用户名: 密码: 验证码:
Li_2O-Al_2O_3-TiO_2-P_2O_5玻璃陶瓷和薄膜的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机固态电解质由于具有特殊的性能和潜在的应用前景,近年来引起广大研究者的关注,研发室温高离子导电性无机固态电解质是其重要发展方向。本论文对NASICON型以LiTi2(PO4)3为基的玻璃陶瓷及其薄膜电解质的制备与性能进行了系统研究,主要研究结论和创新点如下:
     1. Li2O-Al2O3-TiO2-P2O5(LATP)玻璃室温电导率极低,经热处理后形成玻璃陶瓷,其电导率显著增加;在1000℃晶化获得的玻璃陶瓷,室温离子电导率达到8.6×10-4S·cm-1。
     2.引入Si02能有效提高玻璃形成能力,其△T(Ti-Tg)值和Hruby玻璃形成能力指数值分别由29.9℃和0.04提高到61.8℃和0.14。但同时导致玻璃晶化时产生多种杂质相,由于阻塞效应导致离子电导率降低,所得玻璃陶瓷的最高离子电导率仅为4.1×10-4S·cm-1。
     3.适量引入B203可改善玻璃形成能力,晶化方式从一维生长模式转变为二维生长模式,析晶活化能降低,晶化指数升高。B203的引入促进主晶相LiTi2(PO4)3的析晶,抑制杂质相生长,可明显提高导电性能,当晶化温度为900℃时室温电导率高达1.3×10-3S.cm-1。晶化温度高于1000℃时AIPO4和Ti02含量增加,阻塞效应与空间电荷效应共同作用使得其Arrhenius曲线图呈现非线性变化。
     4.在LATP玻璃中掺入少量La203可提高其玻璃形成能力,但促进了玻璃中AlPO4和TiO2及未知相的析晶,导致离子电导率下降,最佳晶化温度900℃时离子电导率为5.85×10-4S·cm-1。
     5.采用离子电导率为6.6×10-5S·cm-1的Li1.3Al0.31.7PO43陶瓷靶材,用射频溅射法制备了LATP非晶态薄膜,溅射功率为100W,氧分压为20%时,随着基片温度升高薄膜更加致密,电导率从0.34x10-SS·cm-1增加到2.46×10-5S·cm-1。基片温度高于400℃时,薄膜与ITO玻璃基板发生反应,使得导电性能变差。
Due to its special properties and potential applications, more and more researchers pay attentions to inorganic solid eylectrolyte in recent years. It is the main research direction for solid-state electrolyte to develop inorganic solid electrolytes with high ionic conductivity at room temperature. The preparation and properties of the glass-ceramics and thin films based on LiTi2(PO4)3with NASICON-analogy structure were studied systematicly in this dissertation. The main conclusions are as follows:
     1. The Li2O-Al2O3-TiO2-P2O5(LATP) glass is poor in ionic conduction, while the conductivity of glass-ceramics prepared by heat treatment increased significantly. The glass-ceramic obtained by heattreated at1000℃of LATP glass shows the total conductivity at25℃coming up to8.6×10-4·cm-1..
     2. The introduction of SiO2improved glass forming ability, the value of ΔT(Ti-Tg) and KH(Hruby factor) rose from29.9℃and0.04to61.8℃and0.14, respectively. But the glass-ceramic contains much impurity phases, lead to lower ionic conductivity. The ionic conductiviy of glass-ceramic at room temperature comes up to4.1×10-4S·cm-1.
     3. The introduction of appropriated amount of B2O3results also in the increased glass forming tendency. The activation energy for crystallization reduced and the mode of crystal growth changed from one-dimensional to two dimensional growth. The boron addition promots the precipitation of the main crystalline phase LiTi2(PO4)3, restrains the precipitation of second phase, accordingly greatly enhances the conductive properties. The largest ionic conductivity of glass-ceramic (1.3×10-3·cm-1) at25℃was obtained by crystallization of the boron-incorporated glass sheet at900℃. When the heattreating temperature raise to1000℃, the content of unexpected dielectric phases (TiO2, AIPO4) increased, the synergy effects of blocking and space-charge induce the Arrhenius plots exhibiting nonlinear variation.
     4. La incorporation in LATP could also improve the glass-forming ability; yet La2O3acts as a nucleating agent and promotes the crystallization of AIPO4, TiO2and unknown phases, resulting in the decline of the ionic conductivity.
     5. LATP amorphous thin films were fabricated at various substrates temperatures from25to400℃by RF magnetron sputtering method using Li1.3Al0.3Ti1.7(PO4)3ceramic target. When the sputtering power is100W and partial pressure of oxygen is20%, with increasing substrate temperature, the thin film structure become denser, smoother and more uniform, the ionic conductivity enhances gradually from0.34×10-5S·cm-1to2.46×10-5S-cm-1. When the substrate temperature is higher than400℃, the reaction between the thin film and ITO glass substrate degrades the conductive performance of thin films.
