用户名: 密码: 验证码:
水稻氮素利用的基因型差异与生理机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻田施用氮肥是水稻增产的重要农业措施。但过量氮肥的施用在降低肥料吸收利用效率的同时也带来了一些生态环境的氮污染问题。已有的研究表明,充分挖掘和利用作物自身的氮营养遗传潜力,通过品种的筛选和遗传改良是提高水稻对氮素吸收利用的有效途径。为此,本研究在大田试验条件下,以长江中下游单季稻区有代表性的104份粳稻基因型为研究对象,研究各基因型水稻的产量、氮素利用效率等方面的特点及差异并对其进行评价和分类。随后从长江中下游地区应用较广的迟熟中粳和早熟晚粳两类生育类型中选择氮素利用高效型与低效型的代表性品种,系统研究水稻的物质生产与积累,氮的积累与分配动态,根系形态、生理生化特性,叶片光合特性等生理生态方面的差异,为氮高效品种的遗传改良和水稻生产中的高效氮素管理提供科学依据。主要研究结果如下:
     1、供试的104份水稻基因型按生育期的长短分为早熟中粳、中熟中粳、迟熟中粳、早熟晚粳和中熟晚粳5种生育类型。
     在亩施氮素0Kg、10Kg(低氮)、15Kg(中氮)、20Kg(高氮)4种水平条件下,随施氮水平的提高,各基因型水稻的平均籽粒产量呈增加趋势,而基因型间的变异呈减小趋势,变异系数分别从0氮条件下的20.34下降至高氮条件下的16.87。4种氮素水平下,各生育类型水稻的籽粒产量均呈现中熟晚粳>早熟晚粳>迟熟中粳>中熟中粳>早熟中粳的趋势,即随着生育期的推迟,水稻籽粒产量显著提高。早熟中粳、中熟中粳、迟熟中粳、早熟晚粳生育类型中水稻的籽粒产量随着施氮水平的增加而增加,而中熟晚粳生育类型中水稻的籽粒产量呈现中氮>高氮>低氮>0氮趋势。与此同时,相同氮素条件下,同一生育类型中的各水稻基因型产量也存在显著的差异。
     各基因型水稻的平均氮素利用效率呈现中氮>高氮>低氮的趋势。随氮素水平的提高,基因型间的变异有减小的趋势,变异系数分别从低氮条件下的28.75下降至高氮条件下的21.28。低氮条件下,各生育类型水稻的氮素利用效率呈现中熟晚粳>早熟晚粳>迟熟中粳>中熟中粳>早熟中粳的趋势;中肥条件下呈现早熟晚粳>中熟晚粳>迟熟中粳>中熟中粳>早熟中粳的趋势;而高肥条件下呈现早熟晚粳>迟熟中粳>中熟晚粳>中熟中粳>早熟中粳的趋势。即除中熟晚粳水稻生育类型外,其它生育类型水稻的氮素利用效率有随生育期延长而增加的趋势。相同氮素条件下,同一生育类型中的各水稻基因型氮素利用效率也存在显著的差异。
     以3种氮肥条件下的最高籽粒产量及其对应的氮素利用效率为指标,对各基因型水稻的产量和氮素利用效率进行综合的评价和分类。可将各生育类型中的不同水稻基因型相应划分出高产高效型、高产中效型、高产低效型、中产高效型、中产中效型、中产低效型、低产高效型、低产中效型和低产低效型9种类型(实际分类结果中由于基因型数量的局限,个别类型有缺失的可能)。依据上述评价和分类方法,可将供试的早熟中粳分为6个类型、中熟中粳分为9个类型、迟熟中粳分为7个类型、早熟晚粳分为8个类型、中熟晚粳分为5个类型。在上述评价和分类基础上,筛选出迟熟中粳中氮高效基因型9优418、武育粳3号、扬粳9538,氮低效基因型农垦57、武农早、郑稻5号;早熟晚粳中氮高效基因型86优8号、武粳15、泗优422,氮低效基因型镇稻196、香粳20-18、T1-56,作为深入揭示氮利用效率差异的研究对象。
     2、氮素利用高效型和低效型具有代表性的12个水稻基因型的物质生产与积累特性的差异及其与氮利用效率的相关性分析表明,不同氮效率类型水稻群体茎蘖数没有鲜明的特征差异,但氮高效基因型水稻的茎蘖成穗率极显著高于氮低效类型。与氮低效基因型相比,氮高效基因型水稻在有效分蘖临界叶龄期前具有适宜的叶面积、光合势和群体生长速率,物质积累具一定优势,但其占全生育期总积累量的比例较少。有效分蘖临界叶龄至拔节期,氮高效基因型水稻无效分蘖发生少,叶面积指数、光合势、群体生长速率低,物质积累也不具优势。拔节以后,氮高效基因型具有良好的群体质量,叶面积增长较快,群体光合势和生长速率加大,物质积累优势较为明显。
     3、有效分蘖临界叶龄期((N-n))、抽穗期和成熟期,氮高效基因型水稻的氮素积累量显著高于氮低效基因型,而拔节期差异不明显。除(N-n)至拔节阶段氮高效基因型水稻氮素的阶段性积累量显著低于低效基因型外,其余各阶段均显著高于氮低效基因型。移栽至(N-n)和(N-n)至拔节阶段,氮高效基因型水稻的氮素阶段性积累比例显著低于低效基因型,而拔节至抽穗和抽穗至成熟阶段则表现出相反的趋势。一生中,氮高效基因型水稻抽穗前的氮素转移量和转移率显著大于低效基因型,而其抽穗前氮对籽粒的贡献率却低于氮低效类型。与氮低效基因型相比,氮高效基因型水稻具有在(N-n)前氮素适度积累;(N-n)后至抽穗阶段,氮素的有效积累强而无效积累弱的特点。因此至抽穗期,氮高效基因型水稻的氮素积累量大于低效基因型,且具有较高的氮素转移量和转移率。但由于氮高效基因型水稻在抽穗以后仍具有较强的氮素积累能力,因此其抽穗前氮对籽粒的贡献率相对低于氮低效基因型。
