Madhav S. Phadke. Quality Engineering Using Robust Design, AT&T Bell Laboratories,1989
    [67]Mark A. Levin and Ted T. Kalal. Improving Product Reliability, Teradyne, Inc. 2003
    [68]KOCH P N, YANG R J, GU L. Design for Six Sigma Through Robust Optimization. Struct. Multidist. Optim.,2004,26:235-248
    [69]O. Ditlevsen and H.O. Madsen. Structural Reliability Methods, Technical University of Denmark,2007
    [70]David Moens and Dirk Vandepitte. A survey of non-probabilistic uncertainty treatment in finite element analysis, Comput. Methods Appl. Mech. Engrg.2005, 194:1527-1555
    [71]G.I. Schuller and H.A. Jensen. Computational methods in optimization considering uncertainties - An overview, Comput. Methods Appl. Mech. Engrg, 2008,198:2-13
    [72]G.I. Schueller, H.A. Jensen. Computational methods in optimization considering uncertainties-An overview. Compute methods in applied mechanics and engineering.2008.198:1-12
    [73]Yan Fu, Steve Wang. A new stochastic programing method for vehicle structures. Ford Research Laboratory
    [74]Ruichen Jin, Xiaoping Du, Wei Chen. The Use of Metamodeling Techniques for Optimization Under Uncertainty. Struc Mult Opt.2003,25(2):99-116
    [75]Nikolaos V. Sahinidis. Optimization under uncertainty:state-of-the-art and opportunities. Computers & Chemical Engineering Volume 28, Issues 6-7,15 June 2004, Pages 971-983
    [76]B.D. Youn, K.K. Choi, R.-J. Yang, et al. Reliability-based design optimization for crashworthiness of vehicle side impact. Struct Multidisc Optim 25,1-12 (2003)
    [77]R. J. Yang, L. Gu, C. H. Tho. Reliability-Based Multidisciplinary Design Optimization of Vehicle Structures. AIAA-2002-1758,1-9
    [78]Hans-Georg Beyer, Bernhard Sendhoff. Robust optimization - A comprehensive survey. Comput. Methods Appl. Mech. Engrg.196 (2007) 3190-3218
    [79]KOCH P N, YANG R J, GU L. Design for Six Sigma Through Robust Optimization. Struct. Multidist. Optim.,2004,26:235-248
    [80]Shuji Takeshita, Tetsuo Hosokawa. Achieving Robust Designs through Quality Engineering:Taguchi Method. Fujitsu Sci. Tech. J.,43,1, (2007)
    [81]Yan Fu, Edward Abramoski. Robust Design for Occupant Restraint System. SAE paper,2005-01-0814
    [82]孙光永,李光耀,王建华,等.可靠性优化设计在汽车构件耐撞性中的应用.计算机辅助设计与图形学学报.2007,19(10)1308-1314
    [83]张勇,基于可靠性的多学科设计优化在薄壁梁轻量化设计中的应用研究.中国机械工程,2009,45(15):1885-1889
    [84]高晖,李光耀,李铁柱.基于遗传算法和可靠性分析的乘员约束系统优化.汽车工程,2008,30(12):1052-1055
    [85]孟宪举,张策,师忠秀,等.连杆机构稳健性优化设计.机械设计,2004,21(6):31-33
    [86]孙光永,李光耀,张勇,等.基于鲁棒性的概率优化设计在薄壁构件耐撞性中的应用.中国机械工程,2007,43(4):479-483
    [87]孙光永,李光耀,陈涛,等.基于六西格玛的稳健优化在薄板冲压成形中的应用研究.机械工程学报,2008,44(11):248-254
    [88]李铁柱,李光耀,陈涛,等.基于Kriging近似模型的汽车乘员约束系统稳健性设计.机械工程学报,2010,46(22):123-129
    [89]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 20071-2006汽车侧面碰撞的乘员保护.北京:中国标准出版社,2007
    [90]Gibson, L. J., and Ashby, M. F.. Cellular Solids-Structure and Properties, Second Edition, Cambridge University Press,1997
    [91]F. C ote a, V.S. Deshpande a, N.A. Fleck a et al. The in-plane non-linear compression of regular honeycombs. Materials Science and Engineering A,2004, 380:272-280
    [92]H.X. Zhu, N.J. MillsNumerical Modelling of Honeycomb Core Crush Behaviour. International Journal of Solids and Structures,2000,37:1931-1949
    [93]Qing zhou, Robert R. Mayer. Characterization of Aluminum Honeycomb Material Failure in Large Deformation Compression Shear and Tearing. Journal of Engineering Materials and Technology,2002,124:412-420
    [94]John O. Hallquist. Ls-Dyna Theory Manual. Livermore:Livermore Software Technology Corporation,2006
    [95]邬晴晖,车身焊点结构有限元分析方法研究.机电工程技术,2005,34(3):60-62
