用户名: 密码: 验证码:
营养液漂浮育苗棉苗根系形态建成及适应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国在棉花育苗上已经发展了营养钵育苗、芦管育苗、无土育苗和穴盘育苗等技术,黄河流域和西北内陆棉区以种子直播为主,长江流域主要种植杂交棉,而采用育苗移栽技术。目前,在棉花育苗移栽上存在出苗、成苗率低,劳动强度大等问题。最近,湖南农业大学棉花研究所在国内外棉花、烟草、蔬菜和花卉等育苗方法的基础上创建了一项新的棉花育苗方法——棉花营养液漂浮育苗技术。该育苗技术通过采用多孔聚乙烯泡沫育苗盘为载体,以混配基质为支撑,以营养液水体为苗床进行漂浮育苗,能使优良棉种的出苗率超过95%,成苗率达到90%以上,与其它育苗方式相比具有省工、省力、节本和增产等优点。自2005年起,棉花营养液漂浮育苗技术已在湖南、湖北、江西和安徽等省进行了大面积的推广应用。本研究以农杂66和湘杂棉8号为试验材料,从形态、细胞学和生理生化水平等方面,对营养液漂浮育苗过程中棉花幼苗根系的形态建成及其适应机制进行详细的研究,以明确棉花幼苗在营养液中漂浮生长发育动态以及对水生环境的适应性过程,为该棉花育苗技术的应用提供坚实的理论基础。
     1营养液漂浮育苗棉苗根系形态和生理生化特性
     (1)在营养液漂浮育苗中,采用催芽播种方式,育苗盘中以棉花种子胚根朝下倾斜播放为最佳方式,根系穿孔率达97.0%,戴壳率仅为3.0%。当播种深度为1.0~2.0 cm时,种子所处的基质层面含水量为68%~85%,不仅有利于根系的形成和生长发育,而且有利于侧根的发生及根系形态建成。
     (2)营养液漂浮育苗棉苗根系分为两种类型:旱生根系和水生根系。旱生根系呈弹簧状,而水生根系白嫩,根尖肥大,柔软并且富有弹性。自棉花幼苗1叶1心至5叶1心,营养液漂浮生长的棉苗根系发达,根系鲜重、干重、根长、根体积和根冠比与营养钵育苗棉苗(对照)的差异均达到显著水平;根系密度增大,一级侧根和二级侧根明显多于对照,从而增加了营养液漂浮生长的棉苗根系总吸收面积和活跃吸收面积。
     (3)营养液漂浮育苗棉苗旱生根系的表皮细胞完整,表皮细胞体积小,排列紧密、整齐紧凑,细胞壁加厚程度大,皮层薄壁细胞形成了部分通气组织。水生根系的表皮细胞排列松散,皮层薄壁细胞体积较大,大部分皮层薄壁细胞融合形成发达的通气组织,有利于氧气的传送。因此,根系通气组织的形成是棉苗适应水生环境主要特征。与营养钵中生长的棉花幼苗相比,营养液中漂浮生长的幼苗根系皮层厚度明显变薄,而根系中柱半径、导管直径均增大,因此增强了根系对水分的运输能力。
     (4)对营养液漂浮育苗棉苗根系的生理生化特性研究发现,营养液漂浮育苗增加了幼苗根系的TTC还原强度。在农杂66幼苗从1叶1心至5叶1心5个生长时期中,根系还原强度分别比对照提高12.4%、11.4%、14.2%、22.9%和10.5%。湘杂棉8号幼苗从1叶1心至5叶1心5个生长时期,棉苗根系还原强度分别比对照提高10.3%、12.4%、14.8%、21.0%和8.8%。营养液漂浮育苗棉苗根系中SOD、POD和CAT保护酶活性均有不同程度地提高,而O_2~-和MDA含量呈下降的变化趋势,表明营养液漂浮育苗能增加棉苗根系保护酶活性,降低膜脂过氧化作用,从而起到保护膜结构的完整性和提高棉苗抗逆性的作用。
     (5)从1叶1心至5叶1心,农杂66和湘杂棉8号两个品种的营养液漂浮育苗棉苗根系中纤维素酶活性均比营养钵中生长的幼苗高,并在2叶1心时期达到最大值。两个品种营养液漂浮育苗棉苗旱生根系的纤维素酶活性分别为0.548μg/(g·min)和0.668μg/(g·min),水生根系的纤维素酶活性分别为0.551μg/(g·min)和0.702μg/(g·min)。另外,自1叶1心至5叶1心,营养液漂浮育苗棉苗根系内源乙烯含量及生成速率明显高于对照。在淹水的条件下,促进了营养液漂浮育苗棉苗根系纤维素酶活性的提高,加速了皮层细胞的融合,而内源乙烯含量的增加促进了根系皮层细胞死亡解体,因而有利于根系通气组织的形成。
     (6)自1叶1心至5叶1心,营养液漂浮育苗棉苗根系的LDH(乳酸脱氢酶)和ADH(乙醇脱氢酶)活性均高于对照。两种不同类型根系中,旱生根系ADH活性高于水生根系;水生根系LDH酶活性高于旱生根系。棉苗根系中ADH、LDH活性的提高,增强有氧呼吸酶活性,并避免乳酸和乙醛大量积累对棉苗的伤害,从而缓解了低氧胁迫对棉苗的伤害,增强了营养液中漂浮生长幼苗耐低氧的能力。
     2营养液漂浮育苗棉苗茎叶生理生化特性
     (1)与营养钵育苗方法相比,在棉花幼苗自1叶1心至5叶1心生长发育过程中,营养液漂浮育苗法提高了幼苗叶片的叶绿素、可溶性蛋白质和可溶性糖含量。
     (2)在棉花幼苗从1叶1心至5叶1心5个生长时期中,营养液漂浮育苗棉苗叶片SOD、POD和CAT保护酶活性均有不同程度地提高,O_2~-和MDA含量呈下降趋势,表明营养液漂浮育苗能增加棉苗叶片保护酶的活性,降低膜脂过氧化作用,从而起到保护膜结构的完整性和提高棉苗抗逆性的作用。
At present,a lot of cotton seedling cultivation technologies such as nutritive bowls nursing seedling(NBNS),nursing cotton seedling with reed-tube,soilless seedling,plug seedling and so on,have been developed in China cotton production. Cotton seed was directly sown into soil in Yellow River Basin and Northwestern region in China,and the seedling transplanting technique is adopted in Yangtze River Basin where hybrid cotton is mainly planted.The seedling transplanting technique is mainly applied with some shortcomings such as low seedling emergence and stand rate and labor-consuming.Based on the present seedling nursery methods of cotton, vegetable,and tobacco in domestic and abroad,a new cotton seedling nursery technology,the floating nursing seedling in nutrient water-bed(FNSNWB) is developed