用户名: 密码: 验证码:
台风Ewiniar(2006)内部扰动的时空变化特征和相关动力机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先较为全面的回顾了国内外关于热带气旋的几个重要问题的研究,主要包括热带气旋的强度变化和内部动力学特征。
     采用WRF数值模式的双向移动嵌套网格方案模拟一个典型台风个例Ewiniar,再对结果的正确性和一些简单特征做出了初步分析,认为本文模拟的结果具有一定的可信度,尤其是较为成功的模拟出了该台风个例的大风特征。
     采用统计学分析方法,主要是离散功率谱分析、连续功率谱分析和最大熵谱分析方法对模拟输出资料作再分析,提出了台风内部扰动特征时空分布的非均匀性。主要结论有:切向长波占优;一般来说,距台风中心越近,长波分量越大,台风外围的短波分量则有所增加。连续功率谱和最大熵谱方法所提取的Ewiniar内部的振荡现象具有非对称特征,这种非对称特征在对流层中高层,台风前移的左右两侧的眼壁内部表现得非常明显,越往台风外围、越往对流层低层越不明显。对流层低层的台风眼壁内部,无论是台风前移的左侧还是右侧,低频振荡总是占很大优势。
     采用WKBJ方法,研究了台风内核区域形成上述时间上的扰动或振荡现象非均匀性的原因。认为强烈的对流凝结造成的非绝热加热可以对涡旋Rossby波起到调频作用,使得在台风系统内部不同的位置,扰动的振荡特征存在差异。在台风内核区,对流凝结加热较强时,容易形成低频率振荡;反之,当加热较弱时,则更容易形成较为高频的振荡。
     采用数值差分计算方法,从涡旋大气所具有的波动形态的角度出发,考虑圆形基流下螺旋波所具有的对数螺线形态的几何性质,在涡旋大气中引入中尺度一般扰动的斜交不稳定理论,通过建立一个与实际和现有理论比较符合的垂直切变基流涡旋系统不稳定发展模型,研究了垂直切变涡旋基流对中尺度螺旋状不稳定扰动系统发展的影响。结果表明,在一定条件下,不稳定扰动可能发展为类似于对数螺线的螺旋状系统。
Several significant studies on Tropical Cyclone (TC) home and abroad has been reviewed comprehensively, including the researches on intensity variety and the internal dynamic trait of TC.
     On the basis of the studies above, a typical general TC, Ewiniar (2006), has been simulated by the Weather Research and Forecast Model (WRF) version 2.2 and the Moving-Nest technology and Tow-Way Nest Run. After that, a simple initial analysis on its substantial characteristics such as its moving trace and wind field has been presented in order to confirm the validity of the simulation, especially the intense wind, the most important feature of the sample.
     Reveal the asymmetric qualities of spatio-temporal distribution of internal perturbation in Ewiniar, by virtual of statistics methods including Dispersed Power spectrum Analysis (DPS), Continuous Power spectrum Analysis (CPS) and Most Entropy spectrum Estimate (MES). As a result, the main conclusions of that are included. Above all, the tangential Long-Wave component is dominant via the DPS. And the Long-Wave component would take out more proportion in the adjacent area to the eye of Ewiniar and somewhat less one in the outer area generally speaking. In the next place, the oscillation extracted by CPS and MES in the left and right side near the moving path is obvious asymmetrical, which mainly behaves in the inner of typhoon eyewall at middle-high level of the troposphere and is more inconspicuous in the outer and low level. But the long-period oscillation would dominate the inner area of typhoon eyewall at low level of troposphere.
     What's more, an consequent discussion on the reason of those phenomenon has been promoted by the means of WKBJ theory, which comes a conclusion that the strong non-adiabatic heating of convective activity in the inner area of TC could tune the frequency of Vortex Rossby Wave (VRW), bringing about the asymmetry distribution of oscillation traits in the inner area of TC, where the lower-frequency oscillation would form in the situation of intense heating, and the higher-frequency one would form in the one of weak heating as well.
