用户名: 密码: 验证码:
新型低碳贝氏体钢焊接接头疲劳裂纹扩展可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接接头中不可避免地会存在各种形式的焊接缺陷,使焊接接头成为整个焊接结构中最薄弱部位,易产生裂纹起裂、扩展甚至失稳断裂。焊接接头的疲劳断裂性能是焊接结构损伤容限分析、保证结构安全可靠运行,以及抗断裂设计的重要依据。新型低碳贝氏体钢是采用微合金化控轧控冷工艺生产的新一代焊接无裂纹低合金高强度结构钢,被称为当今“绿色钢材”。合金结构钢的发展方向越来越注重提高其使用的可靠性和经济性,即在满足结构强度要求的前提下提高安全性和寿命。因此,对新一代低碳贝氏体钢焊接接头疲劳裂纹扩展可靠性研究具有重要的理论意义和应用价值。本文对新型低碳贝氏体焊接接头进行了常规力学性能及其微观金相试验研究、焊接缺陷及其尺寸分布研究、疲劳裂纹扩展试验及其可靠性分析研究。
     本文的主要工作有:
     从常规力学性能和金相试验角度对新型低碳贝氏体钢焊接接头焊接工艺进行试验研究。采用不同的焊接方法和不同的焊接工艺参数对新型焊接无裂纹低碳贝氏体钢B610CF、ADB610和WDB620钢焊接接头进行焊接,对焊接接头进行常规力学性能和金相试验。对试验结果进行分析发现:采用合适的焊接工艺参数,焊接接头中不容易产生裂纹,焊接接头的抗裂性能优良,可以得到具有优良综合机械性能的焊接接头;焊接工艺参数对焊接接头抗拉强度、塑性以及对热影响区的组织和常规力学性能的影响不明显,但大的焊接工艺参数会使焊缝区的组织发生变化,冲击韧性明显降低。
     对新型低碳贝氏体钢焊接接头焊接缺陷及尺寸概率分布模型进行研究。通过对焊接缺陷在焊缝长度区间上产生的缺陷数符合泊松分布过程、焊接缺陷在一定的焊缝长度内缺陷产生的比率为常数的物理背景,推导建立了焊接缺陷尺寸的概率模型为指数分布。随机抽取ADB610钢焊接接头X射线检测出的焊接缺陷,进行概率分布拟合检验研究,发现:焊接缺陷尺寸以服从指数分布为最佳,从实验数据上验证了焊接缺陷尺寸较好地服从指数分布。通过排列图的绘制与分析,ADB610钢和WDB620钢焊接接头绝大多数焊接缺陷是气孔和夹渣,焊接接头中产生的裂纹缺陷很少。
     提出了基于两步七点递增多项式的成组计算方法(本文简称为成组法)用于疲劳裂纹扩展试验数据的计算,在多试样疲劳裂纹扩展试验过程中各个试样数据记录的裂纹长度不相同时,可以计算相同裂纹长度下各个试样的裂纹扩展速率和同组试样不同存活率下的裂纹扩展速率。
     针对ADB610钢焊接接头母材区、热影响区和焊缝区进行多试样疲劳裂纹扩展试验,并采用成组法计算三区域不同存活率下的裂纹扩展速率和基于Paris公式的裂纹扩展速率表达式,从可靠性角度研究焊接接头疲劳裂纹扩展性能。在常规力学性能和金相试验以及焊接缺陷研究基础上,选用CHE62CFLH焊条,采用手工电弧焊对ADB610钢进行焊接,在对焊接接头三区域取多试样进行了裂纹扩展试验的基础上,采用本文提出的成组法,计算各区域存活率为50%、90%、95%、99%和99.9%下的裂纹扩展速率,分别与应力强度因子范围△K拟合,得到不同存活率下Paris公式。
     对三区域考虑存活率条件下的裂纹扩展速率表达式Paris公式进行分析,发现:在相同存活率下,母材区参数C最大,焊缝区的C最小;而母材区参数m最小,焊缝区m最大。随着存活率的增大,母材区参数C呈递减、m呈递增趋势,热影响区和焊缝区参数C呈递增、m呈递减的趋势;而且母材区C递减速度最小,热影响区C递增速度最快;热影响区m递减速度最快,母材区m递增速度与焊缝区m递减的速度相差不大。
     对考虑存活率下三区域裂纹扩展速率及计算的相对差值进行分析,发现:三区域裂纹扩展速率分散性有明显差异,基本上母材区的最小,焊缝区的最大。在相同存活率下,裂纹扩展前期母材区裂纹扩展明显最快,焊缝区的明显最慢,母材区与热影响区的裂纹扩展差异明显比热影响区与焊缝区的差异大;在裂纹扩展中后期,三个区域的裂纹扩展快慢差异相对较小。随着存活率的增大,基本上母材区与热影响区、母材区与焊缝区裂纹扩展快慢相对差异逐渐递减,在裂纹扩展前期递减明显,裂纹扩展中后期递减相对前期不明显;热影响区与焊缝区裂纹扩展快慢相对差异变化不明显。
     采用统计假设检验方法对三区域对数裂纹扩展速率的数字特征进行分析,发现:三区域的对数裂纹扩展速率方差(即分散性)有显著性差异,基本上母材区的最小,焊缝区的最大。在裂纹扩展速率均值方面:基本上,在裂纹扩展中前期,母材区的显著大于热影响区和焊缝区的,裂纹扩展后期母材区与热影响区和焊缝区的相当,没有显著性差异;对于热影响区与焊缝区,裂纹扩展前期热影响区的显著大于焊缝区的,但裂纹扩展中期后两区域的相当。
     从金相组织角度对ADB610钢焊接接头母材区、热影响区和焊缝区裂纹扩展机理进行研究,发现:在裂纹扩展的中前期,晶界间的阻力提高疲劳裂纹扩展的抗力,因此在裂纹扩展中前期,晶粒细小的焊缝区和有网状组织的热影响区的裂纹扩展慢于晶粒粗大的母材区的,焊缝区的慢于热影响区;在裂纹扩展中后期,晶界间阻力的影响逐渐减小后,三个区域之间的裂纹扩展速率差异相比前期较小。而且相对于热影响区和焊缝区而言,母材区各部位的金相组织差异性较小。
     采用基于ΔK-da/dN一次七点递增多项式的方法(本文简称为单试样法)计算ADB610钢焊接接头考虑存活率的裂纹扩展速率及Paris公式,并采用直观分析和统计对比分析方法,与采用成组法得到的结果进行误差分析,发现相同区域之间采用单试样法计算的结果误差大,得到的焊接接头不同区域之间裂纹扩展快慢的规律也与采用成组法的不相一致。单试样法是在单独地、各个试样之间互不相关地计算出每个试样的Paris公式后,然后取一系列的△K带入每个试样的Paris公式中,计算每个试样在相同△K下的裂纹扩展速率后,再计算同组试样不同存活率下的裂纹扩展速率和Paris公式来研究裂纹扩展的可靠性问题。认为基于一次七点递增多项式的单试样法从物理意义上不符合根据裂纹扩展试验数据的分散性来分析材料固有的分散性问题。
     本文的主要创新点:
     (1)在计算方法方面提出了采用两步七点递增多项式的专用于疲劳裂纹扩展速率可靠性分析的成组方法,并指出应用一次七点递增多项式的单试样法在裂纹扩展可靠性分析中具有较大的计算误差。
     (2)在统计意义上发现了ADB610钢焊接接头三个区域(母材区、热影响区和焊缝区)疲劳裂纹扩展速率数字特征的差异性,并从焊接接头金相组织的机理上解释了这种统计现象。
     (3)在研究成果方面得到了ADB610钢焊接接头不同存活率下基于Paris公式的疲劳裂纹扩展速率表达式,并发现了ADB610钢焊接接头疲劳裂纹扩展速率Paris公式的两个参数(C和m)随存活率改变而变化的规律。
     (4)在数学模型方面从泊松过程出发进行了理论推导,建立了新型低碳贝氏体钢焊接接头焊接缺陷尺寸分布的概率模型,并进一步通过ADB610钢焊接接头x射线检测的缺陷尺寸数据的分布拟合,实验数据验证了这个数学模型的合理性。
It is inevitable that there are various forms of welding defects existing in weld joints. So weld joints have become the weakest part of weld structure. In weld joints, crack is easy to appear, and with the extension of crack, the weld structure will eventually be fractured. So the fatigue and fracture design of weld structure is mainly focused on fatigue fracture of weld joints. The newly developed low-carbon bainite steel is currently known as green steel, which is produced by using microalloyed and controlled rolling and cooling processes. The research on alloy structure steel is more and more focused on raising its reliability and usage. That is to say that in addition to meeting the strength requirements, more attention should be paid to its safety and longevity. Therefore, it is significant to investigate the fatigue crack growth reliability of weld joint for newly developed low-carbon bainite steel. In this thesis, the studies on conventional mechanical properties test, metallographic test, weld defect and fatigue crack growth of newly developed low-carbon bainite steel weld joints were carried out.
     The main works of this thesis are as followed:
     Mechanical properties test and metallographic test were carried out to study the weld properties of the newly developed low-carbon bainite ADB610steel, B610CF steel and WDB620steel by using different welding methods with different welding parameters. Research shows when using SMAW and MAG methods crack is not easy to appear in weld joints of these three steels, and the weld joints have excellent mechanical properties and anti-crack ability. And the welding parameters have little effect on strength, the plasticity of the whole weld joint, and the mechanical properties of heat affected zone (HAZ). However it has obvious effect on the impact toughness and metallographic structure of welded metal. Larger welding parameters will decrease the impact toughness of welded metal, and increase the size of crystalline grain in metallographic structure of welded metal.