by Cotton Research Institute of Hunan Agricultural University.Cotton seeds are sown in patented mix media carried in a porous polyethylene plate which is floated on nourishing water according to the technology of FNSNWB.The seedling emergence of cotton is above 95%and stand rate above 90%by the new method. Compared with other seedling nursing technologies,the FNSNWB has many advantages with low cost,high efficiency,labor-saving and yield increasing.The FNSNWB has achieved greatly and was applied so far in Hunan,Hubei,Jiangxi and Anhui provinces since 2005.In order to explore the morphological characteristics and the physiological-ecological adaptation mechanisms of roots of cotton seedling nursed with the method of FNSNWB,Nongza 66 and Xiangzamian 8 were used as the materials to study the growth and development of roots and shoots and their adaptation to water environment at morphological,cytological and physiological-biochemical levels in the present paper.
     1 The morphology and physiological-biochemical characteristics of cotton seedling roots of FNSNWB
     (1) It is found that the best sowing pattern was to lay cotton seed radicles slope with underneath,which the root through porous polyethylene hole rate reach 97.0% and the rate of seedling with seed coat was 3.0%.The sowing depth from 1.0 to 2.0 cm,where the moisture of medium around the seedlings was about 68-85%,was beneficial not only to the root system's formation and growth but also to the lateral roots occurrence.
     (2) According to the results of research on the morphological characteristics,the roots of FNSNWB can be divided into two different types.The roots growing in the medium were called drought roots with spring shape,and the roots growing in the nutrient water were called hydrophilic ones.The hydrophilic roots are white and tender with fat,soft and flexible tips.From one leaf to five leaves stages,the fresh and dry weight of root,ratio of root to shoot,root volume,root length and root density of seedlings with FNSNWB were significantly more than that of the seedlings with NBNS.Meanwhile,the lateral roots of FNSNWB grew more,which enhance the total root surface area and active absorption area of root.
     (3) The drought roots have a lot of characteristics with closely arranged and neatly compacted epidermis cell,thickened cell wall and the cortical cell forming some parenchyma.The hydrophilic roots also have a lot of remarkable characteristics with arranged loosely and disorderly epidermis cell,argumented cortical cell.The cortical cells merged into a lot of parenchyma for the transportation of oxygen. Therefore,the formation of parenchyma in root system was the main trait of cotton seedlings that adapted to aquatic environment.The root cortex thickness of cotton seedlings of FNSNWB became thinner,and the root stele radius and root diameter vessel was increased comparing with NBNS,which improved the ability of water trasportion of root system.
