用户名: 密码: 验证码:
风筛式清选装置理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
清选装置是联合收获机的重要组成部分,它的性能优劣直接影响到整机的工作性能。农业物料清选过程是气固两相流场、农业物料群自身特性和振动筛面的综合效应。开展风筛式清选装置的研究,分析清选室内气流场的分布规律,探索农业物料在筛面上的运动规律,不仅能为现有清选装置的设计、优化提供依据,还能为寻找新的筛分方法提供启发,具有重要的现实意义和科学研究价值。本文在这样的背景下,结合国家自然科学基金和“863”计划等项目,综合运用计算流体力学、散体动力学和气固两相流等理论着重开展了风筛式清选装置理论及试验研究,主要工作包括:
     1、对水稻清选混合物成分进行了分析,混合物中的主要成分有籽粒、轻杂余、短茎秆和长草,在混合物中影响清选性能的主要是短茎秆和轻杂余。实验测量了水稻籽粒的三维几何尺寸、形状特征以及密度、摩擦系数和恢复系数等力学参数,建立了三维模型。利用自行研制的DFPF-25型物料悬浮速度测定装置,对清选混合物中的主要成分进行了测定,试验结果表明带籽粒的小枝梗的悬浮速度接近于饱满籽粒的悬浮速度,短茎秆的悬浮速度分布范围与籽粒的悬浮速度分布范围存在着重叠部分,采用气流清选将重叠部分的籽粒和短茎秆分离困难。所得数据为后面的数值模拟和台架试验提供了依据。
     2、依据风筛式清选装置的结构特征建立了全流道三维模型,应用计算流体力学(CFD)的理论与方法,进行网格划分,基于Reynolds时均化的连续方程、Navier-Stokes方程和标准的k-ε湍流模型构成封闭方程组,对不同的风机出风口角度、风机出风口风速和筛面中部与清选室顶部距离三个参数进行了气流场数值模拟,分析了这三个参数对清选室气流场的影响,并进行了试验验证。结果表明:风机出风口角度和筛面中部与清选室顶部距离对清选室气流场的影响较大,风机出风口风速只影响到气流速度而对气流场的分布规律影响不大,模拟结果与试验测量结果总体趋势基本吻合,这表明了利用Fluent进行数值模拟的正确性,可为研究风筛式清选装置清选室内的气流场提供一种新方法。
     3、基于离散元法(DEM)建立了籽粒与籽粒、籽粒与壁面之间的接触碰撞模型,利用颗粒离散元软件(EDEM)对物料单颗粒和物料群进行数值模拟,结果表明:抛掷指数是影响颗粒运动的决定因素,模拟结果和理论分析具有一致性;在其他条件一定的情况下,随着振幅和频率的增加,物料沿筛面后移的速度增加,同时透筛效率高,但振幅和频率的增加也会造成损失的增加;随着振动方向角的增大,在25°到45°范围内,物料沿筛面后移的速度增加,在45°时达到最大,超过45°之后,随着振动方向角的增加,物料沿筛面后移的速度降低,振动方向角较小时,抛掷指数低,物料不能被抛起,物料分层效果较差,使籽粒的透筛效率低,但随着振动方向角的过大,抛掷指数加大,物料与筛面接触时间减少,也会降低透筛效率,在振动方向角为35°时透筛效率最高,清选损失几乎为零;从模拟效果的综合分析可以得出:在没有风力因素的影响下,筛面倾角为4°、振幅为30mm、频率为5Hz、振动方向角为35°时,清选效果最佳,与试验结果基本一致,此时的抛掷指数为1.56。
     4、应用CFD-DEM耦合技术,采用Hertz-Mindlin接触模型模拟颗粒间以及颗粒与筛面间的碰撞,选用考虑相间耦合作用的Eulerian模型,描述了风筛式清选装置中颗粒在筛面上的运动,得出:①由于短茎秆的密度较小,风机出风口风速角对其在筛面上的纵向运动速度影响较大,籽粒密度较大,其所受影响较小;风速对籽粒和短茎秆的垂直速度的影响很小;随着风速的增加,物料的后移加快,有利于提高风筛式清选装置的处理能力,但是会增加籽粒损失。②籽粒主要分布在距筛面前端97.5mm~390mm之间,随着风机出风口风速的增加,籽粒在筛下的分布后移,在距筛面前端487.5mm之后籽粒数量很少,因此,如果物料中杂余较少可以缩短筛面长度。③通过试验验证,模拟结果和试验结果基本一致,因此利用CFD-DEM耦合仿真对风筛式清选装置进行数值模拟是可行的,利用数值仿真可以为风筛式清选装置的改进设计提供依据。
     5、以离心风机倾角、离心风机转速、振动筛振幅和振动筛频率为四个因素,分别取四个水平建立正交试验表L16(44),按照试验表在清选试验台上进行正交试验。对试验结果进行方差分析,结果表明:离心风机转速、振动筛振幅及振动筛频率对清洁率都有极显著的影响,离心风机倾角对清洁率有显著影响;离心风机转速对损失率有极显著的影响,振动筛振幅对损失率有显著的影响,振动筛频率和离心风机倾角对损失率的影响不显著;影响清洁率和损失率的因素主次顺序是:离心风机转速\振动筛振幅\振动筛频率\离心风机倾角。
     6、利用DPS数据处理系统进行回归分析,根据试验数据分别建立清洁率Y、损失率S与离心风机倾角x1、离心风机转速x2、振动筛振幅x3、振动筛频率x4之间的回归方程数学模型;在此基础上,利用多目标遗传算法对风筛式清选系统进行工作参数优化,得到最佳的解集,经试验验证优化的结果是可靠的,为决策者在设计风筛式清选装置时提供科学依据,以达到兼顾清洁率和损失率两方面的要求。
As an important part of the combine harvester, Cleaning unit's performance directly affects the whole machine characteristic. Agricultural materials cleaning process is the combined effect of gas-solid two-phase flow field, their own characteristics of agricultural materials group and vibration screen surface. There are many factors affecting the cleaning performance. It is of great significance to study air-and-screen cleaning device, to analyze air flow distribution of cleaning shoe, to explore the motion law of agricultural materials on the screen surface, which will not only provide theoretical basis for the design and optimization of the existing typical cleaning unit, but also give theoretical inspiration to looking for a new way of the cleaning. Therefore, in this paper, computational fluid dynamics, discrete particle dynamics and gas-solid two-phase flow theory were comprehensively applied to study on working mechanism of air-and-screen cleaning unit. The major research work is as follows:
     Composition of rice cleaning mixture was analyzed. The threshing mixture consists of grain, light impurities, short stems and long grass. The main compositions influencing the performance were short stems and light impurities. Three-dimension geometry size, shape characteristics and mechanical parameters of the rice grain such as density, friction coefficient and recovery coefficient were measured; as a result, a 3-D rice grain model was established. Suspended speed of the main components of the mixture was measured by using self-made DFPF-25 materials suspended speed measuring device. Suspended speed of small branch with grain closes to full grain suspended speed. The range of suspended speeds of short stem overlaps with that of grain. To separate overlapping parts of the grain and short stem by air cleaning is difficult. These data provide the basis for the bench test and numerical simulation.