     Research on probability distribution model of welding defect size and welding defect of newly developed low-carbon bainite ADB610steel and WDB620steel was carried out. It is concluded that welding defect size obeys exponential distribution based on the occurrence of welding defect meeting Poisson process and welding defect being generated randomly and defect ratio being a constant. Mathematical statistics analysis shows that welding defect size also obeys exponential distribution, lognormal distribution, normal distribution,2-Weibull and3-Weibull distribution, and the exponential distribution is the best one. Through the drawing and analysis of Pareto diagram, it is concluded that most of welding defect type in ADB610steel and WDB620steel is air hole and slag, and the crack is quite less.
     In this thesis, group method which adopts twice fitting of seven data was put forward. It is used to calculate the crack growth rate and Paris formula with different probability for more than one sample, when the record for crack length of each sample is not the same during the crack growth test. By using the group method, the fatigue crack growth rates of each sample in the same crack length can be calculated. And the fatigue crack growth rates and Paris formula with different probability were obtained.
     After ADB610steel was welded using SMAW when chosen CHE62CFLH electrode, the samples for base material(BM), HAZ and welded metal(WM) of weld joints were cut from the welded plate. After machining, the fatigue crack growth tests were carried out. By using group method, the crack growth rates of each sample in the same crack length were calculated. And the crack growth rates and Paris formula of these three zones with50%,90%,95%,99%and99.9%probability were obtained.
     Studies on C and m parameters in Paris formula of BM, HAZ and WM shows that C of BM is the largest, and C of WM is the least, and m of BM is the least, and m of WM is the largest when probability is the same. With the increase of probability, C and m of BM increase, and C and m of HAZ and WM decrease. And the decrease rate for C of BM is the least, and the increase speed for C and decrease speed for m of HAZ is the largest.
     Through visual analysis and calculation for relative difference value among BM, HAZ, and WM, it was concluded that the dispersibility of crack growth rate of these zones was obvious, and dispersibility of BM is the least, and the dispersibility of WM is the largest. When probability being the same, during the early stage the crack growth speed in BM is larger than the ones in HAZ and WM, and the one in HAZ is larger than the one in WM. The relative difference value of crack growth rate between HAZ and WM is less than the ones between BM and HAZ, and between BM and WM. During the middle and last stage of crack growth, the relative difference value of crack growth rate among three zones was obviously less than the one in early stage. With the increase of probability, the relative difference value between BM and HAZ, and between BM and WM decreases gradually in general.
     Statistical research on standard deviation and mean value of lg(da/dN) shows that the standard deviation among three zones has significant difference. In general, the standard deviation of BM is the least, and the one of WM is the largest. For the mean value of lg(da/dN), the one of BM is significant larger than the ones of HAZ and WM during the early and middle stage of crack growth, and the one of HAZ is significant larger than the ones of WM during the early stage of crack growth. It has insignificant difference in the mean value of lg(da/dN) between BM and WM during the last stage of crack growth, and between HAZ and WM during the middle and last stage of crack growth.
     From the aspects of metallographic structure and welding residual stress, the mechanism of crack growth for ADB610steel weld joints was studied. Studies shows that during the early and middle stage of crack growth, crack closure caused by resistance of grain boundaries and welding residual stress can increase the resistance for crack growth. So the speed of crack growth of WM having tiny grain and HAZ having net structure are slower than the one of BM. During the last stage of crack growth, when the resistance for crack growth decrease gradually, the difference among three zones is less. And the difference of metallographic structure among several area of BM is less than the ones among several area of HAZ and WM. So the dispersibility of crack growth of BM is less than the ones of HAZ and WM.