     4、(N-n)、拔节期、抽穗期和成熟期,氮高效基因型水稻的根干重、根系体积、总吸收表面积、活跃吸收表面积和活跃吸收表面积比均显著大于氮低效基因型稻。(N-n)和拔节期,氮高效基因型水稻的根冠比显著大于低效基因型,而抽穗和成熟期则表现相反趋势。(N-n)、拔节期和抽穗期,氮高效基因型水稻的根系α-NA氧化量显著大于低效基因型;而成熟期,氮高效杂交水稻的根系α-NA氧化量略低于个别氮低效水稻基因。与氮低效基因型相比,氮高效基因型水稻在其一生中具有良好的根系形态和保持较强的根系活力;同时,其生长过程中地下部与地上部的合理比例及协调生长也是促进氮素高效吸收利用的重要原因。
     5、齐穗后的不同生育时期,氮高效基因型的水稻的叶绿素含量、叶片净光合速率、气孔导度和蒸腾速率均要显著大于低效基因型。齐穗后,氮高效基因型水稻剑叶的光合功能期、叶绿素荧光动力学参数值(Fv/Fm、ΦPSⅡ、qP、qN)均要显著高于氮低效基因型。与氮低效基因型相比,氮高效基因型水稻生育后期具有较好的光合特性,较长的光合功能时期;同时,其PSⅡ反应中心更加稳定,具有更大的光能转化为电化学能的潜力,非光化学猝灭对光合机构也有更好的保护作用。
     6、齐穗后的不同生育时期,各基因型水稻剑叶的SOD、CAT活性均随叶片的衰老而下降,但氮高效基因型水稻的下降速率要小于低效基因型;剑叶中POD活性随叶片的衰老呈先上升后持续下降,在叶片衰老后期又略有上升趋势;而剑叶中MDA含量随叶片的衰老逐渐增加。齐穗后各时期,氮高效基因型水稻剑叶中的SOD、CAT、POD活性均显著高于低效基因型;而MDA含量要显著低于低效基因型。与氮低效基因型相比,氮高效基因型水稻剑叶后期衰老进程缓慢,叶片的功能期相对较长。
N fertilization is yet the most important agricultural method for increasing grain yield while over use of N not only decrease the efficiency of nitrogen absorption and utilization but also causes so many environment problems. Researches have been done revealed that N use efficiency is varied in different rice genotypes. And it is an ideal approach for increasing N use efficiency to explore the potential and screen N efficient rice genotypes. In this research, a field experiment with 104 rice genotypes prevailing in the region of Yangtse rive as materials was carried out to study the characteristics and differences of rice genotypes’grain yield and N use efficiencies. Evaluation and classification of N use efficiencies were also done. Twelve rice genotypes (6 N-efficient and 6 N-low-efficient) belonging to late-maturing medium Japonica and early-maturing late Japonica were selected. The characteristics of rice matter production and accumulation, dynamics of N absorption and utilization, characteristics of root morphology and physiology, different indexes of leaf photosynthesis and etc were studied to provide feasible regulation approaches to increase N use efficiency in rice production. And the main results were as follows.