     (4) Compared with the roots of seedlings with NBNS,the TTC reductive intensity in the ones of seedlings with FNSNWB increased by 12.4%,11.4%,14.2%, 22.9%and 10.5%from one leaf to five leaves stages using Nongza 66 as experimental material.The TTC reductive intensity increased by 10.3%,12.4%,14.8%,21.0%and 8.8%from one leaf to five leaves stages using the Xiangzamian 8 as experimental material.During the stage of seedling,the activities of superoxide dismutase(SOD), peroxides(POD) and catalase(CAT) of cotton seedlings roots fostered by FNSNWB were higher than those of the NBNS.Meanwhile,the accumulation of O_2~- and MDA content of cotton seedlings roots decreased.Our results showed that the FNSNWB can increase the activities of SOD,POD and CAT,and decrease the function of membrane lipid peroxidation of cotton roots.Therefore,FNSNWB can protect the intactness of membrane structure and increase the stress resistance of cotton seedlings.
     (5) From one leaf to five leaves stages the cellulose activities of cotton seedlings roots of FNSNMB were stronger than that of NBNS.The cellulose activities reach the peak at two leaves stage,when the cellulose activities of the drought roots of the two varieties(Nongza 66 and Xiangzamian 8) reach 0.548μg/(g·min) and 0.668μg/(g·min), respectively,and the cellulose activities of hydrophilic roots reach 0.551μg/(g·min) and 0.702μg/(g·min),respectively.Under the water cultural condition,the cellulose activities of cotton seedlings roots were stimulated and led to accelerate cell fusion. Moreover,compared with NBNS,the ethylene content and its synthesize rate of cotton seedlings roots of FNSNWB from one leaf to five leaves stages were increased, which accelerated the death of the cortical cells and the aerenchyma formation in cortical cell.
     (6) From one leaf to five leaves stages,the activities of LDH and ADH in roots fostered by FNSNWB were stronger that that of NBNS.For the two different types of roots,the ADH activities of the drought roots were higher than that of the hydrophilic roots.The LDH activities of the hydrophilic roots were higher than that of the drought roots.Therefore,FNSNMB can increase LDH and ADH activities in a wide range in roots and enhance the respiration enzyme activities,which avoid the damage of massive accumulations of lactate and acetaldehyde and thypoxia resistance.Thus,the hypoxia resistance of cotton seedlings fostered by FNSNWB was enhanced.
     2 The physiological and biochemical characteristics of cotton seedling shoots of FNSNWB
     (1) The leaf chlorophyll,soluble protein and sugar contents in cotton seedling of FNSNWB from one leaf to five leaves stages were significantly different from that of seedling of NBNS.
     (2) From one leaf to five leaves stages,the activities of SOD,POD and CAT of cotton seedlings leaves fostered by FNSNWB were higher than those of the NBNS. Meanwhile,the accumulation of O_2~- content and MDA content of cotton seedlings leaves decreased.Our results showed that the FNSNWB can increase the activities of SOD,POD and CAT and decrease function of membrane lipid peroxidation of cotton leaves.Therefore,FNSNWB may protect the intactness of membrane structure and increase the stress resistance of cotton seedlings.
引文
[1]张运胜.棉花营养钵移栽若干问题初议[J].作物杂志,1996,(1):13-15.
    [2]车艳波,汤一卒,纪从亮.我国棉花育苗技术进展与展望[J].中国棉花,2002,29(12):2-4.
    [3]刘永棣.棉花纸管营养钵育苗法[J].中国棉花,2002,29(4):39.
    [4]宋家祥.棉花芦管育苗新技术研究:Ⅰ.芦管育苗对棉苗素质的影响[J].江苏农学院学报,1998,19(4):1-6.
    [5]宋家祥,顾世梁,陆建飞.棉花芦管育苗新技术研究:Ⅲ.芦管育苗对棉苗物质积累与分配的影响初报[J].江苏农业研究,1999,20(3):41-45.
    [6]宋家祥,顾世粱,陆建飞.棉花芦管育苗新技术研究:Ⅳ.芦管育苗移栽对棉花产量形成影响研究初报[J].江苏农业研究,2000,21(1):20-24.
    [7]宋家祥,陆建飞,顾世梁.棉花芦管育苗新技术研究:Ⅴ.芦管育苗对棉苗养分吸收与分配的影响初报[J].江苏农业研究,2000,21(3):28-33.
    [8]宋家祥,陆建飞,顾世粱.棉花芦管育苗新技术研究:Ⅵ.棉花芦管育苗移栽技术[J].江苏农业研究,2001,22(1):32-34,62.
    [9]陈德华,张祥,吴云康,等.棉花塑料穴盘轻型育苗和移栽新技术[J].中国棉花,2004,31(10):26-27.
    [10]杨铁钢,谈春松.棉花工厂化育苗技术及其高产高效技术规程[J].河南农业科学,2003,(9):23-24.
