用户名: 密码: 验证码:
航空发动机主轴承使用寿命预测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确预测主轴承的使用寿命将会对改善航空发动机的可靠性、适用性和安全性起到关键作用。本文针对航空发动机主轴承的工况、使用特点,开创性的采用“状态寿命”(即状态良好、初步损伤、故障发展和即将失效4个寿命阶段)描述主轴承的使用寿命,并建立了基于飞行参数记录数据,确定主轴承状态寿命的模型。该模型由理论计算模型和状态寿命评估模型两部分组成。
     建立了滚动轴承状态寿命的理论计算模型。针对航空发动机主轴承受载复杂的特点,采用拟动力学方法计算滚动轴承的载荷分布,结合额定动载荷理论修正L-P寿命模型,建立任意载荷下主轴承的寿命计算模型,并研究了不同结构参数和载荷参数对轴承寿命的影响规律;在主轴承的寿命仿真计算、主轴承载荷分析的基础上,结合对飞行参数记录数据典型变化特征的统计分析,以转速和过载为基准,确定主轴承的典型工况和载荷谱,建立主轴承的载荷提取模型。这样根据飞行参数记录数据即可计算主轴承的累积寿命消耗,基于可靠度给出主轴承状态寿命的理论计算值,用以描述主轴承“状态”的统计规律。
     为了提高理论预测的确定性,建立了以状态监视为依据的滚动轴承状态寿命评估模型,基于振动分析智能评估主轴承个体状态寿命的“经验值”。状态寿命评估模型建模的关键:一是构造状态寿命特征向量;二是状态寿命的辨识算法。
     结合滚动轴承的全寿命试验,综合考虑诊断能力和灵敏度,提出了基于时域统计量和小波包重构信号的频带能量分布两种构造状态寿命特征向量的方案。
     由于滚动轴承损伤传播过程的高度非线性、失效模式的多样性和损伤机理的不确定性,本文采用BP神经网络和支持向量机作为状态寿命评估的算法。研究表明,基于贝叶斯正则化方法的BP网络模型的可信性良好;与改进的BP神经网络相比,支持向量机具有鲁棒性、模型训练具有稳定性以及参数优化选择方法具有可移植性等明显的优势,是一种适合工程应用的算法;特征向量的选择显著影响状态寿命评估模型的性能,以小波包频带能量特征向量为输入的评估模型,其收敛速度、准确性均明显优于基于统计量特征向量的模型。
     最后,基于模糊逻辑推理建立滚动轴承的状态寿命模型,该模型融合状态寿命的理论计算模型和评估模型,确定滚动轴承的状态寿命。
     设计并建立了滚动轴承多功能试验系统,开展了滚动轴承的全寿命试验,试验验证了本文方法的有效性和可行性。
     本文的研究为进行航空发动机主轴承使用寿命的预兆和管理提供了一种全面、可靠而独特的方法。
Development of practical and verifiable prognostic approaches for gas turbine engine bearings will play a critical role in improving the reliability and safety of aircraft engines. In present study Grade-life was used to describe the bearing’s service life, which means the entire service life was divided into four stages: good bearing condition, initial defect condition, damaged bearing condition and failure coming condition. In addition, a Grade-life prognostic model was presented that utilized available airborne sensor information to calculate and assessment Grade-life for aeroengine bearings. The model comprised of mathematical model and diagnostic estimate model.
     The mathematical model was a physics-based modeling.In order to set up the formula for bearing’s life calculating, the mechanical models of roller bearings were set up by thequasi-dynamic method, and prognostics equations for bearing’s life calculating was modified based on quasi-dynamic method and basic dynamic capacity theory of bearings. The rules of the life in different structure parameters and load parameters were analyzed, then a load spectra compilation method was presented for aero-engine bearings based on statistical analysis of the flight parameter variety character and aero-engine control schedule. Utilizes information from the Sensed Data module to calculate the cumulative damage sustained by the bearing since it was first installed and the Predition Grade-life (PGL) could be captured based on reliability.