     By using single method which adopts once fitting of seven data combined with AK-da/dN method, the crack growth rate and Paris formula of ADB610steel weld joints with50%,90%,95%,99%and99.9%probability were obtained. The relative deviation by using single method compared to by using group method was studied through visual analysis, calculation for relative difference value and statistical research. It was found that the relative deviation by using single method is larger compared to by using group method. And it is inconformity with the process according the crack growth test data to analyze the dispersibility for crack growth property of material by using single method.
     The main innovations of this thesis are as followed:
     (1) group method which adopts twice fitting of seven data was put forward to calculate the crack growth rate in different probability. And it is pointed out that relative deviation is larger by using single method which adopts once fitting of seven data.
     (2) it was founded that standard deviation and mean value of lg(da/dN) among BM, HAZ and WM of ADB610steel weld joints has remarkable difference, which was explained from metallographic structure statistically.
     (3) for the research results, the crack growth rate and Paris formula of ADB610steel weld joints with50%,90%,95%,99%and99.9%probability were obtained. And with the increase of probability, the change rule of two parameters C and m in Paris formula was founded.
     (4) the probability model of weld defect size for newly developed low-carbon bainite steel was set up from Poisson process. And it was verified by statistical analysis through ADB610steel weld defect data on X-rays negative.
引文
[1]焦馥杰编著.焊接结构分析基础.上海:上海科学技术文献出版社,1991
    [2]田锡唐主编.焊接结构.北京:机械工业出版社,1982
    [3]陈传尧.疲劳与断裂.武汉:华中科技大学出版社,2002
    [4]霍立兴编著.焊接结构的断裂行为及评定.北京:机械工业出版社,2000
    [5]霍立兴著.焊接结构工程强度.北京:机械工业出版社,1995
    [6]W.A.Maxey. Fracture Arrest Behavior of Underwater Pipe Lines. Pipe line industry Houston, Tex. 1987,67(4):32-34,50
    [7]Stephens, R.I.; Johnson, D.L. Fracture Analysis of a Natural Gas Pipeline Perforation Accident. In: Structural Failure, Product Liability and Technical Insurance, Proceedings of the Second International Conference, Inderscience Enterprises Ltd, Geneva, Switz,1987
    [8]周振丰,张文钺合编.焊接冶金与金属焊接性(第2版).北京:机械工业出版社,1988
    [9]徐灏.疲劳强度.北京:高等教育出版社,1988
    [10][日]佐藤邦彦等.焊接接头的强度与设计.北京:机械工业出版社,1983
    []1]邓增杰.工程材料的断裂与疲劳.北京:机械工业出版社,1995
    [12]工泓.材料疲劳裂纹扩展和断裂定量规律的研究:[博士学位论文].西安:西北工业大学,2001
    [13][英]T.R.Gurney. Fatigue of Welded Structure (2nd edition).Cambridge Universitty Press, London, 1979
    [14]张建强,王承权,杜学铭等.焊接接头疲劳裂纹萌生与扩展寿命研究.武汉交通科技大学学报.1996,20(5):599-603
    [15]Zheng, X.L., On some basic problems of fatigue research in engineering, International Journal of Fatigue,2001,23(9):751-766.
    [16]Zheng Xiulin and Hirt,M.A., Fatigue Crack Propagation in Steels. Engineering Fracture Mechanics, 1983,18(5),965-973.
    [17]刘远军.锅炉压力容器寿命估算方法.佳木斯大学学报:自然科学版.2003,21(1):116-117
    [18]钟勇,肖福仁,单以银,等.管线钢疲劳裂纹扩展速率与疲劳寿命关系的研究.金属学报.2005,41(5):523-528
    [19]盂广伟,李锋,周振平.疲劳裂纹扩展寿命的可靠性及灵敏度分析.计算力学学报,2007,24(6):876-879
    [20]黄培彦.疲劳裂纹扩展的概率分析模型.华南理工大学学报(自然科学版),1995,23(5)57-64
    [21]高镇同,熊峻江.疲劳可靠性.北京:北京航空航天大学出版社,2000
    [22]王祖滨,宋青.世纪之交看低合金高强度钢的发展.钢铁,2001,36(9):66-70,78
    [23]常跃峰,谢良法,姚连登等.非调质低焊接裂纹敏感性钢WDB620研究与开发.钢铁,2003,38(11):52-57
    [24]李军WEL-TEN610CF高强钢大型高压球罐焊接施工.化工建设工程,2002,24(5):19-21
    [25]杨莉.焊接线能量对WEL-TEN80A钢焊接接头力学性能的影响.热加工工艺,2005(3):46-47
    [26]Chang Woong-Seong, Yoon Byoung-Hyun, Bang Kook-Soo. Microstructures and Toughness of Simulated HAZ in Quenched and Tempered, Low-Carbon, Ti-B Containing Steels. In:ASM Proceedings of the International Conference:Trends in Welding Research, ASM International, Phoenix, AZ,2002
    [27]周志良,谢明,林文君等WEL-TEN 780A高强钢及焊接接头疲劳裂纹扩展速率.大连铁道学院学报,1999,20(3):79-83
    [28]林文君,周志良.新型高强钢多层焊HAZ的组织计算.焊接学报,2001,22(1):79-82
    [29]林文君.新型高强钢多层焊焊接接头的断裂与疲劳:[硕士学位论文].大连:大连铁道学院,2000
    [30]周志良,谢明,林文君等.热输入对WEL-TEN780A高强钢焊接热影响区断裂性能和组织的影响.焊接,1999(1):8-11
    [31]Matsuda Fukuhisa, Nakagawa Hiroji, Park Hwa Soon, etal. Study on crack free condition of quenching crack type cold cracking by y-slit cracking test. Quarterly Journal of the Japan Welding Society,1989,7(2):59-63
    [32]陈惠,陈奎昌.三峡工程压力钢管蜗壳用钢NK-HITEN610U2的焊接.焊接技术,2004,34(3):35-37
    [33]朱锴年,耿拥华,赵明.三峡引水压力钢管高强钢的焊接及质量控制.焊接技术,2005,35(3):56-58
    [34]陈晓.低焊接裂纹敏感性WDL系列钢的焊接性能、应力腐蚀性能及应用.钢铁,1997,32(8):48-50
    [35]Zandipour Afshin, Khoshakhlagh Alireza, Erfanfar. Effect of titanium content on hydrogen induced cracking of high strength low alloy welds in the H2S containing environment. In:International Corrosion Conference Series, Houston,2011