     A Logarithmic-spiral model for the development of Mesoscale perturbation instability in vortex systems with vertical-sheared basic flow based on the theories of spiral-wave and Mesoscale hereotropic instability is established. Adiabatic frictionless linear disturbance Boussinesq equations in natural coordinates built along the spiral propagation path of disturbances are derived. And the unstable spiral development of Mesoscale disturbance, so called Spiral-Hereotropic instability, in the ideal vortex with vertical-sheared basic flow is studied by the numerical discretization method. Further more the influence of basic flow parameters of the vortex on the characteristics of the spiral instability systems is discussed. It is argued that unstable disturbances in the vortex with the vertical-sheared basic flow are capable to develop into the spiral bands like trailing Logarithm-spiral in sharp.
引文
1 Anthes R.A.,Tropical Cyclones Their Evolution Structure and Effects(中译本),American Meteorological Society,1982,252pp.
    2 陈联寿,孟智勇.我国热带气旋研究十年进展.大气科学,2001,25(3):420-432.
    3 薛根元,俞善贤,何凤翩,等.0414号台风“云娜”的基本特征与强降水成因分析.科技导报,2004,9:23-25.
    4 Krishnamurti,T.N.,Pattnaik S.,Stefanova L.,et al.The hurricane intensity issue.Mon.Wea.Rev.,2005,133:1886-1911.
    5 Miller,B.I.On the maximum intensity of hurricanes.J.Meteor.1958,15,184-195.
    6 Holland,G.J.The maximum potential intensity of tropical cyclones.J.Atmos.Sci.,1997,54,2519-2541.
    7 Emanuel,K.A.An Air-Sea Interaction Theory for Tropical Cyclones.Part Ⅰ:Steady-State Maintenance.J.Atmos.Sci.1986,43,585-605.
    8 Emanuel,K.A.The maximum intensity of hurricanes.J.Atmos.Sci.,1988,45,1143-1155.
    9 Ramage C.S.Hurricane develepment.,J.Meteor,1959,16:227-237
    10 Gray W.M.Global view of origin of tropical disturbances and storms.Mort.Wea.Rev.,1968,96:669-700
    11 Merrill R.T.Environmental influences on hurricane intensifition.J.Atmos.Sci.,1988,45:1678-1687
    12 Tuleya,R.E.,and Kurihara Y.A numerical study on the effects of environmental flow on tropical storm genesis.Mort.Wea.Rev.,1981,109:2487-2506.
    13 Bender,M.A.The effect of relative flow on the asymmetric structure of the interior of hurricanes.J.Atmos.Sci,1997,54:703-724.
    14 DeMaria,M.The effect of vertical shear on tropical cyclone intensity change.J.Atmos.Sci.,1996 53:2076-2087.
    15 Jone,S.C.The Evolution of vortices in vertical shear.Ⅰ:Initiall barotropic vortices.Quart.J.Roy.Meteor.Soc.,1995,121:821-851
    16 Wang,Y-Q.,Holland G.J.Beta drift of baroclinic vortices.Part Ⅰ:Adiabatic vortices.J.Atmos.Sci.,1996,53:411-427.
    17 Tuleya,R.E.,Kurihara Y.Anumerical study of the effect of environmental flow on tropical storm genesis.Mon.Wea.Rev.1981,109:2487-250.
    18 Zehr,R.M.Tropical cyclogenesis in the western North Pacific.NOAA Tech.Rep.,NESDIS,1992,61,181pp.
    19 Paterson,L.A,Hanst rum B N,Davidson N E,et al.Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region.Mon.Wea.Rev.,2005,133:3644-3660.
    20 于玉斌,杨昌贤,姚秀萍.近海热带气旋强度突变的垂直结构特征分析.大气科学,2007,31(5):876-886.
    21 朱乾根,林锦瑞,寿绍文,等.天气学原理和方法(第三版).北京:气象出版社,2000,649pp.
    22 端义宏,余晖,伍荣生.热带气旋强度变化研究进展.气象学报,2005,20:54-62.
    23 陈联寿,丁一汇.西太平洋台风概论.北京:科学出版社,1979,403pp.