     Diagnostic estimate model was an“empirical”lifetime model, in which“experience”value of Grade-life (EGL) was assessed based on vibration signals intelligently. Signal feature extraction (Grade-life feature vector) and pattern recognition algorithm of Grade-life were keys to construct the model.
     Vibration signals of the rolling bearing were analyzed, the selection criterion of the Grade-life feature vectors should include the diagnostic ability, the sensitivity, the consistency and the amount of calculation. Finally, two types Grade-life feature vectors were identified :(1) some time-domain statistical parameters were selected to constructe the feature vector; (2) construction of feature vector by extract feature in every frequency bands by the wavelet packet analysis.
     Due to the stochastic nature of a failure propagation process, the uncertain mechanical failture model of bearings, the modeling methods of Diagnostic estimate model based on BP neural networks and Support Vector Machines (SVM) were presented and developed in detail. Two examples were choosed to establish the model respectively based on BP network. The result showed that BP network based on Bayesian Regularization method could be successfully used for modeling of EGL. For SVM, the SVM model in establishing the identification model by using bearing test stand run-to-failure data as learning samples was employed. A detailed contrast was performed between the two methods, the result showed the SVM had more evident superiority and it was a technique even more suitable for practical application. In addition, the performance of Diagnostic estimate model was influenced not only by pattern recognition algorithm, but alse by the selection of Grade-life feature vector. For example, extract feature in every frequency bands by the wavelet packet analysis was better than the feature vector of time-domain statistical parameters.
     The final Grade-life of bearings was determined by fusion of PGL and EGL value by fuzzy logic organon, which reduced the mathematical model uncertainty’s affection towards prediction results of the mathematical model. The validity and creditability of model had been demonstrated by bearing test stand run-to-failure dates.
     Experimental equipment was constructed to perform accelerated testing on bearings for method verification, in which load coule be put on test bearings by a hydraulic loading mechanism accurately, and the vibration signals were acquired continuously by a sensors and data acquisition sub-system.
     The Grade-life model provided a scientific, reliable, and unique methodology prognostic the lifetime of aero-engine bearings.
引文
[1]朱梓根主编.航空涡轴、涡桨发动机转子系统结构设计准则(研究报告)[R].中国航空工业第六零八研究所&北京航空航天大学,2000
    [2]陈光著.航空发动机结构设计分析[M].北京航空航天大学出版社,2006
    [3]余俊.滚动轴承寿命计算:额定负荷、当量负荷与寿命[M].北京:高等教育出版社,1993
    [4]刘泽九,贺士荃.滚动轴承的额定负荷与寿命[M].北京:机械工业出版社,1982
    [5]岗本纯三著,黄志强译.球轴承的设计计算[M].北京:机械工业出版社,2003
    [6] Tallian T E.Simplified contact fatigue life prediction model-partⅠ:Review of the published models[J].Trans. of ASME,1992,V114:207-213