    [36]Zrilic M., Grabulov V., Burzic, etal.. Static and impact crack properties of a high-strength steel welded joint. International Journal of Pressure Vessels and Piping,2007,84(3):139-150
    [37]Datta R., Mukerjee D., Jha S., etal. Weldability characteristics of shielded metal arc welded high strength quenched and tempered plates. Journal of Materials Engineering and Performance,2002,11(1): 5-10
    [38]Zenitani Satoru, Hayakawa Naoya, Yamamoto Junji, etal. Development of new low transformation-temperature welding consumable to prevent cold cracking in high strength steel welds. Quarterly Journal of the Japan Welding Society,2005,23 (1):95-102
    [39]Sterjovski Z., Dunne D.P., Ambrose S.. Evaluation of cross-weld properties of quenched and tempered pressure vessel steel before and after PWHT. International Journal of Pressure Vessels and Piping,2004,81 (6):465-470
    [40]Bandyopadhyay P.S., Ghosh S.K., Kundu S., etal. volution of microstructure and mechanical properties of thermomechanically processed ultrahigh-strength steel. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2011,42(9):2742-2752
    [41]Smanio Veronique, Sourmail Thomas. Effect of partial martensite transformation on bainite reaction kinetics in different 1%C steels. Diffusion and Defect Data Pt.B:Solid State Phenomena,2011,172-174: 821-826
    [42]Sung Hyo Kyung, Shin Sang Yong, Hwang, Byoungchul, etal. Effects of rolling and cooling conditions on microstructure and tensile and Charpy impact properties of ultra-low-carbon high-strength bainitic steels. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science, 2011,42(7):1827-1835
    [43]Yakubtsov Igor, Zhang Richard, Boyd Doug. Particularities of the formations of bainite and martensite/austenite phase in low carbon low alloy steels during continuous cooling. International Journal of Materials Research,2011,102(5):504-512
    [44]Aglan H. A., Liu Z. Y., Hassan M. F., etal. Mechanical and fracture behavior of bainitic rail steel. Journal of Materials Processing Technology,2004,151(1-3):268-274
    [45]Suikkanen P.P., Komi J.I., Karjalainen L.P. Processing low and ultra-low carbon bainitic steels with excellent property combinations.In:Proceedings of the International Conference on Microalloying for New Steel Processes and Applications, Trans Tech Publications Ltd, Stafa-Zuerich,2005
    [46]Shinmiya T., Ishikawa N., Endo S., etal.Transformation and precipitation behavior in the new conceptual TMCP process utilizing heat treatment on-line process. In:5th International Conference on Processing and Manufacturing of Advanced Materials, Trans Tech Publications Ltd, Stafa-Zuerich,2007
    [47]I.A. Yakubtsov, P. Poruks, J.D. Boyd.Microstructure and mechanical properties of bainitic low carbon high strength plate steels.Materials Science and Engineering:A,2008,480(1-2):109-116
    [48]Kong Junhua, Xie Changsheng. Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel. Materials and Design,2006,27(10):1169-1173
    [49]Ghosh A., Kundu S., Chatterjee S.Structure and properties of thermomechanically-processed HSLA steels for naval applications. Defence Science Journal,2007,57(4):627-636
    [50]Jeong W.C.Relationship between mechanical properties and microstructure in a 1.5% Mn-0.3% Mo ultra-low carbon steel with bake hardening. Materials Letters,2007,61(11-12):2579-2583
    [51]H.J. Jun, J.S. Kang, D.H. Seo, etal. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels[J]. Materials Science and Engineering:A, 2006,422(1-2):157-162
    [52]方鸿生,邓艳康,陈秀云等.空冷贝氏体型少热处理钢.金属热处理,1985, (9):3-8
    [53]于庆波,段贵生,孙莹等.粒状贝氏体组织对低碳钢力学性能的影响.钢铁,2008,43(7)68-71
    [54]戴起勋,火树鹏等.微合金非调质钢的强韧化及优化设计.钢铁研究学报,1993,5(2):89-95
    [55]潘金平,季诚昌,汪宏斌等.新型贝氏体钢的研制.热加工工艺,2008,37(6)18-21
    [56]Weng Yuqing.Microstructure refinement of structural steel in China. ISIJ International,2003,43 (11):1675-1682
    [57]姚连登,王文亮,王培玉.以TPCP工艺开发690MPa级超低碳贝氏体钢.钢铁研究,2003,(2):22
    [58]WDB620钢研制报告,邯郸集团舞阳钢铁有限责任公司,2001
    [59]粟皓维,李春云.国产WDB620高强钢在冶勒水电站中的应用.水电站设计,2006,22(1)59-61,71
    [60]肖可畏,黄伟.ADB610D钢的焊接性研究.水电站机电技术,2005,28(4):36-39
    [61]商长贵,工彦勇.B610CF高强钢焊接.水电工程技术,2009(2):19-26
    [62]Kurosawa Nobutaka, Hirose Akio, Kobayashi Kojiro F. Strengthening of ultra-low carbon steels by laser melting treatment. In:Proceedings of SPIE-The International Society for Optical Engineering, SPIE,2002
    [63]Devletian J.H., Singh D., Wood W.E. Ultra low carbon bainitic weld metal for joining 65 to 100 ksi yield steels. In:Proceedings of the TMS Materials Week'95 Symposium, Minerals, Metals & Materials Soc,1996
    [64]Fiore Susan R.Development of welding electrodes for producing low carbon bainitic ferrite weld deposits. In:Proceedings of the TMS Materials Week'95 Symposium, Minerals, Metals & Materials Soc,1996