    [96]Seeger et al., "An Investigation on Spot Weld Modeling for Crash Simulation with LS-DYNA". In:Proceedings of 4th LS-DYNA forum,2005
    [97]杨桂通.弹塑性动力学基础.北京:科学出版社,2008:60-84
    [98]LS-DYNA Version 970 Keywords User's Manual, (MAT):20.98-20.101
    [99]胡朝晖,成艾国,王国春等.多学科优化设计在拼焊板车门轻量化中的应用.中国机械工程,2010,21(4):495-499
    [100]Viano D C, A repally S. Assessing the safety performance of occupant restraint systems. SAE Paper 902328, Journal of Passenger Cars,1990,99: 1913-1939
    [101]方开泰.均匀试验设计的理论、方法和应用—历史回顾.数理统计与管理,2004,23(3):69-80
    [102]Lei Gu. A Comparison of Polynomial Based Regression Models in Vehicle Safety Analysis. In: Proceedings of ASME 2001 Design Engineering Technical Conferences, Pennsylvania,2001
    [103]Hammersley, J.M. (1960). Monte Carlo methods for solving multivariable problems, Annals of the New York Academy of Science,86,844-874
    [104]Len Schwer. LS-DYNA Beam Elements:Default and User Defined Cross Section Integration. In:In 4th European LS-DYNA Users Conference, Ulm, Germany, May,2003,22-23
    [105]Wierzbicki, T., and Abramowicz, W., "On The Crushing Mechanics of Thin Walled Structures," Journal of Applied Mechanics, Vol.50, pp.727-734, Dec. 1983
    [106]Myers, R. H., and Montgomery, D. C.,2002, Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley& Sons, INC., Toronto
    [107]Forsberg J, Nilsson L. Evaluation of Response Surface Methodologies Used in Crashworthiness Optimization. International Journal of Impact Engineering,2006, 32(5):759-777
    [108]ZHONG Z H. Finite element procedures for contact-impact problems. Oxford University Press,1993,1-10
    [109]王国春,成艾国,胡朝辉,等.基于Kriging模型的汽车前部结构的耐撞性优化.汽车工程,2011,33(3):208-212
    [11 0]窦毅芳.稳健性优化设计理论与方法及其在固体火箭发动机中的应用研究[国防科学技术大学博士论文],长沙:国防科技大学,2007
    [111]Kirkpatrick S. Optomization by simulated annealing. Science.1983,220:671-679
    [112]陈晓军,朱云开.基于遗传模拟退火算法的四杆机构优化设计.机械工程与自动化,2009,3:40-43
    [11 3]胡朝辉.面向汽车轻量化的关键技术研究[湖南大学博士论文],长沙:湖南大学,2010
    [114]Yuliang Shi, Ping Zhu, Libing Shen, et al. Lightweight design of automotive front side rails with TWB concept. Thin-Walled Structures,2007,45:8-14
    [115]Yan Zhang, Xinmin Lai, Ping Zhu, et al. Lightweight design of automobile component using high strength steel based on dent resistance. Materials and Design,2006,27:64-68
    [116]田浩彬,林建平,刘瑞同,等.汽车车身轻量化及其相关成形技术综述.汽车工程,2005,27(3):382-355
    [117]张勇,李光耀,王建华.多目标遗传算法在整车轻量化优化设计中的应用研究.中国机械工程,2009,20(4):217-222
    [118]YANG R J, L GU, THO C H, et al. Reliability-Based Multidisciplinary Design Optimization of a Full Vehicle System. In:In Proceedings of 43rd AIAA SDM Conference, Denver, CO, AIAA-2002-1758:1-9
    [119]安伟光.结构系统可靠性和基于可靠性的优化设计.北京:国防工业出版社,1997
    [120]Belli F, Jedrzejowicz P. An Approach to the Reliability Optimization of Software with Redundancy. IEEE Transactions on Software Engineering,1991, 17(3):310-312
    [121]韩旭,朱平,余海东等.基于刚度和模态性能的轿车车身轻量化研究.汽车工程,2007,29(7):545-549
    [122]李玉强,崔振山,阮雪榆,等.6σ概率优化设计方法及其应用.中国机械工程,2004,15(21):1916-1919
    [123]Kalman Ziha. Descriptive sampling in structural safety. Structural Safety, 1995,17:33-41
    [124]Yang R J, Gu Lei.Application of Descriptive Sampling and Metamodeling Methods for Optimal Design and Robustness of Vehicle Structures. In:43rd Structures, Structural Dynamics,and Materials conference. United States, AIAA, 2002:1-7
    [125]Dhanesh Padmanabhan, Harish Agarwal, John E. Renaud, et al. A study using Monte Carlo Simulation for failure probability calculation in Reliability-Based Optimization. Optimization and Engineering,2006,7(3):297-316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700