    [7]陈家庆,周海,徐琳琳.滚动轴承载荷分布问题的理论研究进展[J].北京石油化工学学报,2000,V8(1):47-52
    [8] Jones A B.Ball motion and sliding friction in ball bearing[J].Journal of Basic Engineering,Transactions of the ASME,1959,V81(2):1-12
    [9] Jones A B.A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions[J].Journal of Basic Engineering,Transactions of ASME,1960,V82(1):309-20
    [10] Walters C T. The dynamics of ball bearings [J].Journal of Lubrication Technology, Transactions of the ASME,1971,(93):1-10
    [11] Gupta P K.Advanced dynamic of rolling elements[M].New York:Springer Verlag,Inc. 1984
    [12] Meck C R,Tran L.Ball bearing dynamic analysis using computer methods-PartⅠ: Analysis [J].Journal of Tribology,1996,V118(1):52-58
    [13]张成铁,陈国定,李建华.高速滚动轴承的动力学分析[J].机械科学与技术,1997,V16(1): 136-139
    [14]陈国定,李建华,张成铁.高速轴承元件间相互作用力的分析[J].机械科学与技术, 1998,V17(2):268-270
    [15]张成铁,李建华,陈国定.航空高速滚动轴承的摩擦学效应分析[J].机械研究与应用, 1998(1):13-15
    [16]陈国定,李建华,张成铁.考虑表面粗糙效应的高速滚子轴承拟动力学分析[J].机械科学与技术,1997,V16(2):275-278
    [17]唐云冰,高德平,罗贵火.航空发动机高速滚珠轴承力学特性分析与研究[J].航空动力学报,2006,V21(2):354-360
    [18] Harris T A,Broschard J L. Analysis of an improved planetary gear-transmission bearing [J]. Journal of Basic Engineering, Transactions of the ASME,1964,V86(3):457-462
    [19]胡于进,李元科.边界元法在滚动轴承负荷分布计算中的应用[J].轴承,1994,(6):5-8
    [20]陈占福.滚动轴承的三维边界元解析[J].轴承,1999,(6):5-8
    [21]邵希猛,杜翠香.使用I-DEAS FEM进行有限元分析的方法[J].轴承,1995,(7):5-7
    [22] Turaga(印度).轴承润滑的有限元分析[J].国外轴承技术,2001,(2):39-42
    [23]张宝生,陈嘉庆,蒋力培,等.MARC在接触分析中的应用[J].轴承,2003,(11):1-3
    [24] Burton R A,Staph HE.Thermally Activated Seizure of Angular Contact Bearing[J].ASLE Trans,1967Vol.10:408-417
    [25]刘志全,张鹏顺,沈允文.高速圆柱滚子轴承的热分析模型[J].机械科学与技术.1997, V16(4):607-611
    [26]韩民政,饶寿期.航空发动机球轴承热分析[J].航空动力学报,1992,V7(4):343-347
    [27]蒋兴奇,马家驹,赵联春.高速精密角接触球轴承热分析[J].轴承,2000,(8):1-4
    [28]徐建宁,屈文涛,赵宁.滚动轴承的温度场和热变形分析[J].轴承,2006,(5):1-3
    [29]张勇,费业泰,刘善林.高速旋转的滚动轴承工作游隙影响因素的分析[J].应用科学学报,2005,V23(6):635-639
    [30]郑学普,周彦伟,邓四二,等.航空发动机主轴-轴承系统温度场分析[J].河南科技大学学报(自然科学版),2004,V25(1):30-33
    [31] Lundberg G,Palmgren A.Dynamic Capacity of Rolling Bearings [J].Acta Polytech Mech. Eng.1947(3)
    [32] Lundberg G,Palmgren A.Dynamic Capacity of Rolling Bearings[J].Polytech Mech.Acta. Eng.1952(4)
    [33] International Organization for Standardization,Rolling Bearings Dynamic Load Ratings and Rating Life,ISO281/I. 1977(E)
    [34] Ioannides E, Harris T A.A new fatigue life model for rolling bearing[J].ASME Journal of Tribology,1985,V107:367-378
    [35] Ioannides E.用改进的疲劳寿命理论分析飞机燃气涡轮机主轴球轴承的疲劳度――第一部分:长寿命轴承[J].国外轴承技术,1996,(1):43-49
    [36] Tallian T E.Data-fitted bearing life prediction model -part I:Mathematical model[J]. Trib.Trans.,1994 V39(2):249-258
    [37] Tallian T E.Data-fitted bearing life prediction model-partⅡ:Experimental database[J]. Trib.Trans.,1996,V39(2):259-268
    [38] Tallian T E.Data-fitted bearing life prediction model-partⅢ:Parametric study [J]. Trib.Trans.,1996,V39(2):269-275
    [39] Tallian T E.Data-fitted bearing life prediction model-partⅣ:Model implement -ation for current engineering use[J].Trib.Trans.,1996, V39(4): 957-963