    [65]DeLeach Jr., Johnnie J., Franke Gene L., etal. Current welding consumables research in the U.S. Navy. In:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE, ASME, New York,1993
    [66]Kawabata Fumimaru, Amano Kenit, Tanigawa Osamu, etal. High strength X80 grade steel pipe with superior weldability and improved resistance to unstable ductile fracture. In:Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, ASME, New York,1992
    [67]Link L.R., Vassilaros M.G., Brown E.L.Stabilization of coarse grain Heat Affected Zones of Ti treated ULCB steels steels. In:Proceedings of the International Conference on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, Iron & Steel Soc of AIME, Warrendale,1992
    [68]Tian Z.L., Ma C.Y., He C.H., etal. Development of an ultra-low carbon high strength welding wire. In:Materials Science Forum, Trans Tech Publications Ltd,2003
    [69]Kojima Akihiko, Kiyose Akihito, Uemori Ryuji, etal. Super high HAZ toughness technology with fine microstructure imparted by fine particles. Nippon Steel Technical Report,2004(6):2-6
    [70]Shigesato G., Sugiyama M., Aihara S., etal. Effect of Mn Depletion on Intra-granular Ferrite Transformation in Heat Affected Zone of Welding in Low Alloy Steel. Journal of the Iron and Steel Institute of Japan,2001,87(2):93-100
    [71]Bang K.S., Kim W.Y. Estimation and prediction of HAZ softening in thermomechanically controlled-rolled and accelerated-cooled steel. Welding Journal,2002,81(2):174-179
    [72]魏秋明,周鹿宾,康沫狂Si-Mn-Mo系低碳贝氏体钢焊接热影响区的脆化机理.焊接学报,1991,12(2):73-79
    [73]魏秋明,周鹿宾Si-Mn-Mo系低碳贝氏体钢焊接热影响区过热带的组织分析.焊接学报,1989,10(1):30-36
    [74]王学敏,杨善武,贺信莱等.超低碳贝氏体钢焊接热影响区冲击韧性的研究.钢铁研究学报,2000,12(1):47-52
    [75]王学敏,杨善武,贺信莱等.超低碳贝氏体钢HAZ组织、性能及硼分布.北京科技大学学报,1999,21(4):349-352
    [76]谭佃龙,章三红贺信莱等.超低碳贝氏体钢焊接热影响区研究.焊接学报,1996,17(3):139-144
    [77]郭爱民.组织对超低碳贝氏体钢焊接接头强度和韧性的影响.焊接学报,2007,28(10):73-76
    [78]Ma Chengyon, Tian Zhiling, Du Zeyu, etal. Characterization of the microstructure and hardness of the HAZ in a 800 MPa grade RPC steel. China Welding,2005,14(1):48-52
    [79]程巨强.非调质HB400级高强度耐磨钢板焊接接头组织与性能.焊接,2004(5):20-22
    [80]顾先山,许强,江平.球形容器用CF—62钢板力学性能的试验研究.压力容器.1986.4:11-21
    [81]张自军,刘军.公伯峡水电站引水压力钢管WDB620高强钢焊接工艺试验.青海水力发电,2005(1):50-52
    [82]梁加虎,胡井林,刘军.公伯峡水电站压力钢WDB620高强钢焊接裂纹浅析.青海水力发电,2005(4):24-26
    [83]刘诚.WDB620高强钢应用于大型蜗壳的焊接制造工艺研究.云南水力发电,2006,22(5)16-19
    [84]徐天尧.WDB620高强钢的性能及在高桥电站钢管上的应用.云南水力发电,2004,20(3)53-56
    [85]吴芳,赵宏杰.WDB620高强钢岔管焊接工艺探讨.水电站机电技术,2006,29(4):57-59
    [86]姚连登,赵文忠,王文亮等.超低碳贝氏体钢WDB620的焊接性.宽厚板,2002,8(3):11-15
    [87]王彦勇.蒲石河抽水蓄能电站压力钢管B610CF高强钢焊接.水利水电施工,2009(2):75-78,81
    [88]Sneddon I. N.The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc. Roy. Sec. Series A,1946,187:229-260
    [89]Paris P C,Gomez M P,Anderson W P.A rational analytic theory of Fatigue.The Trend in Engineering,1961,13:9-14
    [90]Paris P C, Erdogen F. A critical analysis of crack propagation Laws. Journal of Basic Engineering, Trans ASME, Series D,1963,85(3):528-534
    [91][美]J.E.坎贝尔,W.W.格伯里奇,J.H.安德伍德编,汪一麟,邵本逑 译.断裂力学在选材方面的应用.北京:冶金工业出版社,1992
    [92]Forman.R.G., Kearney V E., Engle.R.M. Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering,1967,89:459-464
    [93]王永廉,吴永瑞.一个适用性广泛的疲劳裂纹扩展速率表达式.航空学报,1987,8(4):191-196
    [94]Newman J C. Crack Opening Stress Equation for Fatigue Crack Growth. International Journal of Fracture,1984,24(3):131-135
    [95]Suzuki H., McEvily A.J..Microstructural effects on fatigue crack growth in low carbon steels. Metallurgical Transactions A,1979(4):474-481
    [96]Zheng X.L., Yan J.H., Zhao K. Crack growth rate and cracking velocity in fatigue for a class of ceramics. Theoretical and Applied Fracture Mechanics,1999,32(1):65-73
    [97]欧阳辉,刘俊洲,苏小燕,等.应力比R对疲劳裂纹扩展速率的影响.固体力学学报,1984,4:578-584
    [98]Kohout J. New function describing fatigue crack growth curves. International Journal of Fatigue, 1999,21(8):813-821
    [99]Kujawski D., A new (AK+Kmax)0.5 driving force parameter for crack growth in aluminum alloys. International Journal of Fatigue,2001,23(8):733-740
    [100]Newmana J A, Piascik R S. Interactions of plasticity and oxide crack closure mechanisms near the fatigue crack growth threshold. International Journal of Fatigue,2004,26:923-927
    [1101]Vasudeven A K, Sadananda K, Louat N. Review of crack closure, fatigue crack threshold and related phenomena.Material Science Engineering,1994,A 188(1-2):1-22
    [102]Meggiolaro M A, de Castro J T P. On the dominant role of crack closure on fatigue crack growth modeling. International Journal of Fatigue,2003,25(9-11):843-854
    [103]Silva F S. Crack closure inadequacy at negative stress ratios. International Journal of Fatigue, 2004,26(3):241-252.