    24 Charney,J.R.,and A.Eliassen..On the growth of the hurricane depression.J.Atmos.Sci.,1964,21(1):68-75.
    25 Mak,M.An inquiry on nature of CISK,Part Ⅰ.Tellus,1981,33:531-537.
    26 Holliday,C.R.,A.H.Thompson.Climatological characteristics of rapidly intensifying typhoon.Mon.Wea.Rev.,1979,107:1022-1034.
    27 Kaplan,John,DeMaria,Mark.Large-Scale Characteristics of Rapidly IntensifyingTropical Cyclones in the North Atlantic Basin.Weather and Forecasting,2003,18:1093-1108.
    28 Gill,A.E.Some simple solution for heat-induced tropical circulation.Quart.J.Roy.Meteor.Soc,1980,106:447-462.
    29 Keshavamurty,R.N.Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and telecormections of the Southern Oscillation.J.Atmos.Sci.,1982,39:1241-1259.
    30 Wu,Guoxiong,N.C.Lau.A GCM simulation of the relationship between tropical storm formation and NESO.Mon.Wea.Rev.,1991,
    31 吴国雄.海温异常对台风形成的影响.大气科学,1992,16(3):322-332.
    32 Duan Yihong,Qin Zenhao,Gu Jianfeng,et al.numerical study on the effect of sea surface temperature on tropical cyclone,Part Ⅰ:Numerical experiment of the tropical cyclone intensity Related to SST.Acta Meteor Sinica,1998,12:142-148.
    33 Duan Yihong,Qin Zenhao,Gu Jianfeng,et al.numerical study on the effect of sea surface temperature on tropical cyclone,Part Ⅱ:The result of coupled model.Acta Meteor.Sinica,2000,14:193-199.
    34 董克勤,杨庆苹.大型岛屿对过境台风强度的影响.南京气象学院学报,1980,1(1):53-59.
    35 袁金南,谷德军,梁建茵..地形和边界层摩擦对登陆热带气旋路径和强度影响的研究.大气科学,2005,29(3):429-437.
    36 陈联寿.登陆热带气旋研究进展.气象学报,2004,62(5):541-549.
    37 罗哲贤,陈联寿.地形对涡旋Rossby波的影响研究.自然科学进展,2003,13(4):372-377.
    38 余锦华.地形对涡旋Rossby波传播和台风强度变化影响的研究.2003:南京气象学院博士学位论文.
    39 Chen,L.-S.Decay after landfall.WMO/TD,1998,875:1.6.1-1.1.7.
    40 李英,陈联寿.湿地边界层通量影响热带气旋登陆维持和降水的数值试验.气象学报,2005,63(5):683-693.
    41 Powell,M.D.Boundary layer structure and dynamics in outer hurricane rainbands.Part Ⅰ:Mesoscale rainfall and kinematic structure.Mon.Wea.Rev.,1990,118:891-917.
    42 Powell,M.D.Boundary layer structure and dynamics in outer hurricane rainbands.Part Ⅱ:Downdraft modification and mixed layer recovery.Mon,Wea.Rev.,1990,118:918-938.
    43 Bister,M.Effect of peripheral convection on tropical cyclone formation,J.Atmos.Sci.,2001,58:3463 - 3476.
    44 May,P.T.,Holland.G.J..The role of spiral rainbands in tropical cyclones,d.Atmos.Sci.,1999,56:1224-1228.
    45 Reasor,P.D.,Montgomery,M.T.,Grasso.,L.D.2004:A new look at the problem of tropical cyclones in vertical shear flow:vortex resiliency.J.Atrnos.Sci.,2004,61:3-22.
    46 Wang Yuqing.Vortex Rossby wave in a numerically simulated tropical cyclone.Part Ⅰ:Over all structure,potential vorticity and kinetic energy budgets,J.Atmos.Sci.,2001,59:121-1238.
    47 Wang Yuqing Vortex Rossby wave in a numerically simulated tropical cyclone.Part Ⅱ:The role in tropical cyclone structure and intensity change,J.Atmos.Sci.,2001,59:1239-1262.