     1.Based on the whole growth duration and Dingying’s Standard of classification of rice growth type, 104 rice genotypes in this research were classified into 5 growth types including early-maturing medium Japonica(EMMJ), medium-maturing medium Japonica(MMMJ), late-maturing medium Japonica(LMMJ), early-maturing late Japonica(EMLJ), medium-maturing late Japonica(MMLJ).
     All rice genotypes were grown under 4 N levels including 0 kg·666.7m-2, 10 kg·666.7m-2 (low), 15 kg·666.7m-2 (medium), 20 kg·666.7m-2 (high). With the increase of N level, the average grain yield of all rice genotypes increased while the differences among rice genotypes decreased with the coefficient of variation dropping to 16.87 at the N level of high from 20.34 at the N level of 0. Rice grain yield increased with the delaying of growth duration under 4 N levels which presented a tendency of MMLJ >EMLJ >LMMJ >MMMJ >EMMJ. With the increase of N level, grain yield of all growth types were increased except for MMLJ which presented a tendency of medium > high >low >0. And the genotypic differences of grain yields belonging to the same growth type were also existed under each N level.
     The average N use efficiency of all rice genotypes presented a tendency of medium > high >low. With the increase of N level, the differences among rice genotypes decreased with the coefficient of variation dropping to 21.28 at the N level of high from 28.75 at the N level of low. N use efficiency of all growth types increased with the delaying of growth duration under 3 N levels except for MMLJ and it presented a tendency of MMLJ >EMLJ >LMMJ >MMMJ >EMMJ at low N, a tendency of EMLJ > MMLJ >LMMJ >MMMJ >EMMJ at medium N and a tendency of EMLJ > LMMJ > MMLJ >MMMJ >EMMJ at high N. And the genotypic differences of N use efficiencies belonging to the same growth type were also existed under each N level.
     The maximal yield and its corresponding N use efficiency under 3 N levels were adopted as indexes to estimate and classify rice genotypes. Genotypes of each growth type can be classified into 9 types including high yield and high efficiency type, high yield and medium efficiency type, high yield and low efficiency type, medium yield and high efficiency type, medium yield and medium efficiency type, medium yield and low efficiency type, low yield and high efficiency type, low yield and medium efficiency type and low yield and low efficiency type through the statistical method of cluster analysis. Actually, several types could be absent in practice because of the quantity limit of genotypes. According to the method above, genotypes of EMMJ can be classified into 6 types, MMMJ 9 types, LMMJ 7 types, EMLJ 8 types, MMLJ 5 types. N efficient genotypes including 9 you 418, Wuyujing 3, Yangjing 9538 belonging to LMMJ and 86 you 8, Wujing 15, Siyou 422 belonging to EMLJ together with N inefficient genotypes including Nongken 57, Wunongzao, Zhendao 5 belonging to LMMJ and Zhengdao 196, Xiangjing 20-18, T1-56 belonging to EMLJ were selected for further experiment.