     The three dimensional models of the whole flow was established according to the mechanism of the air-and-screen cleaning unit. In order to study the distribution of air flow field in air-and-screen cleaning device, meshing was completed by using the Computational Fluid Dynamics (CFD) theory and method, Reynolds continual equation, N-S equations and standard k-εturbulence model were applied to form closed equations. The air flow field simulation was carried out on the conditions of different fan outlet angles, different fan outlet speeds and different distances from top to surface of the screen. The three parameters' effects on the air flow field were analyzed and the experimental verification was carried out. The results show that angle of fan outlet and distances from top to surface of screen have greater effect on air flow field in air-and-screen cleaning device. Air speed at fan outlet has less effect on air flow field. And a good agreement was found between measured value and simulated value. This demonstrates that numerical simulation of air flow field in air-and-screen cleaning mechanism using CFD software Fluent is correct. And this provides a new method for studying on air-and-screen cleaning unit.
     Contact-impact models of grain-grain and grain-wall were established based on distinct element method (DEM). Numerical simulations of the single particle and material group were carried out using particle discrete element software (EDEM). The results show that throwing index is determinant factor affecting particle motion. Simulation results and theoretical analysis are consistent. As other conditions kept unchanged, with the amplitude and frequency increased, the longitudinal moving speed of the material and efficiency of the material passing the screen increased, and cleaning loss increased as well. At 25°to 45°range, with vibration direction angle increased, longitudinal moving speed of the material increased, the highest velocity occurred at 45°; when the angle was more than 45°, longitudinal moving speed of the material gradually decreased; efficiency of the material passing the screen was highest at 35°and the cleaning loss was almost 0. Based on comprehensive analysis of simulation, results can be drawn that without wind factor at the condition that screen surface dip of 4°, amplitude of 30mm, frequency of 5Hz, vibrating direction angle of 35°, the cleaning result is best, in which case throwing index was 1.56.
     Using CFD-DEM coupling technique, the grain-grain and grain-wall impact was simulated in a Hertz-Mindlin model, the movement particles moving on the screen of the air-and-screen cleaning device was described by using Eulerian model which considers coupling impact. Simulation results showed that:(a)Due to the small density of short stem, the fan outlet speed influenced the stem's longitudinal moving speed on the screen more, while the density was big enough, the influence was much less; the fan outlet speed influenced the vertical velocity slightly; as speed increased, the faster move of materials enhance the processing capacity of the air-screen cleaning device, however, the grain loss increased. (b)The grain distributed mainly in the range of 97.5-390mm to the front of the screen, as the fan outlet speed increased, the distribution of the grain moved back and there are few grain more than 487.5 mm to the screen. As a result, the screen could be shortened if there were few impurities in materials. (c) Comparison of numerical simulation results with experiments has demonstrated adequate agreement. It showed that numerical simulation of material motion on vibrating screen of air-and-screen cleaning device based on CFD-DEM is feasible. The results provide a basis for improving the design on air-and-screen cleaning device of combine
     Orthogonal design (L6(44)) of four factors was established, including angle of centrifugal fan, centrifugal fan speed, vibration screen amplitude and frequency of vibrating screen, four levels of every factor. Arranged the tests based on the orthogonal test table, improved clean rate of the grains and reducing loss rate were regarded as detecting index, the optimum method of air-and-screen cleaning unit was assessed. As test results for variance analysis, results indicate that:within test range, centrifugal fan speed, vibration screen amplitude and frequency of vibrating screen had significant greatly effect on clean rate, angle of centrifugal fan evident effect on clean rate; centrifugal fan speed had significant greatly effect on loss rate, vibration screen amplitude had significant greatly effect on loss rate, but angle of centrifugal and fan frequency of vibrating screen had no significant effect on loss rate; effect clean rate and loss rate of factors primary and secondary order is:centrifugal fan speed\vibrating screen amplitude\frequency of vibrating screen\angle of centrifugal fan.