    48 Peng,M.S.,Jeng,B.F.,Williams,R.T.A numerical study on tropical cyclone intensification.Part Ⅰ:Beta effect and mean flow effect.J.Atmos.Sci.,1999,56:1404-1423.
    49 Pedlosky J.Geophysical Fluid Dynamics(translated in Chinese).北京:科学出版社, 1979:第三章.
    50 Matsuno T.Quasi-geostrophic motions in the equatorial area.J.Meteor.Soc.Japan,1966,44(1):25-43.
    51 Shen Xinyong,Ding Yihui,Zhao Nan.Properties and Stability of a Meso-Scale LineForm Disturbance.Adv.in Atmos.Sci.,2006,23(2):282-290.
    52 沈新勇,倪允琪,丁一汇.中尺度对称不稳定和横波不稳定的波动性质.南京气象学院学报,2006,29(6):735-743.
    53 Maymard,R.H.Radar and Weather.J.meteor.,1945,2:214-226.
    54 Tepper,M.A.theoretical model for hurricane radar bands,Preprints Seventh Weather Radar.Conf,Miami,Amer Meteor Soc,1958:56-65
    55 Wexler,H.Structure of hurricanes as determined by radar.Ann N Y.Acad Sci,1947,48:821-844.
    56 Ligda,M.G.Hurricane Squall lines.Bull Amer Meteor Soc,1958,56-65.
    57 Tatehira,R.Analysis of small precipitation areas and bands,case study of typhoon 'Hellen',1958 Proc.Second Tech.Conf.Hurricanes.Miami:Amer.Meteor.Soc.,1961,115-126.
    58 Kurihara,Y.On the development of spiral hands in a tropical cyclone.J.Atmos.Sci.,1976,33:940-958.
    59 Diercks,J.W.,Anthes.R.A.A study of spiral bands in a liner model of a cyclonic vortex.J.Atmos.Sci.,1976,33:1714-1729.
    60 Willoughby,H.E.Inertia-buoyancy waves in hurricanes.J.Atmos.Sci.,1977,34:1028-1039.
    61 Willoughby,H.E.A possible mechanism for the formation of hurricane rain bands.J.Atmos.Sci.,1978,35:838-848.
    62 Willoughby,H.E.The vertical structure of hurricane rainbands and their interaction with the mean vortex.J.Atmos.Sci.,1978,35:849-858.
    63 黄瑞新,巢纪平.台风螺旋云带的线性理论.大气科学,1980,4(2):148-158.
    64 刘式适,杨大升.台风的螺旋结构.气象学报,1980,38(5):193-204.
    65 许秦.台风中的不稳定螺旋惯性重力波.中国科学(B辑),1982,7:665-673.
    66 MacDonald,N.J.The evidence for the existence of Rossby-like waves in the vortex.Tellus,1968,20:138-150.
    67 Guinn,T.A.,Schubert,W.H.Hurricane spiral bands.J.Atmos.Sci.,1993,50:3380-3403.
    68 Smith,G.B.,Montgomery,M.T.Vortex axisymmetrization:Dependence on azimuthal wavenumber or asymmetric radial structure changes.Quart.J Roy.Meteor.Soc.,1995,121:1615-1650.
    69 Montgomery,M.T.,Kallenbach,R.J.A theory for vortex Rossby-wave and its application to spiral bands and intensity changes in hurricanes.Quart.J.Roy.Meteor.Soc.1997,123:435-465.
    70 Shapiro,L.J.,Montgomery,M.T.A Three-Dimensional Balance Theory for Rapidly Rotating Vortices.J.Atmos.Sci.,1993,50:3322-3335.
    71 吕美仲,彭永清.动力气象学(第二版).北京:气象出版社,1999:第八章.
    72 陆汉城,钟玮,张大林.热带风暴中波动特征的研究进展和问题.大气科学,2007,31(6):1140-1150.
    73 Moller,J.D.,Montgomery,M.T.Vortex Rossby Waves and Hurricane Intensification in a Barotropic Model
    74 Enagonio,J.Montgomery,M.T.Tropical Cyclogenesis via Convectively Forced Vortex Rossby Waves in a Shallow Water Primitive Equation Modell.J.Atmos.Sci.,2001,58:685-705.