引文
[1]胡行仁.世界电池市场综述[J].电池,2000,30(3):113-120.
    [2]Souquet J L, Duclot M. Thin film lithium batteries [J]. Solid State Ionics,2002,148:375-379.
    [3]王常珍.固体电解质和化学传感器[M].北京:冶金工精干出版社,2000:487-620.
    [4]史美伦.固体电解质[M].重庆:科学技术文献出版社重庆分社,1982:1-2.
    [5]陈艾,邓宏.快离子导体及器件[M].电子工业出版社,1993:1-2.
    [6]Reuter B, Pickardt J, Hardel K. Silbersulfidbromid Ag3SBr und Silbersulfidjodid Ag3SI [J]. Zeitschrift fur Physikalische Chemie,1967,56[5-6]:309-313.
    [7]Takahashi T, Yamamoto O. The Ag/Ag3SI/I2 solid-electrolyte cell [J]. Electrochimica Acta, 1966,11 [7]:779-789.
    [8]Yao Y F Y, Kummer J T. Ion exchange properties of and rates of ionic diffusion in beta-alumina [J]. Journal of Inorganic and Nuclear Chemistry,1967,29[9]:2453-2466.
    [9]Hong H Y-P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12 [J]. Materials Research Bulletin,1976,11[2]:173-182.
    [10]Goodenough J B, Hong H Y P, J. A. Kafalas. Fast Na+-ion transport in skeleton structures [J]. Mater Res Bull,1976,11:203-220.
    [11]Liang C C. Conduction characteristics of the lithium Iodide-Aluminum oxide solid electrolytes [J]. J Electrochem Soc,1973,120:1298-1292.
    [12]Maier J. Space charge regions in solid two-phase systems and their conduction contribution---I. Conductance enhancement in the system ionic conductor-'inert' phase and application on AgCl:Al2O3 and AgCl:SiO2 [J]. J Phys Chem Solids,1985,46[3]:309-320.
    [13]Maier J. Ionic conduction in space charge regions [J]. Prog Solid State Chem,1995,23[3]: 171-263.
    [14]Hong H Y-P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors [J]. Materials Research Bulletin,1978,13[2]:117-124.
    [15]Glass A M, Lines M E, Nassau K, et al. Anomalous dielectric behavior and reversible pyroelectricity in roller-quenched LiNbO3 and LiTaO3 glass [J]. Applied Physics Letters, 1977,31 [4]:249-251.
    [16]Thangadurai V, Weppner W. Recent progress in solid oxide and lithium ion conducting electrolytes research [J]. Ionics,2006,12:81-92
    [17]Rickert H. Electrochemistry of solids [M]. Springer, Berlin Heidelberg New York,1982.
    [18]Minh N Q. Ceramic fuel cells [J]. J Am Ceram Soc,1993,76:563-588
    [19]Steele B C H, Heinzel A. A Materials for fuel-cell technologies [J]. Nature,2001,414: 345-352.
    [20]Thangadurai V, Weppner W. Development and Investigation of Perovskite (ABO3)-Type Oxides for Power Generation [J]. Ionics,2002,8:360-371.
    [21]Wincewicz K C, Cooper J S. Taxonomies of SOFC material and manufacturing alternatives [J]. J Power Sources,2005,140:280-296.
    [22]Steele B C H. High conductivity solid ionic conductors recent trends and applications [M]. World Scientific, Singapore,1989:402-446.
    [23]Kendall K. R, Navas C, Thomas J K, et al. Recent Developments in Oxide Ion Conductors: Aurivillius Phases [J]. Chem Mater,1996,8(3):642-649.
    [24]Goodenough J B. Oxide-ion electrolyte [J]. Annu. Rev. Mater. Res.,2003,33:91-228.
    [25]Owens B B. Solid state electrolytes:overview of materials and application during the last third of the Twentieth Century [J]. J Power Sources,2000,90:2-8.
    [26]Weppner W, Huggins R A. Electrochemical Methods for Determining Kinetic Properties of Solids [J]. Annu Rev Mater Sci,1978,8:269-311.
    [27]Granqvist C G, Avendano E, Azens A. Electrochromic coatings and devices:survey of some recent advances [J]. Thin Solid Films,2003,442:201-211.
    [28]Knauth P. Inorganic solid Li ion conductors:An overview [J]. Solid State Ionics,2009,180: 911-916.