    [11]杨铁钢,谈春松.棉花工厂化育苗技术及其高产高效技术规程[J].北京农业,2004,(4):33-34.
    [12]毛树春,韩迎春,王国平,等.棉花无土育苗技术(一)[J].中国棉花,2006,33(2):41.
    [13]毛树春,韩迎春,王国平,等.棉花“两无两化”栽培技术研究新进展[J].中国棉花,2004,31(11):29.
    [14]毛树春,韩迎春,王国平,等.棉花无土育苗技术(二)[J].中国棉花,2006,33(3):21.
    [15]毛树春,韩迎春,王国平,等.棉花无土育苗技术(三)[J].中国棉花,2006,33(4):34-35.
    [16]毛树春,韩迎春,王国平,等.棉花基质系列化育苗技术[J].中国棉花,2007,34(2):38-40.
    [17]毛树春,韩迎春,王国平,等.棉花工厂化育苗和机械化移栽技术[J].中国农业科学,2006,39(11):2395.
    [18]毛树春,韩迎春,王国平,等.棉花基质育苗和裸苗移栽存在问题及克服办法[J].中国棉 花,2007,34(3):32-33.
    [19]毛树春,韩迎春,王国平,等.棉花工厂化育苗和机械化移栽技术研究进展[J].中国棉花,2007,34(1):6-7,9.
    [20]陈金湘,熊格生,刘海荷,等.棉花水浮育苗技术的研究[A].中国棉花学会论文集[C],2006,191-195.
    [21]陈金湘,刘海荷,熊格生,等.棉花水浮育苗技术[J].中国棉花,2006,33(11):24-25.
    [22]陈金湘,刘海荷,熊格生.棉花水浮育苗技术(上)[J].湖南农业,2007,(3):14.
    [23]陈金湘,刘海荷,熊格生.棉花水浮育苗技术(下)[J].湖南农业,2007,(4):13.
    [24]陈金湘,刘海荷,熊格生.棉花水浮育苗的优势及其技术[J].农业科技通讯,2007,(12):115-117.
    [25]朱汉清.棉花不同钵径营养钵育苗的效果[J].中国棉花,1998,25(5):27-28.
    [26]华东农业科学研究所特用作物系.棉花营养钵育苗移栽[J].华尔农业科学通报,1995,(3):17-21.
    [27]中国农业科学院棉花研究所主编.中国棉花栽培学[M].上海科学技术出版社,1984,136-140.
    [28]刁操铨.作物栽培学各论[M].北京:中国农业出版社,1994,241-264.
    [29]刘永平,李洪芹,刘金华.棉花株型增产机理分析[J].河北农业大学学报,2000,29(1):9-11.
    [30]朱烨,倪金柱,端木鑫,等.棉花营养钵育苗移栽的研究与应用[A].国际棉花学术论文集[C].北京:中国农业科技出版社,1993,427-432.
    [31]吴云康,陈德华,戴敬,等.移栽地膜棉花高产栽培新技术[M].南京:江苏科学技术出版社,1999,78-84.
    [32]束林华,沈建辉,纪从亮,等.棉花芦管育苗栽培技术实验初报[J].江苏作物通讯,1999,(2):74-76.
    [33]徐立华,张培通,杨长琴,等.机械化微钵育苗棉花生长发育特性研究初报[J].中国棉花,2007,34(4):11-12.
    [34]纪从亮.江苏省发展优质棉生产的思路与实践[J].江西棉花,2001,23(10):3-9.
    [35]汤一卒,王宏武,韩道辉,等.棉花双杆栽培优质高效技术[J].中国棉花,2004,31(7):5-7.
    [36]张立桢,曹卫星,张思平,等.棉花根系生长和空间分布特征[J].植物生态学报,2005,29(2):266-273.
    [37]胡田田,康绍忠.植物淹水胁迫响应的研究进展[J].福建农林大学学报(自然科学 版),2005,34(1):18-24
    [38]朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响[J].中国农业科学,2001,34(4):429-432.
    [39]川田信一郎.水稻的根系[M].北京:农业出版社,1984.
    [40]张玉屏,李金才,黄义德,等.水分胁迫对水稻根系生长和部分生理特性的影响[J].安徽农业科学,2001,29(1):58-59.
    [41]赵言文,丁艳锋,陈留根,等.水稻旱育秧苗抗旱生理特性研究[J].中国农业科学,2001,34(3):283-291.
    [42]赵言文,陈留根,丁艳峰,等.旱秧苗本田期根系建成特征及其对产量形成作用的研究[J].江苏农业科学,2000,(1):4-7.
    [43]赵言文,陈留根.水稻苗床土壤水分与秧苗根系建成的关系[J].江苏农业学报,1998,14(3):141-144.