     By means of regression analysis, applying DPS software, mathematical models of clean rate Y, losing rate S, centrifugal fan angle x1, centrifugal rotating speed x2, vibration screen amplitude x3 and vibration screen frequency x4 were established. We applied multi-objective optimization based on the genetic algorithm. The Pareto optimal solution was obtained and verified. The results provided reference basis for practical design and utilization of the air-and screen cleaning unit, so as to give consideration to both clean rate and loss rate.
引文
[1]李耀明.水稻梳脱混合物复脱分离、清选特性的研究[D].南京农业大学,2004.
    [2]徐立章,李耀明,张立功,孙铁成.轴流式脱粒-清选装置试验台的设计[J].农业机械学报,2007,(12):85-88.
    [3]李耀明,邓玲黎,丁为民.小型联合收获机清选装置的技术分析[J].农机化研究,2004,(3):55-56.
    [4]邓玲黎,李耀明.我国水稻联合收获机的现状及发展趋势[J].农机化研究,2001(2):4-6
    [5]吴守一.农业机械学(下册)[M].北京:机械工业出版社,1992
    [6]中德超.离心风机双出口风道清选装置及其应用[J].佳木斯大学学报(自然科学版),1999,17(1):20-22
    [7]杨宝善,曹建敏,李雪颖.我国水稻收获机械化的技术现状及发展趋势[J].农机化研究,2007(7):227-228.
    [8]刘江龙,申德超.双风道清选型脱粒机的试验研究[J].佳木斯工学院学报,1997.6:142-145
    [9]陈翠英,王志华,李青林.油菜脱出物物理机械特性及振动筛参数优化[J].农业机械学报.2005,36(3):60-63.
    [10]李耀明,林恒善,陈进等.基于神经网络的风筛式清选气流场研究[J].农业机械学报,2006,37(7):197-198.
    [11]王同福,宋玉英,王进朝.气流清选原理在脱粒机上的应[J].河北农业大学学报,1997,20(1):103-109.
    [12]Kerber D R; Lucas J R. Development of a Combine Cleaning Shoe.1969, ASAE Paper No. 69-622. ASAE, St. Joseph, MI.49085.
    [13]Hengen Edward J. Investigation of methods of automaticfan control for the combine shoe. M.S. thesis, Washington State University,1963.
    [14]Segler, G., and T. Freye. Entwicklung einer mess-undkontrol-leinrichtung fuer den gutdurchsatz der reingungsanlage im maehdrescher (Development of a throughput measurement and control device for the leaning shoe for a combine harvester). Grundlagen der Landtechnik,1978,28(4):148-151.
    [15]Uhl, J. B., and B. J. Lamp. Pneumatic separation of grain and straw mixtures. TRANSACTIONS of the ASAE,1966,9(2):244-246.
    [16]Streicher E A; Stroshine R L; Krutz G W; Hinkle C N. Cleaning shoe air velocities in combine harvesting of wheat. Transactions of the ASAE,1986,29(4).
    [18]Gebrehiwot, M. G, J. De Baerdemaeker, et al. "Effect of a cross-flow opening on the performance of a centrifugal fan in a combine harvester:Computational and experimental study." Biosystems Engineering,2010,105(2):247-256.
    [19]Gebrehiwot, M. G, J. De Baerdemaeker, et al. "Numerical and experimental study of a cross-flow fan for combine cleaning shoes." Biosystems Engineering,2010,106(4):448-457.
    [20]Kenney, K. L., C. T. Wright and K. M. Bryden. Virtual Engineering Approach to Developing Selective Harvest Technologies. ASAE Paper No.056046. St. Joseph, Mich.:ASAE,2005.
    [21]Kevin L. Kenney, Christopher T. Wright, Kenneth M. Bryden. Engineering High-Fidelity Residue Separations for Selective Harvest. Paper No:066171
    [22]成芳,杨健明,蔺公振.小型联合收获机风筛式清选装置试验研究[J].农业机械学报,1996(4):60-64.
    [23]成芳,王俊.风筛式清选装置上流场的实验研究[J].农业工程学报,1999,15(1):55-58.