    [40] Tallian T E.“Weibull Distribution of Rolling Contact Fatigue Life and Deviations,”ASLE Trans,1962, V5(1): 103-113
    [41]李成刚,余俊,陈继平.基于接触疲劳强度的滚动轴承寿命预测模型[J].华中理工大学学报,V19(2),1991
    [42]李成刚.大型扎机滚动轴承可靠性预测的研究[D].华中理工大学学,1990
    [43] Yu W,Harris T. A new stress-based fatigue life model for ball bearings [J].Trib.Trans., 2001, V44(1): 11-18
    [44] Keer L.M. and Bryant M D. A pitting model for rolling contact fatigue. Trans. of ASME, J. of Tribology,1983,V105:198-205
    [45] Salehizadeh H. and Saka N.“Crack propagation in rolling line contact”Trans. of ASME, J. of Tribology,1992,V114:690-697
    [46] Virkler D A., Hillberry B M. and Goel P.K.“The statistical nature of fatigue crack propagation”. ASME, J. Engineering Materials and Technology,1979, V101:148-153
    [47] Hoeprich M R.,“Rolling element bearing fatigue damage propagation”. Trans. of ASME, J. of Tribology,1992,V114:328-333
    [48] Ray A. and Tangirala S.“Stochastic modeling of fatigue crack dynamics for on-line failure prognostics”. IEEE Trans. on Control Systems Technology, V4, 1998:443-451
    [49] Li,Y., Billington S.,C.Zhang,T.Kurfess, etc.“Dynamic prognostic prediction of defect propagation on rolling element bearing”. ASME/STLE Tribology Conference, Toronto, Ontario, Canada, 1998:26-28
    [50] P.D. McFadden. Model for the vibration produced by a single point defect in a rolling element bearing [J]. Journal of Sound and Vibration, 1984, V96:69-82.
    [51] P.D. McFadden. The vibration produced by multiple point defects in a rolling element bearing [J]. Journal of Sound and Vibration, 1985, V98: 263-273
    [52] David Brie. Modeling of the spalled rolling element bearing vibration signal: an overviev and some new results [J]. Mechanical Systems and Signal Processing, 2000, V14(3): 353-369
    [53] B. Samanta and K. R. Al-Balushi. Artificial neural network based fault diagnostic of rolling element bearings using time-domain features[J]. Mechanical Systems and Signal Processing, 2003, 17(2):317–328, available online at http://www.idealibrary.com on
    [54] Bo Taoa, Limin Zhu, Han Ding, Youlun Xiong. An alternative time-domain index for condition monitoring of rolling element bearings—A comparison study. Reliability Engineering and System Safety[J]. 2007(92): 660~670
    [55] Dron J.P, Rasolofondraibe L. and Bolaers F. High-resolution method in vibratory analysis: application to ball bearing monitoring and production machine. International Journal of Solids and Structures [J], 2001, V38: 4293-4313
    [56] Li Li, Liangsheng Qu. Cyclic statistics in rolling bearing diagnosis [J]. Journal of Sound and Vibration. 2003(267): 253–265
    [57] Chaturvedi G.K.and Thomas D.W. Bearing fault detection using adaptive noise cancelling [J]. ASME. J.Mech. Des., 1982, V104: 280-289
    [58] McFadden P D,Toozhy M.M. Application of synchronous averaging to vibration monitoring of rolling element bearing. Mechanical Systems and Signal Processing [J], 2000, V14( 61): R91-906