     2.12 rice genotypes selected above were adopted as materials to investigate the differences of rice matter production and accumulation. The characteristics of rice matter production and accumulation and their correlations with N use efficiency revealed that, although there was no significant difference in number of tillers per unit ground area between two rice types with different N use efficiencies, the percentage of productive tillers of N efficient genotypes were obviously higher than those of N inefficient genotypes. Compared with N inefficient genotypes, N efficient genotypes had proper leaf area index (LAI), photosynthetic potential (PP), crop growth rate (CGR), and a superior matter accumulation before the critical stage of productive tillering, although their ratios of dry matter to the total accumulation in whole life were relatively low. During the period from the critical stage of productive tillering to heading, the unproductive tillers of N efficient genotypes were fewer than those of N inefficient genotypes. Therefore their LAI, PP, CGR and dry matter accumulation were lower than those of N inefficient genotypes. After the stage of heading, the leaf area, photosynthetic potential of N efficient genotypes increased fast and their crop growth rates accelerated resulting from better population quality. N efficient genotypes presented obvious superiority in dry matter accumulation.
     3. At the three growth stages including critical stage of productive tillering, heading, and maturing, the amount of N accumulation of N efficient rice genotypes was obviously higher than that of N inefficient genotypes while at the stage of elongating, there was no significant difference in N accumulation between the two rice genotypes. The amount of N accumulation of N efficient genotypes was significantly higher than that of N inefficient genotypes during all growth phases except the phase from critical stage of productive tillering to elongating, at which the amount of N accumulation of N efficient genotypes was significantly lower than that of N inefficient genotypes. The percentage in N accumulation of N efficient genotypes was higher than that of N inefficient genotypes during the growth phases from elongating to heading and from heading to maturing while it showed the reversed trend during the phases from transplanting to critical stage of productive tillering and from the critical stage of productive tillering to elongating. The amount and the efficiency of N translocation before heading were obviously higher in N efficient genotypes than those in N inefficient genotypes. On the contrary, the contribution rate of transferred N to the total N of rice grain at maturity was significantly lower in N efficient genotypes than that in N inefficient genotypes. For N efficient genotypes, the amount of N accumulation before the critical stage of productive tillering was modest. And during the phase from the critical stage of productive tillering to heading, their N accumulation of usefulness were large while the N accumulation of uselessness were few. Therefore, till the stage of rice heading, the amount of N accumulation of N efficient genotypes was obviously higher than that of N inefficient genotypes. And the amount and the efficiency of N translocation before heading of N efficient genotypes were also higher than that of N inefficient genotypes. Because of the strong ability of N accumulation of N efficient genotypes after heading, their contribution rate of transferred N to the total N of rice grain at maturity was relatively lower than that of N inefficient genotypes before heading.
     4. At four growth stages including the critical stage of productive tillering, elongating, heading, and maturing, the indexes of root morphology and physiology including the root dry weight, root volume, total absorbing surface area of root, active absorbing surface area of root, ratio of active absorbing surface area to total absorbing surface area of N efficient genotypes were obviously higher than those of N inefficient genotypes. At the critical stage of productive tillering and the stage of elongating, the ratios of root to shoot of N efficient genotypes were significantly higher than those of N inefficient genotypes while the trend was contrary at the stages of heading and maturing. Before the stage of maturing, the root oxidation ability ofα-NA of N efficient genotypes were superior to those of N inefficiency genotypes while at the stage of maturing the root oxidation ability ofα-NA of N efficient hybrid rice was appreciably lower than that in some N efficient genotypes. For N efficient genotypes, their root morphology is good and root activity is vigorous which ensures the efficient absorption and utilization of N all their life. Meanwhile the proper ratio of root to shoot and the harmonious growth of root and shoot can also improve the efficiency of N absorption and utilization.