    [24]陈霓,熊永森,陈德俊,徐锦大,赵云,.联合收获机同轴差速轴流脱粒滚筒设计和试验[J].农业机械学报,2010,41(10):67-71.
    [25]陈霓,黄东明,陈德俊,田晓军,张建荣,.风筛式清选装置非均布气流清选原理与试验[J].农业机械学报,2009,40(4):73-77.
    [26]王智华.油菜联合收获机风筛式清选装置清选性能的研究[D].镇江:江苏大学,2007.
    [27]夏利利.风筛式清选装置中气流场的数值模拟及试验研究[D].镇江:江苏大学,2008.
    [28]唐忠.风筛式清选装置中贯流风机的理论及试验研究[D].镇江:江苏大学,2010.
    [29]Gaudin M. Principle of Mineral Dressing [M]. New York,1939.
    [30]Taggart F. handbook of Mineral Dressing Ores and Industrial Minerals [M]. New York,1984.
    [31]Mogensen. A New Method of Screening Granular Materials. TheQuarry Managers Journal, Oct 1965.
    [32]W.Schultz and B.Tippon. Fundamentals of statistical [J]. Trans. Of soc. of min. engr of AIME. 1970(247):314-316.
    [33]W.Kluge. Neuzeitliche Siebmaschinen fur die Aufbereitung [J]. Erdol und Kohle. 1975(4):705-711.
    [34]J.Bruderlei. Bewegungsvorgange auf siebmaschinen [J]. Aufbereitungs-Technik.1972(7):401
    [37]兕岛初男,山下律也.摇勤巽别機の選别特性[J].農業機械学會志.1981,46(2):238-240.
    [38]E.A.streicher. Cleaning Shoe Aie Velocities in Combin Harvesting of Wheat [J]. Trans of the ASAE.1986,129(4):923-928.
    [39]J.T.Macaulay. Grain separation on Oscillating Combine Sieves as Affected by Material Entrance Conditions [J]. Trans of the ASAE.1969,2(1):648-654.
    [40]王亭杰.概率筛分过程透筛概率问题的研究[J].江苏煤炭.1991(4):26-28.
    [41]闻邦椿,刘凤翘.振动机械的理论与动态设计方法[M].北京:机械工业出版社.2001,60-68.
    [42]李耀明,董钢等.油菜籽粒透筛过程的仿真试验与分析[J].农业机械学报.2007,38(9):189-191.
    [43]韦鲁滨,陈清如.煤用概率分级筛数学模型的研究[J].煤炭学报.1995,20(1):57-62.
    [44]赵跃民,陈清如.煤用概率分级筛数学模型的建立[J].中国矿业大学学报.1992,21(2):18-26.
    [45]赵跃民,刘初升.干法筛分理论及应用[M].北京:科学出版社.1999.
    [46]焦红光,赵跃民等.概率筛面的参数优化研究[J].中国矿业大学学报.2006,35(3):384-388.
    [47]刘初升,赵跃民.振动筛面上单颗粒运动的非线性特性的研究[J].矿山机械.1999,27(1):45-46.
    [48]I.G Farran, R.H. Macmillan. Grain-Chaff separation in a vertical air stream [J]. Journal of Agricultural Engineering Research.1979,24(2):115-129.
    [49]Gorial, B. Y. and J. R. O'Callaghan "Aerodynamic properties of grain/straw materials." Journal of Agricultural Engineering Research.1990,46(0):275-290.
    [50]Gorial, B. Y. and J. R. O'Callaghan "Separation of grain from straw in a vertical air stream." Journal of Agricultural Engineering Research,1991,48(0):111-122.
    [51]Gorial, B. Y. and J. R. O'Callaghan "Separation of particles in a horizontal air stream." Journal of Agricultural Engineering Research,1991,49(0):273-284.
    [52]李革,赵匀,俞高红.倾斜气流清选装置中物料的动力学特性、轨迹和分离研究[J].农业工程学报,2001,17(6):22-25
    [53]王庆祝,赵金川,刘荣昌,石瑞珍,闫栋梁.高速气流清选农作物籽粒的机理探讨[J].河北职业技术师范学院学报,2002,16(4):44-48.
    [54]王庆祝,郭建春,刘荣昌.农业物料高速气流清选的试验研究[J].农机化研究,2004,(3):124-126.
    [55]邓春香,陶栋材,高静萍,.气流清选风车中谷物的动力学特性和影响因素的研究[J].农业工程学报,2006,22(4):121-125.
    [56]陈翠英,王志华,李青林.油菜脱出物在气流中的运动分析[J].农业机械学报,2004,35(5):90-93.
    [57]陈翠英,王志华,李青林.油菜脱出物物理机械特性及振动筛参数优化[J].农业机械学 报,2005,36(3):60-63+70.
    [58]P.A.Cundall, O.D.L.Sreack. A discrete numerical model for granular assemblies. Geotechnique,29,47-65.
    [59]Y.Tatemoto, Y.Mawatari, T.Yasukawa, et al. Numerical simulation of particle motion in vibrated fluidized bed[J].Chemical Engineering Science,2004,59(2):437-447.