    [59] Ho D ,Randall R B. Optimiation of bearing diagnostic techniques using simulated and actual bearing fault signals [J]. Mechanical Systems and Signal Processing, 2000, Vl4(5): 763-788
    [60] Li C,Jun Ma. Wavelet decomposition of vibrations for detection of bearing-localized defects [J]. NDT&E International, 1997, V30(3): 143-149
    [61] Bo Li,Hung J. C. Neural-Network-Based Motor Rolling Bearing Fault Diagnosis [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000,V47(5) : 1060-1069
    [62] McInerny S A., Dai Y. Basic Vibration Signal Processing for Bearing Fault Detection [J]. IEEE TRANSACTIONS ON EDUCATION, 2003, V46(1): 149-156
    [63] Bouguerriou1 N, Haritopoulos M., Capdessus C., et al. Novel cyclostationarity-based blind source separation algorithm using second order statistical properties: Theory and application to the bearing defect diagnosis [J]. Mechanical Systems and Signal Processing , 2005: 1260–1281. Available from: www.elsevier.com/locate/jnlabr/ymssp
    [64] Jong-Eok Bana, Byoung-Hoo Rhob, Kyung-Woong Kim. A study on the sound of roller bearings operating under radial load [J]. Tribology International, 2007 (40) :21-28
    [65]孟涛,廖明夫.利用时延相关解调法诊断滚动轴承的故障[J],航空学报,2004
    [66]卢艳辉,尹泽勇.基于小波包分析方法的航空发动机滚动轴承故障诊断[J],燃气涡轮试验与研究, 2005,V18
    [67]程军圣,于德介,杨宇.基于EMD和SVM的滚动轴承故障诊断方法[J].航空动力学报,2006,21(3):575-580.
    [68] Norden E Huang, Zheng Shen, Steven R Long. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non2stationary time series analysis [J]. Proc R Soc Lond A , 1998, 454: 903~995
    [69] The shock pulse method for determining the condition of antifriction bearings, SPM Technical Information. Sweden: SPM Instruments AB.
    [70] D C Baillie and J Mathew. A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearing [J]. Mechanical Systems and Signal Processing, 1996,V10(1): 1-17
    [71] Williams T,Ribadeneira X.and Billingto S. Rolling element bearing diagnostics in run-to-failure life time testing [J]. Mechanical Systems and Signal Processing, 2001,V1 15(5): 979-993
    [72] Hasan Ocak, Kenneth A. Loparo. HMM-Based Fault Detection and Diagnosis Scheme for Rolling Element Bearings[J]. ASME Journal of Vibration and Acoustics, 2005, V127: 299-306
    [73]林基恕主编.航空燃气涡轮发动机机械系统设计[M].航空工业出版社,2006
    [74] Y Shao, K Nezu. Prognosis of remaining bearing life using neural networks[J]. Proc Instn Mech Engrs, 2000, 214 Part I: 217:231
    [75] Mark Lawley, R. Liu, and Vijay Parmeshwaran. Residual Life Predictions From Vibration-Based Degradation Signals: A Neural Network Approach [J], IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004,V51(3): 694-699
    [76] Runqing Huang, Lifeng Xia, Xinglin Li, ect. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mechanical Systems and Signal Processing , 2007 (21) :193-207
    [77] Hai Qiu, Jay Lee, Jing Lin, Gang Yu. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics[J]. Advanced Engineering Informatics, 2003 (17): 127–140
    [78]高隽.人工神经网络原理及仿真实例.机械工业出版社.2005
    [79] Vapnik V N. An Overview of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5).