    75 Montgomery,M.T.Tropical Cyclogenesis via Convectively Forced Vortex Rossby Waves in a Three-Dimensional Quasigeostrophic Model.J.Atmos.Sci.,1998,55:3176-3207.
    76 Chen,Yongsheng,Yau,M.K.Spiral bands in a simulated hurricane,part Ⅰ:Vortex rossby wave verification.J.Atmos.Sci.,2001,58:2128-2145.
    77 余志豪.台风螺旋雨带--涡旋Rossby波.气象学报,2002.56:154-165.
    78 邓莲堂,刘式适,徐祥德,等.Rossby参数β在涡旋Rossby波中的作用.热带气象学报,2004,20(5):483-492.
    79 朱佩君,郑永光,王洪庆.台风螺旋雨带的数值模拟研究.科学通报,2005,56:154-165.
    80 钟科,康建伟,余清平.飓风中的涡旋罗斯贝波,气象学报,2002,56:154-165.
    81 Schecter,D.A.,Montgomery,M.Y.Conditions That Inhibit the Spontaneous Radiation of Spiral Inertia-Gravity Waves from an Intense Mesoscale Cyclone.J.Atmos.Sci.,2006,63:435-456.
    82 陆汉城,康建伟,寇正.等.台风内中尺度混合波的动力学特征,自然科与进展,2002,56:541-546.
    83 沈新勇,倪允琪,张铭.β中尺度暴雨系统发生发展的一种可能物理机制,Ⅰ:涡旋Rossby波的相速度.大气科学,2005,29(5):727-733.
    84 沈新勇,倪允琪,沈桐立.β中尺度暴雨系统发生发展的一种可能物理机制,Ⅱ:涡旋 Rossby波的形成.大气科学,2005,29(6):855-863.
    85 沈新勇,倪允琪,丁一汇.中尺度对称不稳定和横波不稳定的波动性质.南京气象学院学报,2006,29(6):735-743.
    86 沈新勇,明杰,方珂.台风涡旋系统的波动性质及其数值模拟.气象科学,2007,27(2):176-186.
    87 Pedlosky.J.Geop hysical Fluid Dynamics(translate into Chinese).北京:科学出版社,1979:78-79.
    88 Senn,H.V.,H.W.Hiser and R.C.Bourret.Studies of hurricane spiral bands as observed on radar.Nat.Hur.Res.Proj.Rep.No.12-13pp.
    89 巢纪平,叶笃正.正压大气中的螺旋行星波.大气科学,1977,2(2):81-88.
    90 张铭.正压涡旋不稳定问题的研究.大气科学,1995,19(6):677-686.
    91 黄泓,张铭.正压涡旋中螺旋波失稳问题的研究.热带气象学报,2003,19(2):197-202.
    92 梁丹青,张铭.两层正压流体涡旋中螺旋波的不稳定.热带气象学报,2003,19(4):677-686.
    93 赵艳玲,梁丹青,张铭.两层正压涡旋稳定性问题分析.气象科学,2004,24(4):480-482.
    94 Schecter,D.A.,and M.T.Montgomery.Waves in a cloudy vortex,J.Atmos.Sci.,2007,64:314-337.
    95 费建芳,陆汉城.圆形涡旋中的惯性重力内波不稳定和对称不稳定.大气科学,1996,20:54-62.
    96 李红金,陆汉城,宋晓亮,等.圆形涡旋大气中的横波不稳定.大气科学,2003,27:909-919.
    97 刘式达,刘式适,梁福明,等.大气涡旋的螺旋结构.大气科学,2006,30:154-165.
    98 刘式适,梁福明,刘式达,等.台风的定常运动和螺旋斑图.海洋学报(中文版),1999,56:154-165.
    99 刘式达,辛国君,刘式适,等.大气中尺度涡旋的三维螺旋结构理论.气象学报,2000.56:154-165.