    [29]Kawakami Y, Fukuda M, Ikuta H, et al. Ionic conduction of lithium for perovskite type compounds, (Li0.05La0.317)i-xSr0.5NbO3, (Li0.iLa0.3)i-xSr0.5NbO3 and (Li0.25La0.25)i-xM0.5NbO3 (M=Ca and Sr) [J]. Solid State Ionics,1998,110:187-192.
    [30]Chung H T, Kim J G, Kim H G. Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1- XMXO3 (M=Sn, Zr, Mn, Ge) [J]. Solid State Ionics,1998, 107:153-160.
    [31]Orrantia A M, Martin S G, Moran E, et al. A new La2/3LixTi1-xAlx03 solid solution: structure, microstructure, and Li+conductivity [J]. Chem Mater,2002,14:2871-2875.
    [32]Li J X, Wen Z Y, Xu X X, et al. Lithium-ion conduction in the anion substituted La2/3-xLi3X-yTi03-yFy electrolyte with perovskite-type structure [J]. Solid State Ionics,2005, 176:2269-2273.
    [33]Boukamp B A, Huggins R A. Lithium ion conductivity in lithium nitride [J]. App Lett,1976, 58(4):231-233.
    [34]Huggins R A. Recent results on lithium ion conductors [J]. Electrochim. Acta,1977,22(7): 773-781.
    [35]Jackowska K, West A R. Behaviour of Li4SiO4 and its solid solutions during d.c. and a.c. measurements [J]. J Appl Electrochem,1985,15(3):459-468.
    [36]Khoggins A, West A R. New Li+ion conductors in the system Li4SiO4-Li3AsO4 [J], Solid State Ionics,1982,7:1-8.
    [37]Saito Y, Asai T, Ado K. Ionic conductivity of Li+ion conductors, Li4.2MxSi1-xO4(M:B3+, Al3+, Ga3+, Cr3+, Fe3+, Co2+, Ni2+) [J]. Solid State Ionics,1990,40-41:34-37.
    [38]Chavarria J B, Quintana P, Huanosta A. Electrical properties of the solid solution Li4-3xInxSiO4 [J]. Solid State Ionics,1996,86:245-248.
    [39]Neudecker B J, Weppner W. Li9SiAlO8:A Lithium Ion Electrolyte for Voltages Above 5.4V [J]. J Electronchem Soc,1996,143:2198-2203.
    [40]Esaka T, Greenblatt M. Lithium ion conduction in substituted Li5MO4, M=Al, Fe [J]. Journal of Solid State Chemistry,1987,71:164-171.
    [41]Bruce P G, West A R. Phase diagram of the LISICON, solid electrolyte system, Li4GeO4-Zn2GeO4 [J]. Mat Res Bull,1980,15:379-385.
    [42]Pizzini S. Review:Ionic conductivity in lithium compounds [J]. J Appl Electrochem,1971,1: 153-161.
    [43]Li S C, Lin Z X. Phase relationship and ionic conductivity of Li1+xTi2-xInxP3O12 system [J]. Solid State Ionics,1983,9-10:835-837.
    [44]Lin Z X, Yu H J, Li S C, et al. Phase relationship and electrical conductivity of Li1+xTi2-xGaxP3O12 and Li1+2xTi2-xMgxP3O12 systems [J]. Solid State Ionics,1986,18-19: 549-552.
    [45]Lin Z X, Yu H J, Li S C, et al. Lithium ion conductors based on LiTi2P3O12 compound [J]. Solid State Ionics,1988,31:91-94.
    [46]Hamdoune S, Qui D T, Schouler E J L. Ionic conductivity and crystal structure of Li1+xTi2-xInxP3O12 [J]. Solid State Ionics,1986,18-19:587-591.
    [47]Qui D T, Hamdoune S, Souberyrou J L, et al. Neutron Powder Diffraction Study Solution Li1+xTi2-xInxP3O12(0≤x≤0.4) [J]. Journal of Solid State Chemistry,1988,72:309-315.
    [48]Aono H, Sugimoto E. Ionic Conductivity of the Lithium Titanium Phosphate (Li1+xMxTi2-x(PO4)3, M=Al, Sc, Y and La) System [J]. J Electrochem Soc,1989,136: 590-591.
    [49]Aono H, Sugimoto E. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate [J]. J Electrochem Soc,1990,137(4):1023-1027.
    [50]Aono H, Sugimoto E, Sadaoka Y. Electrical Properties of Sintered Lithium Titanium Phosphate Ceramics (Li1+xMxTi2-x(PO4)3, M=A13+, Sc3+ or Y3+) [J]. Chemistry Letters,1990, 19:1825-1828.
    [51]Li S C, Cai J Y, Lin Z X. Phase relationships and electrical conductivity of Li1+xGe2-xAlxP3O12 and Li1+xGe2-xCrxP3O12 systems [J]. Solid State Ionics,1988,28-30: 1265-1270.