    [44]嵇庆才,周明耀,张凤翔,等.水培条件下水肥耦合对水稻根系形态及其活力的影响[J].水利与建筑工程学报,2005,3(3):18-21,24.
    [45]丁艳锋,王强盛,王绍华,等.水稻旱育秧苗与湿润秧苗根系生理活性的比较研究[J].南京农业大学学报,2001,24(3):1-5.
    [46]杨长明,杨林章,欧阳竹.不同养分与水分管理对水稻植株根系形态及其活力的影响[J].中国生态农业学报,2004,12(4):82-85.
    [47]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报,2006,22(5):197-200.
    [48]管建慧,刘克礼,郭新宇.玉米根系构型的研究进展[J].玉米科学,2006,14(6):162-166.
    [49]李朝周,梁恕坤,焦健,等.逆境胁迫下多胺与乙烯代谢的相关性及其对细胞膜保护系统影响的研究进展[J].甘肃农业大学学报,2002,37(3):265-271.
    [50]Kawase M.Effect of ethylcne on aerenchyma development[J].Zm Bot,1981,68:651-658.
    [51]Bennicelli R P,Stepeniewski W,Zakrzhevsky D A.The effect of soil aeration on superoxide dismtase activity,malondiad hyde level,pigment content and stomatal diffusive resistance in maize seedlings[J].Environ Ejp Bot,1998,39(3):203-211.
    [52]陈晓远,高志红,罗远培,等.不同土壤水分冬小麦根冠关系及其对叶片水分利用效率的影响[J].中国生态农业学报,2005,13(2):134-137.
    [53]董合忠,李维江,唐薇,等.干旱和淹水对棉苗某些生理特性的影响[J].西北植物学 报,2003,23(10):1695-1699.
    [54]张亚洁,苏祖芳,杨连新,等.旱育中籼稻根系形态性状及其与产量构成因素关系的研究[J].扬州大学学报(农业与生命科学版),2002,23(1):59-62.
    [55]Schwarz M.Soiiless culture management[A].In:Advanced Series in Agricultural Sciences [C].Berlin:Springer,1989,5-6.
    [56]吴伟明,宋祥甫,邹国燕.利用水上栽培方法研究水稻根系[J].中国水稻科学,2000,14(3):189-192.
    [57]李奕林,张亚丽,贺巍,等.淹水条件下籼稻与粳稻苗期生长及氮素吸收同化差异比较[J].南京农业大学学报,2007,3(3):78-82.
    [58]高洪波,章铁军,吴晓蕾,等.淹水胁迫下γ-氨基丁酸对黄瓜幼苗生长和生理代谢的影响[J].植物生理与分子生物学学报,2004,30(6):651-659.
    [59]高洪波,郭世荣,章铁军,等.营养液低氧胁迫对网纹甜瓜幼苗生长和生理代谢影响[J].沈阳农业大学学报,2006.37(3):368-372.
    [60]陆晓民,朱世东.水分胁迫下几种药剂对早熟毛豆抗逆性的影响[J].草业学报,2006,15(3):86-92.
    [61]马月花,郭世荣.不同黄瓜品种根际低氧逆境耐性鉴定[J].江苏农业科学,2004,(5):68-70.
    [62]Smucker A J M,Aiken R M.Dynamic root response to water deficits[J].Soil Science,1992,154(4):281-289.
    [63]冯广龙,罗远培,刘建利,等.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系[J].干旱地区农业研究,1997,15(2):73-79.
    [64]张永清,苗果园.高粱生育后期根系对渍水胁迫的生物学响应[J].山西农业大学学报(自然科学版),2005,25(3):193-195.
    [65]Watkin E L J,Thomson C J,Greenway H.Root development and aerenchyma formation in two wheat cultivars and one triticale cultivar grown in stagnant agar and aerated nutrient solution[J].Ann Bot,1998,81:349-354.
    [66]Schussler E E,Longstreth D J.Aerenchyma develops by cell lysis in roots and cell separations in leaf petioles in Sagittaria lancif olia[J].Am Bot,1996,83:1266-1271.
    [67]Yaklich R W,Vigil E L,Wergin W P.Morphological and fine structural characteristics of aerenchyma cells in soybean seed coats[J].Seed Sci,1995,23:321-330.
    [68]Das D K,Jat R L.Influence of three soil water regimes on root porosity and growth of four rice varieties[J].Agron,1977,69:197-210.
    [69]封克,司江英,汪晓丽,等.不同水分条件下水稻根解剖结构的比较分析[J].植物营养与肥料学报,2006,12(3):346-351.
    [70]王文泉.郑永战.梅鸿献,等.不同耐渍基因型芝麻在厌氧胁迫下根系的生理与结构变化[J].植物遗传资源学报,2003,4(3):214-219.