     5. At five stages after full heading, the photosynthetic indexes of flag leaf including chlorophyll content, net photosynthetic rate, stomata conductance, intercellular carbon dioxide concentration and transpiration rate of N efficient genotypes were obviously higher than those of N inefficient rice type. During the period of grain filling, the photosynthetic function duration and chlorophyll fluorescence parameters of N efficient genotypes were superior to N in efficient genotypes. For N efficient genotypes, they had better characteristic of photosynthesis and longer photosynthetic function duration. Meanwhile steady PSⅡof N efficient genotypes were favorable for effective photochemical quantum yield and strong light protection.
     6. After the stage of full heading, the enzyme activities of SOD and CAT decreased with the senescence of leaf and the decrease rate of N efficient genotypes were lower than those of N inefficient genotypes. With the senescence of rice leaf, the enzyme activities of POD increased first and then decreased, while it increase appreciably again at the late period of leaf senescence. MDA content of rice leaf increased continuously after the stage of full heading. At five stages after full heading, the enzyme activities of SOD, CAT and POD of N efficient genotypes were significantly higher than those of N inefficient genotypes while the reversed trend was shown in MDA contents of rice leaf. For N efficient genotypes, the process of flag leaf senescence was slow and their leaf photosynthetic function durations were longer than those ofN inefficient genotypes.
引文
[1]刘建祥,杨肖娥,吴良欢等.水稻籽粒钾和蛋白质含量的基因型差异.中国水稻科学,2002,16(1):83-85
    [2]Lafitte H R.Research opportunities to improve nutrient use efficiency in rice cropping system. Field Crop Research.1998,56:223-236
    [3]袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-6
    [4]杨从党,周能,袁平荣.高产水稻品种的物质生长特性.西南农业学报,1996,11:89-94
    [5]郭光荣.以生物产量和收获指数作为水稻育种指标的初步研究.湖南农业科学,1990(5):20-22
    [6]FAO. Statistical databases,Food and Agriculture Organizatio (FAO) of the United Nations. 2001:http://www.fao.org
    [7]李世娟,李建民.氮肥损失研究进展.农业环境保护,2001,20(5):377-379
    [8]崔玉亭,程序,韩纯儒等.苏南太湖流域水稻氮肥利用率及氮肥淋失量研究.中国农业大学学报,1998,3(5):51-54
    [9]张亚丽,沈其荣,段英华.不同氮素营养对水稻的生理效应.南京农业大学学报,2004,27(2):130-135
    [10]Vlek PLG, Byrnes BH. The efficiency and loss of fertilizer N in lowland rice. Fertilize Reseach,2000,9:131-147
    [11]董桂春.不同氮素籽粒生产效率类型籼稻品种的基本特点.扬州大学博士学位论文,2007
    [12]朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985,17(1):2-9.
    [13]李庆逵.中国农业持续发展中的肥料问题.江西:江西科学技术出版社.1997
    [14]李荣刚.高产农田氮素肥效与调控途径—以江苏太湖地区稻麦两熟农区为例推及全省.北京:中国农业大学博士学位论文.2000.
    [15]Yoshida S. Fundamentals of rice crop science. International Rice Research Institute, LosBaos, Philippines.1981:1-269.
    [16]Cassman K G, Gines G C, Dizon M A,etal. Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen. Field Crop Research. 1996,47:1-12.