    [52]Aono H, Sugimoto E, Sadaoka Y. Electrical Properties and Sinterability for Lithium Germanium Phosphate Li1+xMxGe2-x(PO4)3, M=A13+, Cr3+, Ga3+, Fe3+, Sc3+and In3+Systems [J]. Bull Chem Soc Jpn,1992,65:2200-2204.
    [53]Aono H, Sugimoto E. Electrical properties and crystal structure of solid electrolyte based on lithium hafnium phosphate LiHf2(PO4)3 [J]. Solid State Ionics,1993,62:309-316.
    [54]Petit D, Colomban P, Collin G, et al. Fast ion transport in LiZr2(PO4)3:structure and conductivity [J]. Mat Res Bull,1986,21:365-371.
    [55]Aono H, Sugimoto E. The Electrical Properties of Ceramic Electrolytes for LiMxTi2-x(PO4)3+yLi2O, M=Ge4+, Sn4+, Hf4+, and Zr4+ Systems [J]. J Electrochem Soc,1993, 140:1827-1833.
    [56]Saito Y, Ado K, Tsai T, et al. Grain-boundary ionic conductivity in nominal Li1+xMxTi2-x(PO4)3, (M=Sc3+ or Y3+) and their zirconium analogues [J]. Journal of Materials Science Letters,1992,11:888-890.
    [57]Kougchi M, Kondo S, Watanabe M. Lithium ion conduction in LiTi2(PO4)3 [J]. Solid State Ionics,2001,139:241-247.
    [58]Matsuo T, Shibasaki M, Katsumata T. Diffusion of Li ion in glassy Li2O-B2O3 system [J]. Solid State Ionics,2002,154-155:759-766.
    [59]Lee Y, Lee J H, Hong S H, et al. Li-ion conductivity in Li2O-B2O3-V2O5 glass system [J]. Solid State Ionics,2004,175:687-690.
    [60]Manal A B, Salem A M, Abdel-Wahab F A, et al. Bond character, optical properties and ionic conductivity of Li2O/B2O3/SiO2/Al2O3 glass:Effect of structural substitution of Li2O for LiCl [J]. Journal of Non-Crystalline Solids,2008,354:4527-4533.
    [61]Kondo S, Takads K, Yamamura Y. New lithium ion conductors based on Li2S-SiS2 system [J]. Solid State Ionics,1992,53-56:1183-1186.
    [62]Orliukas A, Dindune A, Kanepe Z, et al. Synthesis, structure and peculiarities of ionic transport of Li1.6Mgo.3Tii.7(PO4)3 ceramics [J]. Solid State Ionics,2003,157:177-181.
    [63]Arbi K, Rojo J M, Sanz J. Lithium modility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy [J]. J Eur Ceram Soc,2007,27(13-15):4215-4218.
    [64]Arbi K, Rojo J M, Sanz J. Lithium exchange processes in the conduction network of the nasicon LiTi2-xZrx(PO4)3 series [J]. J Phys Chem B,2006,110(13):6454-6457.
    [65]Hosono H, Tsuchihiko F, Imai K, et al. Porous glass-ceramics exchangers:Cation exchange properties of porous glass-ceramics with skeleton of fast Li ion-conducting LiTi2(PO4)3 Crystal [J]. J Mater Res,1994,9:755-761.
    [66]Aono H, Sugimoto E, Sadaoka Y. Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3) [J]. Solid State Ionics,1991,47:257-264.
    [67]Aono H, Sugimoto E, Sadaoka Y, et al. Ionic Conductivity of LiTi2(PO4)3 Mixed with Lithium Salts [J]. Chemistry Letters,1990,190:331-334.
    [68]Aono H, Sugimoto E, Sadaoka Y, et al. DC Conductivity of Li1.3Alo.3Ti1.7(P04)3 Ceramic with Li Electrodes [J]. Chemistry Letters,1991:1567-1570.
    [69]Suzuki T, Yoshida K, Uematsu K, et al. Structure refinement of lithium conductors Li3Sc2(PO4)3 and Li3-2x(Sc1-xMx)2(PO4)3 (M=Ti, Zr) with x=0.10 by neutron diffraction [J]. Solid State Ionics,1998,113-115:89-96.
    [70]Suzuki T, Yoshida K, Uemastu K, et al. Stabilization of superionic conduction phase in Li3Sc2(PO4)3 [J]. Solid State Ionics,1997,104:27-33.
    [71]Imanaka N, Shimizu T, Adachi G. Lithium conducting armorphous solid electrolytes obtained by explosion method [J]. Solid State Ionics,1993,62:167-171.
    [72]Fu J. Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5 [J]. Solid State Ionics,1997,96 (3-4):195-200.