    [104]李向阳,崔维成,张文明.一种改进的疲劳裂纹扩展表达式.船舶力学,2006,10(1):54-61
    [105]孙智强.2024-T42铝合金疲劳裂纹扩展速率研究:[硕士学位论文].中国民用航空学院,2002
    [106]Bergner F., Zouhar G.. New approach to the correlation between the coefficient and the exponent in the power law equation of fatigue crack growth. International Journal of Fatigue,2000,22(2):229-239
    [107]吴欢,赵永庆,曾卫东.疲劳裂纹扩展行为的研究现状及钛合金的疲劳裂纹扩展特征.稀有金属快报,2008(4),23-26
    [108]邱海,李广铎.应力比R对09CuPCrNi钢焊接接头疲劳裂纹扩展门槛值△Kth的影响.大连铁道学院学报,1992,13(3):74-79
    [109]韩连元,朱安国.十字横向承载焊接接头疲劳裂纹扩展寿命估算.机械强度,1995,17(4):43-48
    [110]韩连元,朱安国,查世锦.考虑显微组织影响的焊接接头疲劳裂纹扩展寿命估算.郑州工学院学报,1993,14(1):27-34
    [111]刘艳萍,陈传尧,李建兵等14MnNbq焊接桥梁钢的疲劳裂纹扩展行为研究.工程力学,2008,25(4):209-213
    [112]刘艳萍.焊接桥梁钢疲劳裂纹扩展行为研究:[博士学位论文].华中科技大学,2010
    [113]李国清,祝时召14MnNbq焊接件全范围疲劳裂纹扩展性能研究.桥梁建设,2006,172(4):33-37
    [114]陈家权,高季明,郭燕杰.低碳低合金焊接接头的疲劳裂纹扩展性能.东北大学学报,1994,15(3):309-312
    [115]高季明,陈家权,陈萍等.WFG36Z钢焊接接头疲劳性能的研究.机械设计与制造.1994(4): 2-3
    [116]秦昕,张彦华,熊林玉.GH4169合金焊接接头高温疲劳裂纹扩展性能试验研究.材料工程.2009(7).-36-38
    [117]董仕节,郭家斌.EQ1170KA客车底盘焊接接头疲劳裂纹扩展速率的研究.湖北汽车工业学院学报,1996(2):39-43
    [118]侯振波,史耀武,田志凌.SS400超细晶粒钢及其焊接接头的疲劳裂纹扩展速率.钢铁研究学报,2004,16(2):47-49
    [119]王德生,侯越明.焊缝热影响区裂纹扩展速率研究.试验技术与试验机,2002,42(3):19-20
    [120]由立成,黄振仁12CrlMoV钢管焊缝材料高温疲劳裂纹扩展速率的试验研究.石油化工设备,1995,24(6):11-16
    [121]李广铎,刘忠利,邱海15MnVNq钢焊接接头疲劳裂纹扩展规律的研究.铁道学报,1993,15(4):115-120
    [122]赵久占20CrMo钢摩擦焊接头疲劳裂纹扩展速率的研究.焊接技术,1999(6):4-5
    [123]杨海生,常新龙.LD10铝合金疲劳裂纹扩展速率的研究.航天制造技术,2005(11):12-15
    [124]何波,胡宗武,孙小明等.结构钢焊接接头的疲劳裂纹扩展宏观特性.机械设计与研究,1998(3):35-36
    [125]霍立兴,王立君,张玉凤,等.海洋平台钢的接头强度匹配对焊缝金属疲劳裂纹扩展行为的影响.石油学报.1993,14(3).-102-109
    [126]马杭,赵文军,刘天佐.焊接热影响区及焊缝中疲劳裂纹的扩展.甘肃工业大学学报,1998,24(1):7-11
    [127]阳建红, 陈飞,成曙等.高压气瓶母材、焊缝和热影响区的疲劳裂纹扩展速率实验研究.机械科学与技术,2003,22(1):126-128
    [128]闫德俊.高速列车底架用铝合金焊接接头疲劳裂纹扩展特性:[博士学位论文].哈尔滨:哈尔滨工业大学,2011
    [129]吴毓岑,程绪贤.随机疲劳载荷对焊接接头裂纹扩展的研究.深圳大学学报:理工版.1997,14(1).-43-49
    [130]陶伟华,孙伟明.16MnR钢和TTStE36钢疲劳裂纹扩展速率对比试验研究.机械强度,2000,22(3):243-244
    [131]Shi Y W, Chen B Y, Zhang J X. Effects of welding residual stresses on fatigue crack growth behavior in butt welds of a pipeline steel. Engineering Fracture Mechanics,1990,36(6):893-902
    [132]Radaj D. Heat Effects of Welding:Temperature Field, Residual Stress, Distortion. Berlin: Springer--Verlag,1992
    [133]史耀武,史轩API X52焊管管母及其焊接接头的疲劳裂纹扩展速率.焊管,2003,26(1)7-10
    [134]史耀武,史轩.HG80钢及其焊接接头的疲劳裂纹扩展.机械工程材料,2003,27(8):5-7,43
    [135]蒋云,吕英民.X52管材的疲劳裂纹扩展速率试验研究.油气储运.1999,18(8):52-55
    [136]S.Malarvizhi, K.Raghukandan, N.Viswanathan. Investigations on the influence of post weld heat treatment on fatigue crack growth behaviour of electron beam welded AA2219 alloy. International Jpurnal of Fatigue,2008,30 (9):1543-1555
    [137]Aidy Ali, M.W.Brown, C. A.Rodopoulos. Modelling of crack coalescence in 2024-T351 Al alloy friction stir welded joints.International Journal of Fatigue,2008,30(10-11):2030-2043
    [138]G. Pouget, A.P. Reynolds. Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds. International Journal of Fatigue 2008,30 (3):463-472
    [139]A. Skyttebol, B.L. Josefson, J.W. Ringsberg. Fatigue crack growth in a welded rail under the influence of residual stresses. Engineering Fracture Mechanics,2005,72 (2):271-285
    [140]V.M. Sanchez-Cabrera, C. Rubio-Gonzalez, J.I. Ruiz-Vela, etal. Effect of preheating temperature and filler metal type on the microstructure, fracture toughness and fatigue crack growth of stainless steel welded joints. Materials Science and Engineering A,2007,452-453:235-243
    [141]Andrea Carpinteri, Roberto Brighenti, Hans-Jorg Huth, et al. Fatigue growth of a surface crack in a welded T-joint. International Journal of Fatigue 2005,27(1):59-69
    [142]高艳丽,郭晓光,杨化仁.16Mn钢焊接件疲劳裂纹扩展的微观特征研究.机械设计与制造,2007(7):124-125
    [143]张建强,张富巨,赖荆平.应力状态对16Mn钢焊接接头断裂行为的影响.武汉水利电力大学学报,1998,31(2):51-55
    [144]李小刚,李广铎.16MnR钢焊接接头疲劳裂纹扩展行为及裂纹闭合效应的研究.大连铁道学院学报,1993,14(3):156-161
    [145]周道祥.16MnR钢应变疲劳裂纹扩展速率的实验研究.合肥工业大学学报(自然科学版),2007,30(12):1679-1682
    [146]张宝昌,焦伟,赵碧莲.九江长江大桥焊接钢梁角焊缝裂纹扩展速率的试验研究.焊接,1994(4):5-7
    [147]赵明嗥,杨荣根,刘彤等.高强钢焊接接头的疲劳强度研究.机械强度,2005,27(5):687-690
    [148]高季明,黄雨华,刘蓉栩等.高应力比下HQ-60钢焊缝的疲劳裂纹扩展速率.焊接学报,1995,16(4):190-195
    [149]肖华星.高强度钢焊接结构钢的疲劳裂纹扩展抗力.机械科学与技术,1997,26(6):46-48
    [150]Hou Chien-Yuan. Fatigue analysis of welded joints with the aid of real three-dimensional weld toe geometry. International Journal of Fatigue,2007,29(4):772-785
    [151]王国权,杨化仁.16Mn钢焊接件疲劳裂纹扩展特性研究.机械设计与制造,1993(2):40-42
    [152]陈家权,谢里阳,徐灏15MnVN钢焊接接头疲劳性能的试验研究.机械强度,1998,20(1):74-76,79
    [153]张红霞.A731B镁合金及其TIG焊焊接接头疲劳断裂行为及评定研究:[博士学位论文].太原:太原理工大学,2010
    [154]梁培阳.AZ31B镁合金焊接接头疲劳裂纹扩展机理研究:[硕士学位论文].太原:太原理工大学,2009
    [155]孟广苗,贾安东.焊接结构强度和断裂.北京:机械工业出版杜,1986.