    [17]朱希刚.我国粮食生产率增长分析.农业经济问题,1998,56:1-6
    [18]李荣刚,翟云忠.江苏省武进市高产水稻田氮素渗漏损失研究.农村生态环境,2000,16(3):19-22
    [19]罗志祥,苏泽胜,施伏芝等.氮肥高效利用水稻育种的现状与展望.中国农学通报,2003,19(1):65-67
    [20]李生秀,艾绍英,何华.连续淹水培养条件下土壤氮素的矿化过程.西北农业大学学报,1999,27(1):1-5
    [21]张维理,田哲旭.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87
    [22]ICPP (Intergovernmental Panel on Climate Change). Climate Change 1995. The Science of Climate Change. New York: Cambridge University Press,1996:1-572
    [23]丁文斌,杨建平,郭亚仙等.水稻优质高产氮肥精确施肥技术的研究与应用.上海农业科技,2002,35(9):1095-1103
    [24]彭少兵,黄见良,钟旭华等.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103
    [25]黄见良,邹应斌,彭少兵等.水稻对氮素的吸收、分配及其在组织中的挥发损失.植物营养与肥料学报,2004,10(6):579-583
    [26]薛正平,杨卫星.精准农业水稻最佳氮肥施用量研究.中国生态农业学报,2003,(4):53-55
    [27]韩龙植,曹桂兰.中国稻种资源收集、保存和更新现转.植物遗传资源学报,2005,6(3):359-364
    [28]方萍,陶勤南,吴平.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析.植物营养与肥料学报,2001,7(2):159-165
    [29]江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径.中国水稻科学,2002,16(3):261-264
    [30]江立庚,戴廷波,韦善清等.南方水稻氮素吸收与利用效率的基因型差异及评价.植物生态学报,2003,27(4):466-471
    [31]纪雄辉,郑圣先,鲁艳红等.控释氮肥对洞庭湖区双季稻田表面水氮素动态及其径流损失的影响.应用生态学报,2007,18(7):1432-1440
    [32]郑圣先,聂军,戴平安等.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响.植物营养与肥料学报,2006,12(2):188-194
    [33]符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究.植物营养与肥料学报, 2001,7(2):145-152
    [34]徐星凯,周礼恺, OswMd Van Cieemput.脲酶抑制剂/硝化抑制剂对植稻土壤中尿素N行为的影响.生态学报,2001,21(10):1682-1686
    [35]蒋永忠,刘海琴,张永春.高效尿素提高氮利用的机理.江苏农业学报,2000,16(3):180-184
    [36]樊小林,廖新.控释肥料与平衡施肥何提高肥料利用率.植物营养与肥料学报,1998,4(3)219-223
    [37]郑圣先,聂军,熊金英等.控释肥料提高氮素利用率的作用及其对水稻效应的研究.植物营养与肥料学报,2001,7(1):11-16
    [38]何绪生,李素霞.控释肥料的研究进展.植物营养与肥料学报,1998,4(2):97-106
    [39]凌启鸿,张洪程,戴其根等.水稻精确定量施氮研究.中国农业科学,2005.38(12):2457-2467
    [40]黄育民,李义珍,郑景生等.杂交稻高产群体的氮磷钾素积累运转.福建省农科院学报,1997,12(3):1-6
    [41]朱兆良.稻田土壤中氮素的转化与氮肥的合理施用,化学通报,1994,9:15-17,22
    [42]苏祖芳,周培南,许乃霞等.密肥条件对水稻氮素吸收和产量形成的影响.中国水稻科学,2001,15(4)281-286
    [43]刘立军,徐伟,吴长付等.实地氮肥管理下的水稻生长发育和养分吸收特性.中国水稻科学,2007,21(2):167-173
    [44]苏正义,韩晓日,李春全.氮肥深施对作物产量合氮肥利用率的影响.沈阳农业大学学报,1997,28(4):292-296
    [45]朱兆良,文启孝.中国土壤中的氮素.江苏科学技术出版社,1992.233-245
    [46]朱兆良.稻田节氮的水肥综合管理技术的研究.土壤,1991,23:241-245
    [47]潘团胜.测土配方施肥技术在水稻上的应用效果试验.广西农学报,2006,21(5):17-18
    [48]Wang G H, Dobermann A,Witt C, etal. Performance of site-specific nutrient management for irrigated rice in southeast China. Agronomy Journal,2001,93:869-878
    [49]Alison J E, Jeffrey A B, William R H, etal. Rice yielg and nitrogen utilization efficiency under alternative straw management practices. Agronomy Journal,2000,93:1096-1103
    [50]Balihar V C, Fageria N K, He Z L. Nutrient utilization efficiency of crops. Comm Soil Sci Plant Anal,2001,32:921-950
    [51]Cassman K G, Peng S, Olk D C, etal. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Research,1998, 56:7-39
    [52]黄见良,李合松,李建辉等.不同杂交水稻吸氮特性与物质生产的关系.核农学报,1998,12(2):89-94
    [53]单玉华,王余龙,山本由德等.不同类型水稻在氮素吸收及利用上的差异.扬州大学学报(自然科学版)2001,4(3):42-46
    [54]单玉华,王余龙,山本由德等.常规籼稻与杂交籼稻氮素利用效率的差异.江苏农业研究,2000,22(1): 12-15