    [80]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1)
    [81]许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5)
    [82]李应红,尉询楷,刘建勋.支持向量机的工程应用[M].北京:兵器工业出版社,2004
    [83] Cheng Zhang. Defect detection and life prediction of rolling bearings[D]. Georgia Institute of Technology, 2001
    [84]力华东,廖学军.航发主轴承地面寿命加速等效试验研究[J].航空动力学报,1994,4
    [85]焦育洁.航空发动机主轴承数据统计处理及寿命评估[J].轴承.2000,3
    [86]韩茂祥,姚鲁群.航空发动机主轴承使用寿命的概率分布与可靠性分析[J],南京理工大学学报,2002,10
    [87]陈龙,夏新涛,王中宇,等.航空发动机主轴承可靠性评估方法[J].机械制造,2004, 6
    [88] Michael N. Kotzalas. Statistical Distribution of Tapered Roller Bearing Fatigue Lives at High Levels of Reliability [J], Journal of Tribology, 2005, V10(127): 865-870
    [89]唐云冰.航空发动机高速滚动轴承力学特性研究[D].南京航空航天大学,2005
    [90]叶先磊,史亚杰.ANSYS工程分析软件应用实例[M].北京:清华大学出版社,2003
    [91] ISO/TC4/SC8(GERMANY)N101,Explanatory Notes on ISO 281/1:German comments on factor a1[S]
    [92]苗学问,王大伟,洪杰.滚动轴承寿命理论的发展[J].轴承,2008,(3):47-52
    [93]王振华主编.实用轴承手册[M].上海:上海科学技术文献出版社, 1996
    [94]万长森.滚动轴承分析[M].机械工业出版社,1987
    [95] T.Tallian,L.Sibley,and R.Valori,Elastohydordunamic Film Effects on the Load-Life Behavior of rolling Contacts,ASME paper 65-LUBS-11,ASME Spring Lubrication Symposium,NewYork,1965
    [96] J.Skurka,Elastohydrofynamic Lubrication of roller bearings,ASME paper 69-LUB-18,1969
    [97] T. Harris.“The Endurance of Modern Rolling Bearings”, AGMA 269.01, Chicago,1964
    [98] E.Zaretsky, E.T.Harris,W.Kacmarsky.c., etc. Life Adjustment Factor for Ball and Roller bearings.ASME Engineering Design Guide,1971
    [99] Dash M. and Liu H.Consistency-based search in feature selection[J].Artificial intelligence, 2003,151:155-176
    [100]焦育洁,周志澜.航空发动机主轴轴承失效分析[J].轴承,1997
    [101] Tandon N.and Choudury A. A review of vibration and acoustic measurement methodsfor the detection of defects in rolling element bearings [J]. Tribology International, 1999, V32: 469-480
    [102]梅宏斌.滚动轴承振动监测与诊断——理论?方法?系统[M].北京:机械工业出版社, 1995
    [103]孟涛.齿轮与滚动轴承故障的振动分析与诊断[D].西安:西北工业大学博士论文,2003
    [104]苗学问,等.航空发动机主轴承使用寿命预测技术研究――报告三:滚动轴承振动信号特征提取技术研究[R].北京:北京航空航天大学,2008
    [105] COINV. DASP E.T. User’s Manual[M].北京:北京东方振动和噪声技术研究所,2006
    [106]吴今迈.设备诊断实例.上海科学技术文献出版社,1997
    [107] Rolf Orsagh, Michael Roemer, Jeremy Sheldon,etc. A comprehensive prognostic approach for predicting gas turbine engine bearing life[J]. Proceedings of ASME Turbo Expo 2004
    [108] Michael J. Roemer and Carl S. Byington, Prognostics and Health management Software for Gas Turbine Engine Bearings [C], Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea and Air May 14-17, 2007, Montreal, Canada GT2007-27984
    [109]陆爽.基于现代信号分析和神经网络的滚动轴承智能诊断技术研究[D].吉林大学博士学位论文,2004
    [110]郑春林.滚动轴承的快速疲劳寿命试验及可靠性分析[J],轴承,1996(1):24-28
    [111] Rumelhart D E, McCclelland J L, eds.. Parallel Distributed Processing: Explorations in the Microstructure of Cognition[M], vol.1, Cambridge, MA: M.I.T. Press, 1986.
    [112]刘建勋.基于机器学习技术的涡扇发动机起动过程建模及其应用的研究[D].西安:空军工程大学博士学位论文,2005
    [113]焦李成.神经网络数学基础[M].西安:西安电子科技大学出版社,1996
    [114] Ham F M, Kostanic I. Principles of Neurocomputing for Science and Engineering[M]. McGraw-Hill Companies, 2001.