    [73]Fu J. Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5 [J]. Solid State Ionics,1997,104 (3-4):191-194.
    [74]Fu J. Fast Li+ ion conduction in Li2O-Al2O3-TiO2-SiO2-P2O5 glass-ceramics [J]. J Am Ceram Soc,1997,80 (17):1901-1903.
    [75]Abrahams I, Hadzifejzovic E. lithium ion conductivity and thermal behaviour of glasses and crystallized glasses in the system Li2O-Al2O3-TiO2-P2O5 [J]. Solid State Ionics,2000,134 (3-4):249-257.
    [76]Chowdari B V R, Subba R G V, Lee G Y H. XPS and ionic conductivity studies on Li2O-Al2O3-(TiO2 or GeO2)-P2O5 glass-ceramics [J]. Solid State Ionics,2000,136-137 (3-4): 1067-1075.
    [77]Joykumar S T, Binod K. Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic [J]. J Power Sources,2008,185 (1):480-485.
    [78]Joykumar S T, Binod K. Microstructural effects on the superionic conductivity of a lithiated glass-ceramic [J]. Solid State Ionics,2006,177 (7-8):727-732.
    [79]Joykumar S T, Binod K. Superionic conductivity in a lithium aluminum germanium phosphate glass-ceramic [J]. J Electrochem Soc,2008,155 (12):A915-920.
    [80]Xu X X, Wen Z Y, Gu Z H, et al. Lithium ion conductive glass ceramics in the system Li1.4Al0.4(Ge1-xTix)1.6(PO4)3 (x=0-1.0) [J]. Solid State Ionics,2004,171 (3-4):207-213.
    [81]Xu X X, Wen Z Y, Gu Z H, et al. Preparation and characterization of lithium ion-conducting glass-ceramics in the Li1+xCrxGe2-x(PO4)3 system [J]. Electrochem Commun,2004,6(12): 1233-1237.
    [82]Xu X X, Wen Z Y, Gu Z H, et al. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(P04)3-xLi20(x=0-0.2) with good electrical and electrochemical properties [J]. J Am Ceram Soc,2007,90 (9):2802-2806.
    [83]Xu X X, Wen Z Y, Gu Z H, et al. High lithium conductivity in Li1.3Cr0.3Ge1.7(P04)3 glass-ceramics [J]. Mater Lett,2004,58(6):3428-3431.
    [84]Adachi GY, Imanaka N, Aono H. Fast Li+Conducting Ceramic Electrolytes [J]. Advanced Materials,1996,8[2]:127-135.
    [85]Reau J M, Portier J, Van Gool W (Eds.). Solid Electrolytes:General Principles, Characterization, Materials Applications [J]. Academic Press, New York,1978,313-333.
    [86]Maier J, Munch W. Thermal Destiny of an Ionic Crystal [J]. Z. Anorg. Allg. Chem.,2000, 626:264-269.
    [87]Sunandana C S, Senthil Kumar P. Theoretical approaches to superionic conductivity [J]. Bull Mater Sci,2004,27(1):1-17.
    [88]Elliott S R. The Physics and Chemistry of Solids [M]. Willey, New York,2000:547-548.
    [89]Reitz J R. Foundations of Electromagnetic theory [M]. Addison-Wesley,1979:435-442.
    [90]Abouzari M S. Ion-conductivity of thin film Li-Borate glasses [C]. University of Munster, 2007:20-56.
    [91]程继健,陈玮.钡钛酸盐玻璃的形成、性质和结构[J].华东化工学院学报,1986,12:203-210.
    [92]Fu J. Lithium ion conductive glass-ceramics [P]. US Patent 5702995,1997.
    [93]Adachi G, Imanaka N, Aono H. Fast Li+Conducting Ceramic Electrolytes [J]. Adv Mater, 1996,8:127-135.
    [94]Hagman L O, Kierkegaard P. The Crystal Structure of NaMe2Ⅳ(PO4)3, Me2Ⅳ=Ge, Ti,Zr [J]. Acta Chem Scand,1968,22:1822-1832.
    [95]Xu X, Wen Z, Yang X, Zhang J, et al. High lithium ion conductivity glass-ceramics in Li2O-Al2O3-TiO2-P2O5 from nanoscaled glassy powders by mechanical milling [J]. Solid State Ionics,2006,177:2611-2615.
    [96]Kosova N V, Devyatkina E T, Stepanov A P, et al. Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2-xAlx(PO4)3 (x=0; 0.3) prepared by mechanical activation [J]. Ionics,2008,14:303-311.
    [97]Takada K, Fujimoto K, Inada T, et al. Sol-gel preparation of Li+ion conductive thin film [J]. Applied Surface Science,2002,189:300-306.