    [71]魏和平,利容千,王建波,等.受淹玉米根内通气组织形成时纤维素酶活性超微细胞化学定位[J].作物学报,2006,32(1):84-87.
    [72]Armstrong W.Aeration in higher plants[J].Advances in Botanical Research,1979,7:225-332.
    [73]Drew M C,Fourcy A.Radial movement of cations across aerenchy matous roots of Zea mays measured by electron probe X-ray analysis[J].Exp Bot,1986,37:823-831.
    [74]Drew M C,Jackson M B,Giffard S C.Inhibition by silver ions of gas space formation adventitious roots ofZea mays L.subjected to exogenous ethylene or to oxygen deficiency[J].Planta,1981,153:217-224.
    [75]Laan H J.Bacterial cycling of mineral that affect plant growth in water logged soils[J].Aquatic Bot,1990,38:109-125.
    [76]Huang B,Johnson J W,Nesmith D S,et al.Growth,physiological and anatomical response of two wheat genotypes to water logging and nutrient supply[J].Exp Bot,1994,45:193-202.
    [77]陈鹭真,林鹏,王文卿.红树植物淹水胁迫响应研究进展[J].生态学报,2006,26(2):586-593.
    [78]曲桂敏,李兴国.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报,1999,26(3):147-151.
    [79]彭伟秀,王文全,梁海永,等.水分胁迫对甘草营养器官解剖构造的影响[J].河北农业大学学报,2003,26(3):46-48.
    [80]林鉴钊,陶春娘,何礼健,等.新式旱育秧苗根的解剖学观察[J].广西农业大学学报,1998,17(1):15-19.
    [81]董志强,舒文华,张保明,等.棉花不同土层侧根还原力差异初探[J].作物学报,2005,31(2):219-223.
    [82]孙艳军,郭世荣.根际低氧逆境对网纹甜瓜幼苗生长及根系呼吸代谢途径的影响[J].植物生态学报,2006,30(1):112-117.
    [83]胡晓辉,李娟,郭世荣,等.钙对根际低氧胁迫下黄瓜幼苗根系呼吸代谢的影响[J].园艺学报,2006,33(5):1113-1116.
    [84]Miskako K,ShinizuS.Chlorophyll metabolism in higher plant.Ⅵ.Involement of peroxidase in chlorophyll degradation[J].Plant Cell Physiol,1985,26:291-301.
    [85]Dong D F,Luo B S,Chen D Q.Comparative studies on some physiological characteristics of wheat waterlogged at seedling and booting stages[J].Journal of Guangxi Agrlcultured and Biological Science,1998,17(4):351-355.
    [86]刘德立.超氧物歧化酶与植物抗逆性的关系[J].华中师范大学学报,1993,27(1):83-85.
    [87]Cakmak l,Horst W J.Effect of aluminium on lipid peroxidation,superoxide dismutase,catalase,and peroxidase activities in root tips of soybean.Physiologia Plantarum,1991,83:463-468.
    [88]Scandalios J G.Oxygen stress and superoxide dismutases[J].Plant Physiol,1993,101:7-12.
    [89]Seel W E,et al.The combined effects desiccation and irradiance on mosses from xeric and hydric habitats[J].Exp Bot,1992,43:103.
    [90]Jimenez C,et al.Differential reactivity of a-carotene isomers from dunaliella bardawl toward oxygen radicals[J].Plant Physiol,1993,101:385.
    [91]王宝山.生物自由基与生物膜的伤害[J].植物生理学通讯,1988,(2):12-16.
    [92]王玉国,冯文新,白桦.稀土对水分胁迫下棉花幼苗膜脂过氧化作用的影响[J].棉花学报,2000,12(1):32-33.
    [93]程海林,张源根,阎继耀,等.干旱和复水对棉花叶片几种生理指标的影响[J].中国棉花,1996,23(2):17-18.
    [94]刘文革,阎志红,王川,等.西瓜幼苗抗氧化系统对淹水胁迫的响应[J].果树学报,2006,23(6):860-864.
    [95]葛体达,隋方功,白莉萍,等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学,2005,38(5):922-928.
    [96]葛体达,隋方功,白莉萍,等.长期水分胁迫对夏玉米根叶保护酶活性及膜脂过氧化作用的影响[J].干旱地区农业研究,2005,23(3):18-23,32.
    [97]张玉琼,张鹤英.淹水逆境下玉米若干生理生化特性的变化[J].安徽农业大学学报(自然科学版),1998,25(4):378-381.
    [98]周瑞莲,王刚.水分胁迫下豌豆保护酶活力变化及脯氨酸积累在其抗早中的作用[J].草业学报,1997,6(4):39-43.
    [99]Kened H,Derknaap E,Cho H T.Deep water rice:a model plant to study stem elongation[J].Plant Physiol,1998,118:1105-1110.