    [55]Broadbent F.E.,De Datta S.K.,Laureles E V. Measurement of nitrogen utilization efficiency in rice genotypes. Agron J.,1987,79:786-791
    [56]De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Fertilizer Res. 1986,(9):171-186
    [57]De Datta, Broadbent F.E. Methodology for evaluating nitrogen utilization efficiency by rice genotypes. Agron.J,1988,80:793-798
    [58]De Datta S.K, Broadbent F.E. Nitrogen-use efficiency of 24 rice genotypes on an N-deficient soil. Field Crops Res.,1990,23:81-92
    [59]De Datta S.K., Broadbent F.E. Development changes related to nitrogen-use efficiency in rice. Field Crops Res.,1993,34:47-56
    [60]张云桥,吴荣生,蒋宁.水稻的氮素利用效率与品种类型的关系.植物生理学通讯,1989,(2):45-47
    [61]Inthapanya P., Sihavong P., Chanhphengsay M., et al. Genotypic performance under fertilized and non-fertilized conditions in rainfed lowland rice. Field Crops Res.,2000,65:1-14
    [62]Inthapanya P., Sipaseuth, Sihavong P., et al. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. Field Crops Res.,2000,65:57-68
    [63]叶全宝.不同水稻基因型对氮肥反应的差异及氮素利用效率的研究.扬州:扬州大学博士学位论文.2005.
    [64]Ladha J K, Kirk G J D, Bennett J, etal. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Research,1998,56:41-71
    [65]史正军,樊小林.作物对氮素养分高效吸收的根系形态学研究进展.广西农业生物科学, 2003,22(3):225-229
    [66]樊小林,史正军,吴平.水肥(氮)对水稻根构型参数的影响及其基因型差异.西北农林科技大学学报,2002,30(2):1-5
    [67]程建峰,戴廷波,荆奇等.不同水稻基因型的根系形态生理特性与高效氮素吸收.土壤学报, 2007, 44 (2): 266-272
    [68]Wang X B, Wu P, Hu B, etal. Effects of nitrate on the growth of lateral root and nitrogen absortion in rice. Acta Botanica Sinica,2002,44(6):678-683
    [69]薛德榕.水稻生理生态译丛.北京:农业出版社,1995
    [70]Wade G, shoji S, Mae T. The relationship nitrogen absorption and growth and yield of rice plants. Japanese Agric Res,1986,20:135-145
    [71]Bufole A J, Bollich P K, Kovar J L. Rice vailety diferences in dry matter an d nitrogen accumulation as related to plant stature and maturity group. J. Plant Nutr.,1997,20(9):1203-1224
    [72]Bufole A J, Bollieh P K, Kovar J L. Rice plant growthand nitrogen accumulation from a midseason application. J. Plant Nutr.,1997,20(9):1191-1201
    [73]Claassen N, Barber S A. A method for characterizing the relation between nutrient concentration and fkux into roots of intact plants. Plant Physiology,1974,54:564-568
    [74]杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制的研究.土壤学报,1992,29(1):73-79
    [75]Cacoo G, Ferrari G ang Saccomani M. Pattern of sulfate up take during root elongations in maize: its correlation with productivity. Plant Physiology,1980,48:375-378
    [76]Growly P H. N atural selection and the Michaelis constant. J theor Biol., 1975,50:471-475
    [77]熊明彪,何建平,宋光煜.根系分泌物对根际微生物生态分布的影响.土壤通报,2002,33(2):145-148
    [78]Host Marschner. Mineral nutrition if higher plants. Harcourt Brace & Company ublishers, Academic Press,1997,549-559
    [79]林文,李义珍,郑景生等.施氮量及施肥法对水稻根系形态发育和地上部生长的影响.福建稻麦科技,1999,17(3):21-24
    [80]Kundu D K, Ladha J K. Effect of growing rice on nitrogen mineralization in flooded soil/ Soil Sci. Soc. Am J,1997,61:839-845