    [60]J.Theuerkauf, P.Witt, D.Schwesig. Analysis of particle porosity distribution in fixed beds using the discrete element method[J]. Powder Technology,2006,165:92-99.
    [61]B.P.B.Hoomans, J.A.M.Kuipers, V.Swaaij.Granular dynamics of segregation phenomena in bubbling gas-fluidised beds[J].Powder Technology,2000,109(1-3):41-48.
    [62]徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [63]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483-490.
    [64]K.Manoj, S.Wolfgang, T.Jurgen. Discrete element method simulation of bed comminution[J]. Minerals Engineering,2007,20(2):179-187.
    [65]J.Theuerkauf, P.Witt, D.Schwesig. Analysis of particle porosity distribution in fixed beds using the discrete element method[J].Powder Technology,206,165(2):92-99.
    [66]S.C.Yang, S.S.Hsiau. The simulation of powders with liquid bridges in a 2D vibrated bed[J]. Chemical Engineering Science,2001,56:6837-6849.
    [67]E.Tijskens, H.Ramon, J.D.Baerdemaeker. Discrete element modelling for process simulation in agriculture[J] Journal of Sound and Vibration,2003,266:493-514.
    [68]B.K.Mishra. A review of computer simulation of tumbling mills by the discrete element method:Part Ⅰ-contact mechanics[J]. International Journal of Mineral Processing,2003,71: 73-93.
    [69]T.J.Goda, F,Ebert. Three-dimensional discrete element simulations in hoppers and silos[J]. Powder Technology,2005,158,58-68.
    [70]徐泳,李艳洁,李红艳.离散元法在农业机械化中应用评述[J].农机化研究,2004,5,26-30.
    [71]于建群,付宏,李红,等.离散元法及其在农业机械工作部件研究与设计中的应用[J].农业工程学报,2005,21(5):1-6.
    [72]张锐,李建桥,周长海,等.推土板表面形态对土壤动态行为影响的离散元模拟[J].农业工程学报,2007,23(9):13-19.
    [73]J Li, C Webb, S S Pandiella, G M Campbell. Discrete particle motion on sieves—a numerical study using the DEM simulation [J]. Powder Technology,2003,133:190-202.
    [74]Paul W Cleary, Mark L Sawley. DEM modelling of industrial granular flows:3D case studies and the effect of particle shape on hopper discharge[J]. Applied Mathematical Modelling, 2002,26:89-111.
    [75]Delaney, G. W., P. W. Cleary, et al. "Testing the validity of the spherical DEM model in simulating real granular screening processes." Chemical Engineering Science.2011,66(23): 1-12.
    [76]焦红光,赵跃民,.筛面上颗粒运动的计算机仿真研究及试验验证[J].矿冶,2006,15(1):63-67.
    [77]焦红光,赵跃民,.用颗粒离散元法模拟筛分过程[J].中国矿业大学学报,2007,36(2):232-236.
    [78]焦红光,李靖如,赵继芬,赵跃民,.关于离散元法计算参数的探讨[J].河南理工大学学报(自然科学版),2007,26(1):88-93.
    [79]焦红光,刘鹏,马娇,赵跃民,.筛分作业离散元模拟程序的开发及应用[J].河南理工大学学报(自然科学版),2008,27(6):711-715.
    [80]赵跃民,张曙光,焦红光,铁占续,.振动平面上粒群运动的离散元模拟[J].中国矿业大学学报,2006,35(5):586-590.
    [81]赵啦啦,刘初升,闫俊霞,徐志鹏,.颗粒分层过程三维离散元法模拟研究[J].物理学报,2010,59(3):1870-1876.
    [82]赵啦啦,刘初升,闫俊霞,蒋小伟,朱艳,.颗粒筛分过程的三维离散元法模拟[J].煤炭学报,2010,35(2):307-311.
    [83]赵啦啦,刘初升,闫俊霞,蒋小伟,朱艳,.不同振动模式下颗粒分离行为的数值模拟[J].物理学报,2010,59(4):2582-2588.
    [84]赵啦啦,刘初升,闫俊霞,蒋小伟,张阳,.振动筛面颗粒流三维离散元法模拟[J].中国矿业大学学报,2010,39(3):414-419.
    [85]王桂锋,童昕,陈艳华,苏梅,.基于DEM的振动筛筛分参数对筛分效率影响的研究[J].矿山机械,2010,(15):102-106.
    [86]Di Maio, F. P., A. Di Renzo, et al. "Comparison of heat transfer models in DEM-CFD simulations of fluidized beds with an immersed probe." Powder Technology,2009,193(3): 257-265.
    [87]Di Renzo, A., F. Cello, et al. "Simulation of the layer inversion phenomenon in binary liquid--fluidized beds by DEM-CFD with a drag law for polydisperse systems." Chemical Engineering Science,2011,66(13):2945-2958.
    [88]Di Renzo, A. and F. P. Di Maio. "Homogeneous and bubbling fluidization regimes in DEM-CFD simulations:Hydrodynamic stability of gas and liquid fluidized beds." Chemical Engineering Science,2007,62(1-2):116-130.