    [156]陈裕,王铁军,程光旭.焊接接头低周被劳裂纹扩展的统计分析与可靠性最弱环模型.应用力学学报,1999,16(3):39-46
    [157]周昌玉,贺小华.焊件疲劳裂纹扩展速率的预测.化工装备技术,1996,17(3):26-28
    [158]周昌玉,黄文龙07MnCrMoVR钢焊件疲劳裂纹扩展速率.南京化工大学学报.1996,18(A01):48-51
    [159]印有胜.金属焊接缺陷及防止.哈尔滨:黑龙江科学技术出版社.1995
    [160]Yamamoto Nono, Murai Ryosuke, Yoshinari Hitoshi. Reliability based defect assessment methodology for welded joints with respected to brittle fracture. Journal of the Society of Materials Science, Japan,2007,56(6):544-54
    [161]Barsoum Z., Jonsson, B.Influence of weld quality on the fatigue strength in seam welds. Engineering Failure Analysis,2011,18(3):971-979
    [162]Kpan M. M.,王月舫.隐蔽缺陷对机车转向架焊接构架疲劳强度的影响.国外铁道车辆,1988,(1):20-23
    [163]王红,赵邦华.焊接缺陷对疲劳强度的影响及缺陷容限标准的建立.铁道车辆,1996,34(3):26-32
    [164]C.B射联先主编.机械零件的承载能力和强度计算.北京:机械工业出版社1984
    [165]万庸宝,孙百世.209型转向架焊接构架的优化设计.铁道车辆,1991,(5):16-19
    [166]周敏惠,於美甫.焊接缺陷与对策.上海:上海科学技术文献出版社,1989
    [167]刘敏.在役焊接管道结构环焊缝失效概率的评定理论及方法研究:[博士学位论文].天津:天津大学,1998
    [168]陶勇寅.X80管线钢焊接工艺及可靠性研究:[博士学位论文].天津:天津大学,2005
    [169]陈国华.无损检测检出概率和缺陷尺寸分布规律的分析与评述.无损检测,1997,19(8): 220-221,225
    [170]Bruckner A.and Munz D. Prediction of Failure Probabilities for Cleavage Fracture from the Scatter of Crack Geometry and of Fracture Toughness Using the Weakest Link Model. Engineering Fracture Mechanics,1983,18(2):359-375
    [171]Bruckner A., Haberer R., Munz D. Study on the Methods mnd Possibilities of Probabilistic Fracture Mechanics Based nn Data for the Steel Containment of a Nuclear Power Plant., In:Application of Fracture Mechanics to Materials and Structures, Proceedings of the International Conference, Martinus Nijhoff Publ, the Hague, Neth 1984
    [172]Buckner A., Munz D.Curve Fitting to Defect Size Distributions for the Calculation of Failure Probabilities. Nuclear Engineering and Design,1982,74 (1):75-78
    [173]Provan J.W. Probabilistic Fracture Mechanics and Reliabiliyt. Netherlands:Martinus Nijhoff Publishers Pordrecht,1987
    [174]Schomburg U., Schmidt T. Probability of Fracture in the Main Cool ant Pipe of a Pressure Water Reactor. NewYork:International Union of The oretical Applied Mechanics Symposium,1984
    [175]Anon. Influence of Crack Growth Kinetics and Inspection on The Integrity of Sensitized BWR Piping Welds. Electric Power Research Institute,1979
    [176]Silk M.G. Flaw size distributions in pressure vessels and flaw detection probabilities in NDT. British Journal of Non-Destructive Testing,1991,33(1):491-494
    [177]钟群鹏,金星,洪廷姬,等.断裂失效的概率分析和评估基础.北京:北京航空航天大学出版社,2000
    [178]高镇同,蒋新桐,熊峻江等.疲劳性能试验设计和数据处理——直升机金属材料疲劳性能可靠性手册.北京:北京航空航天大学出版社,1999.187
    [179]Provan J W,航空航天工业部(AFFD)系统工程办公室译.概率断裂力学和可靠性.北京:航空工业出版社,1989
    [180]钟群鹏编著.断裂失效的概率与评估基础.北京:北京航空航天大学出版社,1998
    [181]刘文埏,郑旻仲,费斌军等著.概率断裂力学与概率损伤容限/耐久性.北京:北京航空航天大学出版社,1999
    [182]蒋鸣晓 朱位秋.疲劳裂纹扩展随机模型研究近期进展.力学进展,1999,29(1):34-41
    [183]Virkler D A, Hillbery B M, Geol P K. Statistical Nature of Fatigue Crack Propagation. Journal of Engineering Materials and Technology, Transactions of the ASME,1979,101(2):148-153
    [184]Ghonem H, Dore S. Experimental study of the constant probability crack growth curves under constant amplitude loading. Engineering Fracture Mechanics,1987,27(1):1-25
    [185]杨晓华,姚卫星.疲劳裂纹随机扩展模型.强度与环境,1995(2):39-50
    [186]Cavallini M. Iacoviello F. Statistical analysis of fatigue crack growth in a 2091 Al-Cu-Li alloy. International Journal of Fatigue,1995,17(2):135-139
    [187]邬华芝,郭海丁,高德平.疲劳破坏寿命的概率统计方法研究综述.强度与环境,2002,29(4):38-44
    [188]Kozin F, Bogdanaff J L. Critical Analysis of Some Probabilistic Models of Fatigue Crack Growth. Engineering Fracture Mechanics,1981,14(1):59-89
    [189]lin Y K. On Statistical Moments of Fatigue Crack Propagation.. Engineering Fracture Mechanics, 1983,18(2):243-256
    [190]刘文才,翁永刚,杜晓晗,等.电解加钛改进活塞合金ZL108的疲劳裂纹扩展性能.轻金属,2006(6):45-49