    [98]Takada K, Ma R Z, Osada M, et al. Formation of nano-sized particles of a solid electrolyte by laser ablation [J]. Journal of Power Sources,2005,146:703-706.
    [99]Wen Z, Xu X, Li J. Preparation, microstructure and electrical properties of Li1.4Alo.4Ti1.6(P04)3 nanoceramics [J]. J Electroceram,2009,22:342-345.
    [100]Narvaez-Semanate J L, Rodrigues A C M. Microstructure and ionic conductivity of Li1+xAlxTi2-x(PO4)3 NASICON glass-ceramics [J]. Solid State Ionics,2010,181:1197-1204.
    [101]Johnston W D. Oxidation-Reduction Equilibria in Molten Na2O-2SiO2 glass [J]. J Am Ceram Soc,1965,48:184-190.
    [102]Schreiber H D, Thanyashiri T, Lach J J, et al. Redox equilibria of Ti, Cr and Eu in silicate melts:reduction potentials and mutual interactions [J]. Phys Chem Glasses,1978,19: 126-140.
    [103]周亚栋.无机材料物理化学[M].武汉工业大学出版社,1994:222-224.
    [104]Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth [J]. Trans AIME,1939,135:416-458.
    [105]Poulain M. Overview of crystallization in fluoride glass [J]. Non-Cryst Solids,1992,140(1): 1-9.
    [106]胡丽丽,姜中宏.玻璃析晶难易的一种新判据[J].硅酸盐学报,1990,18[4]:315-321.
    [107]Chen C L, Wei W C J, Roosen A. Crystallization kinetics of La2O3-Al2O3-B2O3 glass-ceramic composites [J]. Journal of the European Ceramic Society, 2,26:3325-3334.
    [108]Yinnon H, Uhlmann D R. Application of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I:theory [J]. Non-Cryst Solids,1983, (54):253-275.
    [109]Best A S, Forsyth M, MacFarlane D R. Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2-x(PO4)3:impedance, X-ray and NMR studies [J]. Solid State Ionics,2000,136-137:339-344.
    [110]Cretin M, Fabry P. Comparative study of lithium ion conductors in the system Li1+xAlxA2-xⅣ(PO4)3 with AⅣ=Ti or Ge and 0    [111]叶大伦.实用无机热力学数据手册[M].北京:冶金工业出版社,1981:212-977.
    [112]Delmas C, Nadiri A, Soubeyroux J L. The nasicon-type titanium phosphates ATi2(PO4)3(A=Li, Na) as electrode materials [J]. Solid State Ionics,1988,28-30:419-423.
    [113]Pikl R, Waal D D, Aatiq A, et al. Vibrational spectra and factor group analysis of Li2xMn0.5-xTi2(P04)3{x=0,0.25,0.5} [J]. Materials Research Bulletin,1998,33 (6): 955-961.
    [114]Burba C M, Frech R. Vibrational spectroscopic study of lithium intercalation into LiTi2(PO4)3 [J]. Solid State Ionics,2006,177:1489-1494.
    [115]Kerkouri N, Et-tabirou M, Chahine A, et al. DSC and spectroscopic studies of the structure of V2O5-CdO-P2O5 glasses [J]. Journal of Optoelectronic and Advanced Materials,2010,12: 1030-1034..
    [116]Orendorz A, Brodyanski A, Losch J, et al. Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy [J]. Surface Science,2007,601:4390-.4394.
    [117]Lee K S, Ko J H, Moon J, et al. Raman spectroscopic study of LiH2PO4 [J]. Solid State Communications,2008,145:487-492.
    [118]吴锋,刘亚栋,陈人杰,等LiBPON薄膜电解质的制备及电化学性能研究[J].电化学,2009.15(1):17-21
    [119]宋开新,俞建长,刘旭俐.晶化时间对玻璃陶瓷结构与性能的影响[J].福州大学学报(自然科学版),2003,31:175-177.
    [120]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,1982:60-80.
    [121]Inaguma Y, Chen L, Itoh M, et al. High ionic conductivity in lithium lathanum titanate [J]. Solid State Communications,1993,86:689-693.
    [122]Souquet J L. Ionic transport in amorphous solid electrolytes [J]. Ann Rev Mater Sci,1981, 11:211-231.
    [123]Hsu C H, Mansfeld F. Technial Note:Concerning the Conversion of the Constant Phase element Parameter Yo into a Capacitance [J]. Corrosion.2001,57:747-748
    [124]Mulder W H, Sluyters J H. An explanation of depressed semi-circular arcs in impedance plots for irreversible electrode reactions [J]. Electrochimica Acta,1988,33 (3):303-310.
    [125]Kumar B, Thokchom J S. Space Charge Signature and its Effects on Ionic Transport in Heterogeneous Solids [J]. J Am Ceram Soc,2007,90 (10):3323-3325.