    [89]Eppinger, T., K. Seidler, et al. "DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios." Chemical Engineering Journal,2011,166(1):324-331.
    [90]Fries, L., S. Antonyuk, et al. "DEM-CFD modeling of a fluidized bed spray granulator." Chemical Engineering Science,2011,66(11):2340-2355.
    [91]Geng, Y., D. Che. "An extended DEM-CFD model for char combustion in a bubbling fluidized bed combustor of inert sand." Chemical Engineering Science,2011,66(2):207-219.
    [92]Grof, Z., J. Cook, et al. "The interaction between small clusters of cohesive particles and laminar flow:Coupled DEM/CFD approach." Journal of Petroleum Science and Engineering, 2009,66(1-2):24-32.
    [93]Guo, Y., C. Y. Wu, et al. "3D DEM/CFD analysis of size-induced segregation during die filling." Powder Technology,2011,206(1-2):177-188.
    [94]Jayasundara, C. T., R. Y. Yang, et al. "CFD-DEM modelling of particle flow in IsaMills-Comparison between simulations and PEPT measurements." Minerals Engineering 24(3-4): 181-187.
    [95]Kafui, D. K., S. Johnson, et al. "Parallelization of a Lagrangian-Eulerian DEM/CFD code for application to fluidized beds." Powder Technology,2011,207(1-3):270-278.
    [96]Mansourpour, Z., S. Karimi, et al. "Insights in hydrodynamics of bubbling fluidized beds at elevated pressure by DEM-CFD approach." Particuolog,y 2010,8(5):407-414.
    [97]Simsek, E., B. Brosch, et al. "Numerical simulation of grate firing systems using a coupled CFD/discrete element method (DEM)." Powder Technology,2009,193(3):266-273.
    [98]Tsuji, T., K. Yabumoto, et al. "Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM-CFD coupling simulation." Powder Technology,2008, 184(2):132-140.
    [99]Wu, C., Y. Cheng, et al. "CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process." Chemical Engineering Science,2010,65(1):542-549.
    [100]Zhang, M. H., K. W. Chu, et al. "A CFD-DEM study of the cluster behavior in riser and downer reactors." Powder Technology,2008,184(2):151-165.
    [101]Zhao, T., K. Liu, et al. "Three-dimensional simulation of the particle distribution in a downer using CFD-DEM and comparison with the results of ECT experiments." Advanced Powder Technology,2010,21(6):630-640.
    [102]Zhou, H., G. Mo, et al. "DEM-CFD simulation of the particle dispersion in a gas-solid two-phase flow for a fuel-rich/lean burner." Fuel,2011,90(4):1584-1590.
    [103]刘海,李彩亭,曾光明,张巍,高宏亮,覃海华,.SCX型脱硫除尘器内部气固两相流场数值模拟[J].环境工程学报,2011,5(4):865-870.
    [104]孙巧群,高建民,朱卫兵,陆慧林,.流化床反应器内气固两相流动特性的研究[J].热能动力工程,2010,25(6):621-626+685-686.
    [105]杨魁,徐德龙,.大颗粒流化床内气固两相流稳定性试验研究[J].四川建筑科学研究,2009,35(4):190-192+277.
    [106]李敏,贲伟,任志民,李盼,.旋风分离器内部气-固两相流场研究与发展[J].化工机械,2009,36(2):89-92+99.
    [107]张泽虎,高广德,何璐璐,.螺旋式旋风分离器气-固两相流的数值模拟[J].机械与电子,2009,(1):27-30.
    [108]田贵昌,李宝宽,陈中才,李泰勋,.离心式通风机内稀疏气固两相流整机三维数值模拟[J].风机技术,2008,(5):9-14+19.
    [109]张少峰,高聪,陈文义,曹会敏,.锥底喷动床内气固两相流的数值模拟[J].化工装备技术,2008,29(5):9-11.
    [110]牟介刚,赵永攀,许明远,郑水华,金建波,苏苗印,.提升管内气固流动行为的CFD-DEM模拟[J].轻工机械,2010,28(6):36-40.
    [111]殷亮,蒋军成,.A类颗粒流化床特性的DEM-CFD模拟[J].化学反应工程与工艺,2010,26(5):411-417.
    [112]赵永志,程易,丁宇龙,金涌,.不同入口结构下行床内气固流动及混合行为的CFD-DEM模拟[J].化工学报,2007,58(6):1396-1403.
    [113]Zhao, T., K. Liu, et al. "Three-dimensional simulation of the particle distribution in a downer using CFD-DEM and comparison with the results of ECT experiments." Advanced Powder Technology,2010,21(6):630-640.
    [114]Zhou, H., G. Mo, et al. "DEM-CFD simulation of the particle dispersion in a gas-solid two-phase flow for a fuel-rich/lean burner." Fuel,2011,90(4):1584-1590.
    [115]Chu, K. W., B. Wang, et al. "CFD-DEM simulation of the gas-solid flow in a cyclone separator." Chemical Engineering Science,2011,66(5):834-847.
    [116]Chu, K. W., B. Wang, et al. "CFD-DEM modelling of multiphase flow in dense medium cyclones." Powder Technology,2009,193(3):235-247.