    [100]辛国荣,董美玲.水分胁迫下植物乙烯,脯氨酸积累气孔反应的研究现状[J].草业科学,1997,14(1):62-66.
    [101]李玉昌,李阳生,李绍清.淹涝胁迫对水稻生长发育危害与耐淹性机理研究的进展[J].中国水稻科学,1998,12(增刊):70-76.
    [102]喻方圆,徐锡增,Robert D G.水分和热胁迫对5种苗木生长及生物量的影响[J].南京林业大学学报(自然科学版),2003,27(4):10-14.
    [103]韩锦峰,岳彩鹏,刘华山,等.烤烟生长发育的低温诱导研究:Ⅰ、苗期低温诱导对烤烟顶芽发育及激素含量的影响[J].中国烟草学报,2002,8(1):25-29.
    [104]Andrews D L,Drew M C.The response of maize seedling of different ages to hypoxicnd anoxic stress[J].Plant Physiol,1994,101:407-414.
    [105]Armstrong W.Root aeration in the wet land condition[J].Plant life in Anaerobic Environments.Michigan:Ann Arbor,1978,7:269-296.
    [106]Crawford R M.Oxygen deprivation stress in a changing environment[J].Exp Bot,1996,47(29):145-159.
    [107]张祖新,姜华武,魏中一,等.淹水胁迫下不同耐渍性玉米自交系根系中的酶学研究[J].湖北农业科学,2003,(3):24-27.
    [108]李少昆,王崇桃,汪朝阳,等.北疆高产棉花根系构型与动态建成的研究[J].棉花学报,2000,12(2):67-72.
    [109]李少昆,王崇桃.栽培措施对北疆棉花根系及地上部生长影响[J].中国棉花,2000,27(5):12-13.
    [110]Barber S A,Mackey A D.Root growth and potassium uptake by two corn genetypes in the field[J].Fertilizer Research,1986,10(3):213-217.
    [111]熊格生,陈金湘,唐海明.棉花漂浮育苗法对棉苗生物学特性及移栽棉产量构成因素的影响[J].中国农业科技导报,2007,9(5):105-109.
    [112]陈银.彩叶草的扦插生长量与基质含水量、基质中空气的关系探讨[J].北方园艺,2007,(3):154-155.
    [113]汪天,李娟,郭世荣,等.外源多胺对低氧胁迫下黄瓜幼苗根系生长及H~+-ATP酶和H~+-焦磷酸酶活性的影响[J].植物生理与分子生物学学报,2005,31(6):637-642.
    [114]吴建国,刘淑芝.湿害对冬小麦生长发育及生理影响的研究[J].河南农业大学学 报,1992,26(1):31-37.
    [115]朱云集,马元喜.土壤水分逆境对冬小麦根系某些形态解剖结构及超微结构的影响[J].河南农业大学学报,1994,28(3):224-229.
    [116]马元喜,段增强.冬小麦根系各级分枝形成及其解剖结构研究[J].作物学报,2002,28(3):327-332.
    [117]曾淑华,刘飞虎,覃鹏,等.淹水对烟草生理指标的影响[J].烟草科技,2004,(1):36-38.
    [118]卢布,周殿玺.稻抗旱机理的研究——旱稻水稻根解剖结构比较[J].作物杂志,1994,(2):39-40.
    [119]熊格生,陈金湘,唐海明,等.不同处理方法对棉花漂浮育苗棉苗生长发育的影响[J].湖南农业科学,2007,(6):88-90.
    [120]王正才,李颖,陈金湘.多效唑浸种对棉花营养液漂浮育苗幼苗生长的影响[J].作物研究,2007,(2):124-125.
    [121]郑国锠.生物显微技术[M].北京:人民教育出版社,1979.
    [122]Richards R A,Passioura J B.Seminal root morphology and water use of wheat Ⅰ.nvironmental effects[J].Crop Science,1981,(2):249-252.
    [123]杨晓青,张岁岐,刘小芳,等.不同抗旱型冬小麦品种根系水力导度与解剖结构的关系[J].西北农林科技大学学报(自然科学版),2007,35(8):160-164.
    [124]欧巧明,倪建福,马瑞君.春小麦根系木质部导管与其抗旱性的关系[J].麦类作物学报,2005,25(3):27-31.
    [125]Jackson M B,Armstrong W.Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submerg[J].Plant Bio1,1999,1:274-287.
    [126]Laanbroek H J.Bacterial cycling of mineral that affect plant growth in water logged soils[J].Aquatic Bot,1990,38:109-125.
    [127]Jackson M B,Drew M C,Giffard S C.Effects of applying ethylene to the root system of Zea mays on growth and nutrient concertration in relation to flooding tolerance[J].Physiol Plant,1981,52:23-29.