    100 韩瑛,伍荣生.台风螺旋结构的分析.南京大学学报(自然科学版),2007,43(6):572-580.
    101 安洁.张铭.中尺度暴雨过程的EOF分析.中国气象学会2006年年会“中尺度天气动力学、数值模拟和预测”分会场论文集,2006:1263-1271.
    102 张铭,安洁,朱敏.一次暴雨过程的EOF分析.大气科学,2007.31(2):321-328.
    103 MMMD and NCAR.ARW users guide.Jan.2008.
    104 张庆红.特大眼台风Winnie(1997)的高分辨率数值模拟.气象学报,2006,64(2):180-185.
    105 Glen S.Romine,Robert B.Wilhelmson.Finescale Spiral Band Features within a Numerical Simulation of Hurricane Opal(1995).Mon.Wea.Rev.,2006,134:1121-1139.
    106 上海台风信息系统:http://gis.typhoon.gov.cn/typhoonweb/.
    107 徐亚梅,伍荣生.热带气旋碧丽斯(2000)发生的数值模拟:非对称流的发展及转换.大气科学,2005,29(1):79-90.
    108 吴洪宝,吴蕾.气候变率诊断和预测方法.北京:气象出版社.2005:192-195pp.
    109 魏凤英.现代气候统计诊断与预测技术.北京:气象出版社.1999:78-81pp,85-88pp.
    110 苏炳凯.大气科学中的统计诊断与预测.南京:南京大学出版社.1988:734pp.
    111 Fiorino M and R.T.Elsberry.Some aspect of vortex structure related to tropical cyclone motion,J Atoms.Sci.1987,46:975-990.
    112 徐祥德,陈联寿,解以扬.TCM-90现场科学试验台风Flo“β陀螺”“通风流”非对称动力结构特征.气象学报.1996,54(5):536-643.
    113 黄大川,刘式适.正压模式中的非绝热波动.热带气象学报.1999,15(1):26-37.
    114 Montgomery M.T.,and L.J,Shapiro.Generalized Charney-Stern and Fjortoft Theorems for Rapidly Rotating Vortices.J.Atmos.Sci.,1995,52(10):1829-1833.
    115 罗哲贤.大尺度涡旋的正压不稳定.气象学报,1995,53(3):281-288.
    116 高守亭,赵思雄,周晓平.次天气尺度及中尺度暴雨系统研究进展.大气科学,2003,27(4):618-627.
    117 赵思雄.中尺度动力学与暴雨等灾害性天气预测理论的研究.大气科学,1998,22(4):503-510.
    118 Shen Xinyong,Ding Yihui,Zhao Nan.Properties and Stability of a Meso-Scale LineForm Disturbance.Adv.Atmos.Sci.,2006,23(2):282-290.
    119 张立凤,王丽琼.张铭.理查森数对α中尺度涡旋波不稳定的影响.大气科学,2002,26(5),678-683.
    120 张铭,张立凤.Wave-CISK斜交型扰动不稳定谱点分布的半圆定理.自然科学进展,2001,11(12),1287-1292.
    121 张立凤,施连俊.β中尺度扰动的不稳定结构.大气科学,2004.28(6):931-940.
    122 张铭.正压涡旋不稳定问题的研究.大气科学,1995,19(6):677-686.
    123 曾庆存,李荣凤,张铭.旋转二维可压缩流动的谱和特征函数,Ⅰ:谱点的分布.大气科学,1990,14(2):129-142.
    124 张立凤,张铭,斜压切变基流中横波型扰动的特征波动,Ⅰ:谱点分析.气象学报,1999,57(5):571-580.
    125 张可苏.斜压气流的中尺度稳定性,Ⅱ:横波型不稳定.气象学报,1988:46(4),385-391.
    126 高守亭,周玉淑.水平切变线上涡层不稳定理论.气象学报,2001,59(4):393-404.
    127 高守亭,孙淑清.应用里查逊数判别中尺度波动的不稳定.大气科学,1986,10(2):171-182
    128 Stone,P.H.On Non-geostrophic Baroclinic Stability.J.Atmos.Sci.,1966,23(4):390-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700