    [115] Hagan M T, Menhaj M B. Training Feed Forward Networks with Marquart Algorithm[J]. IEEE Trans. Neural Networks, 1994, 5(6)
    [116] Abid S, Fnaiech F, Najim M. A Fast Feedforward Training Algorithm Using a Modified Form of the Standard Backpropagation Algorithm[J]. IEEE Trans. Neural Networks, 2001, 12(2)
    [117] Renato. A Successive Overrelaxation Back-propagation Algorithm for Neural Network Training[J]. IEEE Trans. Neural Networks, 1998, 9(3)
    [118]杨斌,聂在平,夏耀先.基于贝叶斯神经网络的非参数回归[J].电子科技大学学报,2002, (312)
    [119]杨源杰,黄道.人工神经网络算法研究及应用[J].华东理工大学学报,2002,28(5)
    [120]张代远.神经网络新理论与方法[M].清华大学出版社, 2006
    [121]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997
    [122]边肇祺,张学工等编著.模式识别(第二版).北京:清华大学出版社,2000
    [123] Raudys S. How good support vector machines[J]. Neural Networks 2000,13: 17-19
    [124] B Sch?lkopf, K Sung, C Burges, et al. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers[J]. IEEE Transactions on Signal Processing, 1997,45(11): 2758-2765
    [125]张学工.关于统计学习理论与支持向量机[J].自动化学报.2000.26(1)
    [126]陶卿,姚穗,范劲松,等.一种新的机器学习算法:Support vector machines[J].模式识别与人工智能.2000,13(3):285-290
    [127] Vapnik V N, Chervonenkis A J. The Necessary and Sufficient Conditions for Consistency of the Method of Empirical Risk Minimization[J]. Pattern Recognition and Image Analysis, 1991, 1(3)
    [128] Vladimir N Vapnik. The Nature of Statistical Learning Theory [M]. New York:Springer Verlag,1995
    [129] A J Smola. Learning with kernels[D]. Berlin:Technical University Berlin,1998.
    [130] Vladimir N Vapnik著,张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000
    [131] Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995,(20):273-297.
    [132] Osuna E,Freund R,Girosi F.Training support vector machines:an application to face detection[A].Proc IEEE Conference on Computer Vision and Pattern Recognition[C].1997.17-19
    [133] Platt J C.Fast training of support vector machines using sequential minimal optimization[A].Advances in Kernel Methods:Support Vector Learning[C].Cambridge, MA:MIT Press,1999.185-208
    [134] Yang M H,A huja N.A geometric approach to train support vector machines[A].Proceedings of CVPR 2000[C].Hilton Head Island,2000.430-437.
    [135] Friess T T, Cristianini N, et al. The Kernel-Adatron Algorithm: A Fast and Simple Learning Procedure for Support Vector Machines[A], ICML98, 1998.
    [136] Cherkassky V, MA Yunqian. Practical selection of SVM parameters and noise estimation for SVM regression [J]. Neural Networks, 2004,17(1): 113 - 126.
    [137] Vapnik V N. The nature of statistical learning theory[M].2nd edition, New York: Springer-Verlag,2000.
    [138]董春曦,饶鲜,杨绍全.径向基支持向量机推广能力快速估计算法[J].西安电子科技大学学报,2004,31(4)
    [139] Joachims T. Estimating the Generalization Performance of a SVM Efficiently[R]. LS VIII-Report 25, University Dortmund, Germany, 2001.
    [140]董春曦,饶鲜,杨绍全.支持向量机参数选择方法研究[J].系统工程与电子技术,2004, 26(8)
    [141] Cherkassky V, MA Yunqian. Selection of meta-parameters for support vector regression [C]//Proceedings of ICANN2002. Verlag Berlin Heidelberg: Springer, 2002: 687 - 693.
    [142] L.A.Zadeh.Fuzzy sets, Inform. and Control,1965(V8):338-353
    [143]刘普寅,吴孟达.模糊理论及其应用[M].长沙:国防科技大学出版社,1998
    [144]丛爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700