    [128]Kawase M.Anatomical and morphological adaption of plants to waterlogging[J].Hort Science,1981,16:8-12.
    [129]任红旭,陈雄,王亚馥.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化[J].植物生态学报,2001,25(6):709-715.
    [130]王高鸿,王辉,黄久常.乙烯利诱导玉米根皮层通气组织的形成与程序化细胞死亡的关系[J].华中师范大学学报(自然科学版),2000,34(4):463-467.
    [131]Xu Y L.Engery consumption in adaptability to saltstress of plant[J].Plant Physiol Commun,1990,26(6):70-73.
    [132]王文泉,张福锁.高等植物厌氧适应的生理及分子机制[J].植物生理学通讯,2001,37(1):63-70.
    [133]胡晓辉,郭世荣,李璟,等.低氧胁迫对黄瓜幼苗根系无氧呼吸酶和抗氧化酶活性的影响[J].武汉植物学研究,2005,23(4):337-341.
    [134]李合生。植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,119-120,125-128,164-169,184-185,258-261.
    [135]艾天成,李方敏,周治安,等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报,2000,20(1):6-8.
    [136]Read S M,Northcote D H.Minimization of variation in the response to different protein of the coomassic blue gdye dinding:assay for protein[J].Anal Biochem,1981,116:53-64.
    [137]邹琦.植物生理学[M].北京:中国农业出版社,2000,54-55,58-59.
    [138]郝建军,康宗利,于洋.植物生理生化实验指导[M].北京:化学工业出版社,2007,100-101,177-179.
    [139]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994,374-375.
    [140]Mustroph A,Albrecht G.Tolerance of crop plants to oxygen deficiency stress:fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia[J].Physiol Plant,2003,17:508-520.
    [141]高杨,方正,陈段芬,等.水培条件下不同品种新几内亚凤仙根系活力及酶活性的比较[J].河北农业大学学报,2003,26(增刊):134-136.
    [142]谭勇,梁宗锁,董娟娥,等.水分胁迫对不同产地板蓝根幼苗抗氧化物酶活性和根系活力的影响[J].华北农学报,2006,21(5):20-23.
    [143]支金虎,伍维模,危常洲,等.水分与氮素对膜下滴灌棉花叶片叶绿素含量时空分布的影响[J].西北农业学报,2007,16(1):7-12.
    [144]孙静文,陈温福,曾雅琴,等.氮素水平对粳稻根系形态及其活力的影响[J].沈阳农业大学学报,2003,34(5):344-346.
    [145]Zhang X Z.Physiological Research Method[M].Beijing:Agricultural Publishing Press,1992,91-95.
    [146]张美云,钱吉,郑师章.渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化[J].复旦学报(自然科学版),2001,40(5):558-561.
    [147]李予霞,崔百明,董新平,等.水分胁迫下葡萄叶片脯氨酸和可溶性总糖积累与叶龄的关系[J].果树学报,2004,21(2):170-172.
    [148]Prasad T K.Mechanisms of chilling-induced oxidative stress injury and tolerance:Change in antioxidant system,oxidation of proteins and lipids and protease activities[J].Plant,1996,10:1017-1026.
    [149]宫长荣,汪耀富.淹水胁迫对烤烟生理生化特性的影响[J].中国农业科学,1995,28(增刊):126-130.
    [150]王义强,谷文众,姚水攀,等.淹水胁迫下银杏主要生化指标的变化[J].中南林学院学报,2005,25(3):78-85。
    [151]罗广华,王爱国,郭俊颜.一些外源因素对大豆幼苗朝氧化物岐化酶活性的影响[J].植物生理学报,1990,16(3):239-244.
    [152]朱杭申,黄丕生.土壤水分胁迫与水稻活性氧代谢[J].南京农业大学学报,1994,17(2):7-11.
    [153]蒋明义.渗透胁迫诱导水稻幼苗的氧化伤害[J].作物学报,1994,20(4):733-738.
    [154]李璟,胡晓辉,郭世荣,等.D-精氨酸对低氧胁迫下黄瓜幼苗根系多胺含量和无氧呼吸代谢的影响[J].应用生态学报,2007,18(2):376-382.
    [155]刘晓忠,汪宗立.缺氧条件诱导玉米根系乙醇脱氢酶活性的调节作用[J].植物学通报,1996,13(1):48-49.
    [156]胡晓辉,郭世荣,王素平,等.低氧胁迫下钙调素拮抗剂对黄瓜幼苗根系多胺含量和呼吸代谢的影响[J].应用与环境生物学报,2007,13(4):475-480.
    [157]Buchanan B B,Gruissem W,Jones R L.Translated by Qu L J,Gu H Y,Bai S N,Zhao J D,Chen Z L.Biochemistry &MolecularBiology of Plants[M].Beijing:Science Press,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700