    [117]Chu, K. W., B. Wang, et al. "CFD-DEM study of the effect of particle density distribution on the multiphase flow and performance of dense medium cyclone." Minerals Engineering, 2009,22(11):893-909.
    [118]Zhou, Z. Y., D. Pinson, et al. "Discrete particle simulation of gas fluidization of ellipsoidal particles." Chemical Engineering Science,2011,66(23):6128-6145.
    [119]Grof, Z., J. Cook, et al. "The interaction between small clusters of cohesive particles and laminar flow:Coupled DEM/CFD approach." Journal of Petroleum Science and Engineering, 2009,66(1-2):24-32.
    [120]吴昌宁,丁宇龙,金涌,等.气固催化反应流动的CFD-DEM模拟研究[J].中国科技论文在线,2008,3(12):897-904.
    [121]樊建人,郑友取,岑可法.三维气固两相混合层湍流拟序结构的直接数值模拟[J].工程热物理学报,2001,22(2):241-244.
    [122]杨杰程,张宇,刘大有,等.三维风沙运动的CFD-DEM数值模拟[J].中国科学:物理学力学天文学,2010,40(7):904-915.
    [123]周祖锷.农业物料学[M].北京:农业出版社,1994
    [124]郑建祥,刘洪雷.弹性恢复系数对超细颗粒气固流场影响的研究[J].东北电力大学学 报,2010,30(6):10-14.
    [125]王嘉骏,顾雪萍,杨富军,等.双流体模型中曳力及恢复系数对气固流动的影响[J].高校化学工学报,2006,20(2):164-168.
    [126]张波屏.现代种植机械工程[M].北京:机械工业出版社,1997.
    [127]刘艳艳,李耀明,徐立章,等.水稻悬浮速度试验研究[J].农机化研究,2010,(2):149-151+155.
    [128]姬江涛,蔺公振.农业物料飘浮速度测试仪的设计与试验[J].洛阳工学院学报,1994,15(4):27-31.
    [129]陈元生.农产物料飘浮速度测定装置的研究与设计[J].粮油加工与食品机械,1984,(10):42-46.
    [130]刘绍刚,方如明,吴守一.农业物料飘浮速度的计算和测定[J].江苏工学院学报,1988,9(3):37-43.
    [131]张佳,庄卫东,陈彬.农业物料悬浮速度试验台的研制[J].黑龙江八一农垦大学学报,1998,10(3):56-59.
    [132]K.Udaya Bhaskar, Y.Rama Murthy, M.Ravi Raju, et al. CFD simulation and experimental validation studies on hydrocyclone[J].Minerals Engineering,2007,20(3):60-71.
    [133]杨敏官,顾海飞,刘栋,等.离心泵叶轮内部湍流流动的数值计算及试验[J].机械工程学报,2006,42(12):180-185.
    [134]B.Sonia, M.Hatem, L.P.Georges, et al. Numerical and experimental study of two turbulent opposed plane jets[J].Heat and Mass Transfer,2003 (39):657-686.
    [135]P.Umberto, D.Onofrio, M.Carmina. Three-dimensional CFD simulation of two-phase flow inside the abrasive water jet cutting head[J].International Journal of Computational Methods in Engineering Science and Mechanics,2008,9(5):300-319.
    [136]J.T.Cornelissen, F.Taghipour, R.Escudie, et al. CFD modelling of a liquid-solid fluidized bed[J].Chemical Engineering Science,2007,62:6334-6348.
    [137]K.U.Bhaskar, Y.R.Murthy, M.R.Raju, et al.CFD simulation and experimental validation studies on hydrocyclone[J].Minerals Engineering,2007,20,60-71.
    [138]C.Ford, C.R.Bennington, F.Taghipour. Modelling a pilot-scale pulp mixing chest using CFD[J].Journal of Pulp and Paper Science,2007,33(3):115"120.
    [139]M.Yataghene, J.Pruvost, F.Fayolle, et al. CFD analysis of the flow pattern and local shear rate in a scraped surface heat exchanger[J].Chemical Engineering and Processing, 2008,47:1550-1561.
    [140]GThomas, L.Christian, C.Claudio, et al. Computational fluid dynamics (CFD) software tools for microfluidic applications-A case study[J].Computers and Fluids,2008,37(3):218-235.
    [141]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2006.
    [142]吴子牛.空气动力学[M].北京:清华大学出版社,2007.
    [143]T.Bartzanas, C.Kittas,A.A.Sapounas,et al.Analysis of airflow through experimental rural buildings:Sensitivity to turbulence models[J].Biosystems Engineering,2007,97(2):229-239.
    [144]P.Ranganathan, S.Sivaraman, S.Gerald, et al. CFD modeling of gas-liquid-solid mechanically agitated contactor[J].Chemical Engineering Research and Design,2008,86(12): 1331-1344.
    [145]F.Bahadori, R.Rahimi. Simulations of gas distributors in the design of shallow bubble column reactors[J].Chemical Engineering and Technology,2007,30(4):443-447.