    [191]魏化中.疲劳裂纹扩展速率试验数据的统计分析.人民长江,1999,30(5):40-42
    [192]段权,程光旭.焊接接头疲劳裂纹随机扩展的概率模型.核动力工程,2002,23(2):72-75
    [193]李臻.一种带可靠性的疲劳裂纹扩展速率表达式.西安石油学院学报:自然科学版,2003,18(6):67-70
    [194]秦听,张彦华,熊林玉.GH4169合金焊接接头高温疲劳裂纹扩展性能试验研究.材料工程,2009(7):36-38
    [195]贾法勇,崔立兴,张玉凤等.疲劳裂纹扩展速率两种数据处理方法的比较.机械强度,200325(5):568-571
    [196]工国丽,魏嘉荃,钟伯明,等.抽油杆材料疲劳裂纹扩展规律的概率研究.大庆石油学院学报,1993,17(1):78-83
    [197]洪延姬,金星.恒幅载荷16MnR钢疲劳裂纹扩展统计特性分析.机械强度,2002,24(3):420-422
    [198]王立君,张玉凤,霍立兴,等.给定寿命下的焊趾疲劳裂纹深度尺寸分析.应用力学学报,1994,11(2):01-105
    [199]周昌玉.疲劳裂纹扩展速率的统计分析及疲劳寿命的概率预测.南京化工大学学报,1999,21(1):58-60
    [200]陈国华.疲劳裂纹随机扩展规律分析方法.南京化工大学学报,1996.18(3):63-66
    [201]任玉珊,李少甫.桥梁钢疲劳断裂性能比较研究和统计分析.钢结构,2003,18(4):29-31,54
    [202]张洪才,陈举华,黄克正.使用疲劳裂纹扩展数据的疲劳裂纹扩展的可靠性分析方法.机械科学与技术,2003,22(3):384-385
    [203]王生楠,倪阳咏,马小骏,等.蒙特卡罗法在概率损伤容限分析中的应用.结构强度研究,2005(B04):37-44
    [204]Yang J N, Nanning S D. Stochastic crack growth analysis methodologies for metallic structures. Engineering Fracture Mechanics,1990,37(5):1105-1124
    [205]Dolinski K. Stochastic Loading and Material Inhomogeneity in Fatigue Crack Propagation.. Engineering Fracture Mechanics,1985,25(5-6):809-818
    [206]Hong Y.J., Xing J., Wang J.B. Statistics analysis of fatigue crack growth for 16MnR steel under constant amplitude loads. I International Journal of Pressure Vessels and Piping,1999,76(6):379-385
    [207]Liao Min, Yang Qingxiong. Probabilistic model for fatigue crack growth. Engineering Fracture Mechanics.1992,43(2):651-655
    [208]张建宇费斌军.疲劳裂纹扩展随机过程相关参数的估计.北京航空航天大学学报,1998,24(3):308-310
    [209]张建宇 赵丽滨,费斌军.疲劳裂纹扩展随机过程的统计分析.航空学报,2000,21(3):258-261
    [210]张建宇 费斌军.以裂纹长度为参量的疲劳裂纹扩展随机模型.北京航空航天大学学报.1996,22(3).-302-305
    [211]王文健,刘启跃.PD3和U71Mn钢轨钢疲劳裂纹扩展速率研究.机械强度,2007,29(6):1026-1029
    [212]张彦华,贾安东,王立君.疲劳裂纹扩展随机模型.航空学报,1994,15(7):806-811
    [213]张彦华,贾安东.焊接接头疲劳裂纹扩展随机模型.天津大学学报,1993(4):61-66
    [214]郭书祥.疲劳裂纹扩展随机模型和动态可靠性机械强度,1998,20(2):120-125
    [215]郭书祥.随机疲劳裂纹扩展及动态可靠性分析.强度与环境,1997,(4):11-17
    [216]张富刚吴剑国赵良才.用裂纹扩展随机模型估算潜艇耐压壳体的疲劳寿命.华东船舶工业学院学报,2004,18(1):13-17
    [217]邹小理,樊蔚勋,刘英卫.疲劳裂纹扩展寿命的随机模型.固体力学学报,1997,18(2):167-172
    [218]熊峻江,高镇同.稳态循环载荷下疲劳/断裂可靠性寿命估算.应用力学学报,1997,14(3):14-18
    [219]熊峻江,刘文挺,高镇同.疲劳裂纹扩展速率试验数据的可靠性分析模型.强度与环境,1997,(4):6-10
    [220]熊峻江.可靠性设计中的疲劳裂纹扩展随机模型.应用力学学报,1998,15(4):82-86
    [221]王志智,聂学州,吴晓峰.疲劳裂纹扩展速率统计分析.航空学报,1993,14(3):A197-A201
    [222]陈伯蠡.金属焊接性基础.北京:机械工业出版社,1982
    [223]Marya M, Edwards G R. Factors controlling the magnesium weld morphology in deep penetration welding by a CO2 laser. Journal of Materials Engineering and Performance,2001,10(4):435-443
    [224]Norman A F, Drazhner V, Prangnell P B. Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al-Cu-Mg-Mn. Materials Science and Engineering A, 1999,259(1):53-64
    [225]Qin G L., Wang X Y, Lin S Y. Correlation between laser-wire distance and Nd:YAG laser +P-GMA hybrid welding heat input parameters. China Welding,2009,19(4):49-53
    [226]Liu L M, Miao Y G, Song G, Liang G L. Effect of heat input on microstructure and properties of welded joint in magnesium alloy AZ31B. China Welding 2004,14(1):88-92
    [227]彭云,许良红,田志凌,等.焊接热输入对高强铝合金接头组织和性能的影响.焊接学报,2008,29(2):17-21
    [228]张建军,房务农,卜华全等.B610CF-L2与JFE-HITEN610U2L钢焊接裂纹敏感性对比研究.压力容器,2008,25(11):15-18
    [229]钢的应变时效敏感性试验方法(夏比冲击法)GB4160-2004,,国家质量技术监督局,2004
    [230]戴树森,费鹤良,王玲玲等.可靠性试验及其统计分析.北京:国防工业出版社,1983
    [231][美]A.H-S.ANG, W.H.TANG (孙芳垂,陈星焘,胡世平译).工程规划与设计中的概率概念(上).北京:冶金工业出版社,1985
    [232][美]K.C.Kapur, L.R.Lamberson. Reliability in Engineering Design. Neyork:John Wiley & Sons, 1977
    [233]陈国华.结构完整性评估.北京:科学出版社,2002
    [234]村田光男,相川东洛.缺陷和漏检缺陷尺寸分布概率的推算.无损检测,1994,16(6):178-179
    [235]茆诗松,王玲玲.可靠性统计.上海:华东师范大学出版社,1984
    [236]傅惠民,高镇同.确定威布尔分布三参数的相关系数法.航空学报,1990,11(7):A323-327
    [237]金属材料疲劳裂纹扩展速率试验方法GB/T6398-2000,,国家质量技术监督局,2000
    [238]刘惟信.机械可靠性设计.北京:清华大学出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700