    [126]Funke K. Jump relaxation in solid electrolytes [J]. Prog Solid St Chem,1993,22:111-195.
    [127]Deportes C, Duclot M, Fabry P, et al. Electrochimie des Solides [M], Pressses Universitaires de Grenoble,1994:151-153.
    [128]郭公毅,陈玉莉.铅-钡-铝磷酸盐玻璃的热性质和红外光谱[J].无机材料学报.1997,12(2):224-227
    [129]Brow R K, Tallant D R, Myers S T, et al. The short range structure of zinc polyphosphate glass [J]. Journal of Non Crystalline Solid,1995,191:45-55.
    [130]郑子山,张中太,唐子龙等.锂无机固体电解质[J].化学进展,2003,15(2):101-106。
    [131]Zemann J. Die Kristallstruktur von Lithiumphosphat, Li3PO4 [J]. Acta Cryst,1960,13: 863-867.
    [132]Wang J S, Vogel E M, Snitzer E. Tellurite glass:a new candidate for fiber devices [J]. Opt Mater,1994,3:187-203.
    [133]Cabral A A, Cardoso A A D, Zanotto E D. Glass-forming ability versus stability of silicate glasses. I. Experimental test [J]. J Non-Cryst Solids,2003,320:1-8.
    [134]Cruz A M, Ferreira E B, Rodrigues A C M. Controlled crystallization and ionic conductivity of a nanostructured LiAlGePO4 glass-ceramic [J]. J Non-Cryst Solids,2009,355: 2295-2301.
    [135]Funke K, Banhatti R D, Bruckner S, et al. Ionic motion in materials with disordered structures:conductivity spectra and the concept of mismatch and relaxation [J]. Phys Chem Chem Phys,2002,4:3155-3167.
    [136]宋修玉,姜中宠.磷硼酸盐玻璃形成及性质的研究[J].玻璃与搪瓷,1987,18:1-6.
    [137]Yin Y, Jiang D, Chen X, et al. Raman spectrum studies of the coordinations of aluminium and boron in Na2O-Al2OrB2O3-P2O5 glass [J]. J Phys Colloques,1985,46(C8):311-315.
    [138]Ozawa T. Kinetics of non-isothermal crystallization [J]. Polymer,1971,12(3):150-158.
    [139]Takhor R L. Advances in Nucleation and Crystallization of Glasses [J].Am Ceram Soc, Columbus, OH,1972:166-172.
    [140]Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis [J]. J Res Natl Bur Stand,1956,57:217-221.
    [141]Bansal N P, Doremus R H, Bruce A J, et al. Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry [J]. J Am Ceram Soc,1983,66: 233-238.
    [142]Zhao X J and Sakka S. Glasses Formation and Crystallization in Alkali-containing Fluoride Glasses [J]. J Non-Cryst Solids,1987,95-96:487-494.
    [143]Zhao X J, Yin H B, Chen W M. Formatiopn and Crystallization of the As2Te3-HgI2 chalcogenide-halide glasses [J]. J Non-Cryst Solids,1995,184:128-132.
    [144]Arora A, Shaaban E R, Singh K, et al. Non-isothermal crystallization kinetics of ZnO-BaO-B2O3-SiO2 glass [J]. Journal of Non-crystalline Solids,2008,354 (33): 3944-3951.
    [145]Sigaev V N, Lopatina E V, Sarkisov P D, et al. Non-isothermal crystallization of La2O3·B2O3·2GeO2 glass [J]. Thermochim. Acta,1996,286 (1):25-31.
    [146]Matusita K, Konatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials [J]. J Mater Sci,1984,19 (1): 291-296.
    [147]Kumar B, Nellutla S, Thokchom J S, et al. Ionic conduction through heterogeneous solids: Delineation of the blocking and space charge effects [J]. Journal of Power Sources,2006, 160:1329-1335.
    [148]Brow R K, Metwalli E, Sidebottom D L. Properties and structure of lanthanum phosphate glasses [J]. Proc SPIE,2000,4102:88-94.
    [149]Takada K, Tansho M, Yanase I, et al. Lithium ion conduction in LiTi2(PO4)3 [J]. Solid State Ionics,2001,139:241-247.
    [150]Bates J B, Dudney N L, Gruzalski G R, et al. Electrical properties of amorphous lithium electrolyte thin films [J]. Solid State Ionics,1992,53-56:647-654.
    [151]Yu X, Bates J B, Jellison G E, et al. A Stable Thin-Film Lithium Electrolyte:Lithium Phosphorus Oxynitride [J]. J Electrochem Soc,1997,144:524-532.
    [152]Lee S J, Bae J H, Lee H W, et al. Electrical conductivity in Li-Si-P-O-N oxynitride thin-films [J]. J Power Sources,2003,123:61-64.