    [146]曲延鹏,陈颂英,王小鹏,等.不同湍流模型对圆射流数值模拟的讨论[J].工程热物理学报,2008,29(6):957-959.
    [147]L.Q.Zhou, W.Z.Wang. Numerical simulation of cavitation around a hydrofoil and evaluation of a RNG κ-ε model[J]. Transactions of the ASME,2008,130(1):0113021-0113027.
    [148]LYoshihiro, N.Yasutaka. RNG modeling of turbulent heat flux and its application to wall shear flows[J].JSME International Journal,Series B,1998,41(3):657-665.
    [149]A.E.Sakya, N.Yoshiaki, Y.Michiru. Evaluation of an RNG-based algebraic turbulence model[J].Computers & Fluids,1993,22(2):207-214.
    [150]S.Semion, GBoris, S.Ilya. Cross-term and ε-expansion in RNG theory of turbulence[J]. Fluid Dynamics Research,2003,33(4):319-331.
    [151]Y.S.Zhang, O.A.Steven. Two-equation RNG transport modeling of high reynolds number pipe flow[J].Journal of Scientific Computing,1998,13(4):471-483.
    [152]蒋恩臣,王立军,刘坤,等.联合收获机惯性分离室内气固两相流数值模拟[J].江苏大学学报(自然科学版),2006,27(3):193-196.
    [153]袁月明,马旭,金汉学,等.气吸式水稻芽种排种器气室流场研究[J].农业机械学报,2005,36(6):42-45.
    [154]M. Saffar-Awal, H. Basirat Tabrizi, Z. Mansoori, et al, Gas-solid turbulent flow and heat transfer with collision effect in a vertical pipe [J]. International Journal of Thermal Sciences 46 (2007) 67-75.
    [155]韩古忠.FLUENT: 流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [156]Frantisek Peterka, Tadashi Kotera, Stanislav Cipera. Explanation of appearance and characteristics of intermittency chaos of the impact oscillator [J]. Chaos Solitons and Fractals, 2004,19 (5):1251-1259.
    [157]Luo Guanwei, Xie Jianhua. Bifurcations and chaos in a system with impacts[J]. Physica D,2001,148 (3,4):183-200.
    [158]李耀明,赵湛,陈进,等.风筛式清选装置上物料的非线性运动规律[J].农业工程学报,2007,23(11):142-147.
    [159]孙刚,李世争,孙薇.用混沌理论研究筛分过程中物料的运动规律[J].北京科技大学学报,1999,21(3):223-226.
    [160]刘初升,赵跃民.振动筛面上单颗粒运动的非线性特性的研究[J].矿山机械.1999,1:45-46.
    [161]吴守一.农业机械学:下册[M].2版.北京:机械工出版社,1987.
    [162]焦红光.振动筛分过程解析[M].北京:煤炭工业出版社,2008
    [163]王国强.离散单元法及其在EDEM上的实践[M].西安:西北工业大学出版社,2010.
    [164]胡国明.颗粒系统的离散元素法分析仿真——离散元素法的工业应用与EDEM简介[M].武汉:武汉理工大学出版社,2010.
    [165]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [166]辛益军.方差分析与实验设计[M].北京:中国财政经济出版社,2002.
    [167]林锉云,董加礼.多目标优化方法与理论[M].吉林:吉林教育出版社,1992.
    [168]E.Zitzler, L.Thiele, "Multiobjective Evolutionary Algorithms:A Comparative Case Study and Strength Pareto Approach," IEEE Transact ion on Evolut ionary Computation, vOl.3, no. 4, PP.257-271, November 1999.
    [169]张连振,黄侨,王潮海.基于多目标遗传算法的传感器优化布点研究[J].工程力学,2007(4):168-172.
    [170]郑金华.多目标进化算法及其应用[M].北京:科学出版社,2007.
    [171]王晓鹏.多目标优化设计中的Pareto遗传算法[J].系统工程与电子技术,2003,25(12):1558-1561.
    [172]杨子晨,孟波,熊德林等.基于多目标遗传算法求解多边谈判问题的Pareto解[J].计算机工程与应用,2002,38(1):39-41.
    [173]Schaffer J D. Multiple objeetive optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms. Lawrence Erlbaum, 1985,93-100.
    [174]Fonseea, C.M. and Fleming P.J. An overview of evolutionary algorithms in multiobjective optimization. Technical report, Department of Automatic Control and Sygcms Engineering, University of Sheffield, Sheffield, U.K.1994.
    [175]Fonseea. C.M.and Fleming, P.J. An overview ofevolutionary algorithms in multiobjective optimization. Evolutionary Computation 3(1),1-16,1995.
    [176]Horn J, Nafpliotis N. Multi-objective optimization using the niched Pareto genetic algorithm. University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, TechnicalReport, IlliGAL Report 93005,1993.
    [177]Srinivas N, Deb K. Multi-objective function optimization using non-dominated Sorting in Genetic Algorithms. Evolutionary Computation 1994,2(3):221-248.
    [178]Holland J H. Adaptation in naturation in naturaland artificial systems[J]. The Uniuversity of Michigan Press,1975(1):21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700