    [153]Wu F, Liu Y D, Chen R J, et al. Preparation and performance of novel Li-Ti-Si-P-O-N thin-film electrolyte for thin-film lithium batteries [J]. J Power Sources,2009,189: 467-470.
    [154]Fu J. Fast Li+ ion conduction in Li2O-(Al2O3, Ga2O3)-TiO2-P2O5 glass-ceramics [J]. Journal of Materials science,1998,33:1549-1553.
    [155]Chowdari B V R, Subba G V, Lee G Y H. XPS and ionic conductivity studies on Li2O-(Al2O3, Ga2O3)-TiO2-P2O5 glass-ceramics [J]. Solid State Ionics,2000,136-137: 1067-1075.
    [156]Ng K T, Hercules D M. Studies of nickel-tungsten-alumina catalysts by x-ray photoelectron spectroscopy [J]. J Phys Chem,1976,80:2095-2099.
    [157]Clark D T, Fok T. An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for Langmuir film deposition [J]. Thin Solid Films,1980,70:261-283.
    [158]Niu C, Lu Y Z, Lieber C M. Experimental Realization of the Covalent Solid Carbon Nitride [J]. Science,1993,261:334-337.
    [159]Tabbal M, Merel P, Moisu S, et al. X-ray photoelectron spectroscopy of carbon nitride films deposited by graphite laser ablation in a nitrogen postdischarge [J]. Appl Phys Lett,1996, 69:1698-1700.
    [160]Rossi F, Andre B, Veen A, et al. Physical properties of nitrogenated amorphous carbon films produced by ion-beam-assisted deposition [J]. Thin Solid Films,1994,253:85-89.
    [161]Kumar S, Butcher K S A, Tansley T L, et al. X-ray photoelectron Spectroscopy Characterisation of Radio Frequency Reactively Sputtered Carbon Nitride Thin Films [J]. J Vac Sci Technol,1996, A14:2687-2692.
    [162]Kim D S, Lee Y H. Room-temperature deposition of a-SiC:H thin films by ion-assisted plasma-enhanced CVD [J]. Thin Solid Films,1996,283:109-118.
    [163]Wagner C D. Handbook of X-ray Photoelectron Spectroscopy [M]. Perkin-Elmer Corporation,1992:68-70.
    [164]Murata M, Wakino K, Ikeda S. X-ray photoelectron spectroscopic study of perovskite titanates and related compounds:An example of the effect of polarization on chemical shifts [J]. J Elect Spectros,1975,6:459-464.
    [165]Qing X, Huang D-P, Chen W, et al. X-ray photoelectron spectroscopy in investigation on chemical states of oxygen on surfaces of mixed electronic-ionic conducting La0.6Sro.4Co1-yFey03 ceramics [J]. Appl Surf Sci,2004,228:110-114.
    [166]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006:442-524.
    [167]Zheng X P, Zhang P F. Kinetic Monte Carlo simulation of surfactant-mediated Cu thin-film growth [J]. Computational Materials Science,2010,50:6-9.
    [168]Cho J, Terry S G, Lesar R, et al. A kinetic Monte Carlo simulation of film growth by physical vapor deposition on rotating substrates [J]. Materials Science and Engineering A, 2005,391:390-401.
    [169]Zhang P, Zheng X, Wu S, et al. Kinetic Monte Carlo simulation of Cu thin film growth [J]. Vacuum,2004,72:405-410.
    [170]Kalke M, Baxter D V. A kinetic Monte Carlo simulation of chemical vapor deposition: non-monotonic variation of surface roughness with growth temperature [J]. Surface Science, 2001,477:95-101.
    [171]Zhang D M, Guan L, Li Z H, et.al. Influence of kinetic energy and ubstrate temperature on thin film grouth in plused laser deposition [J]. Surface and Coatings Technology,2006, 200(12-13):4027-4031.
    [172]Yuan L, Wang J, Chew S Y, et al. Synthesis and characterization of Sn02-polypyrrole composite for lithium-ion battery [J]. J Power Sources,2007,174:1183-1187.
    [173]Courtney I A, Dahn J R. Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites [J]. J Electrochem Soc,1997,144: 2045-2052.
    [174]Li C, Wei W, Fang S, et al. A novel CuO-nanotube/SnO2 composite as the anode material for lithium ion batteries [J]. J Power Sources,2010,195:2939-2944.
    [175]Furusawa S, Tabuchi H, Sugiyama T, et al. Ionic conductivity of amorphous lithium lanthanum titanate thin film [J]. Solid State Ionics,2005,176:553-558.
    [176]Granqvist C G. Handbook of inorganic electrochromic materials [M]. Elsevier, Amsterdam, 1995:9-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700