    [81]Granato T C, Raper C D. Proliferation of maize roots in response to localized supply of nitrate. J Exp. Bot,1989,40:263-275
    [82]李振高,万焕楣.水稻根际反硝化细菌生态分布的研究.土壤学报,1987,24(2):120-125
    [83]Kirk G J D, Solivas J L. On the extent to which root properties and transport through the soil limit nitrogen uptake by lowland rice. European Journal of Soil Science,1997,48:613-621
    [84]Fischer K S. Toward increasing nutrient-use efficiency in rice cropping systems: the next generation of technology. Field Crops Reaearch,1998,56:1-6
    [85]Tirol-Padre A, Ladha J K, Singh U, etal. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and Utilization efficiency. Field Crop Research,1996,46:127-143
    [86]Host Marschner. Mineral nutrition if higher plants. Harcourt Brace & Company ublishers, Academic Press,1997,239-242
    [87]林振武,郑朝峰,吴少伯.硝酸还原酶活力与作物耐肥性研究Ⅱ.籼、粳稻对硝态氮的吸收何同化.作物学报,1986,12(1):9-14
    [88]汤玉玮,林振武,陈敬祥.硝酸还原酶活力与作物耐肥性及其在生化育种上应用的探讨.中国农业科学,1985,(6):39-42
    [89]范晓荣,沈其荣,崔国贤.旱作水稻内源激素变化及其与水稻形态与生理特性的关系.土壤学报,2002,39(2):206-213
    [90]Refouvelet E, Daguin F. Polymorphic glutamate dehydrogenenase in lilac vitro plants as revealed by combined preparative IEF and native PAGE: Effect of ammonium deprivation darkness andatmospheric CO2 enrichment upon isomerization. Plant Physiol, 1999,105:199-206
    [91]Qusji G O, Madu W C. Ammonium ion salvage by glutamate dehyrogenase during defence response in maize. Phyto-chemistry, 1996,42:1491-1498
    [92]Melo-oliveira R, Oliveira I C, Coruzzi G M. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Natl. Acad. Sci. USA,1996,93:4718-4723
    [93]Cren M, Hirel B. Glutamine synthetase in higher plant: Regulation og gene and protein axpression from the organ to the cell. Plant Cell Physiol.,1999,40:1187-1193
    [94]Fernando D, Francisco J C. Chataterization of the endoproteases appearing during wheat grain filling. Plant Physiol.,1996,112:1211-1217
    [95]Makino A, Mae T, Ohira K. Relation between nitrogen and 1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant Cell Physiol,1984,25:429-437
    [96]Makino A, Mae T, Ohira K.. Photosynthesis and ribalose 1,5-bisphosphate carboxylase in rice leaves. Plant Physiol, 1983,73:1002-1007
    [97]Siclair T R Horie T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci,1989,29:90-98
    [98]Wu P, Tao QN. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regimes. J Plant Nutrition,1995,18(3):487-500
    [99]张云桥,吴荣生,蒋宁.水稻的氮肥利用效率与品种类型的关系.植物生理学通讯,l989,(2):45-47
    [100]Mae T, Makino A, O hira K. Changes in the amount of ribulose bisphosphate carborylase synthesized and degraded during the life span of rice leaf (Oryza Sativa L.). Plant Cell Physiol, 1983,24(6):1079-1086
    [101]Mae T, O hira K. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza Sativa L.). Plant Cell Physiol, 1981,22(6):1067-1074
    [102]Makino A, Mae T, O hira K.Changes in photosynthetic capacity in rice leaves from emergence through senescence. Analysisi from ribalose 1,5-bisphosphate carboxylase and leaf conductance. Plant Cell Physiol. 1984,25:511-521
    [1]范仲学,王璞,梁振兴.谷类作物的氮肥利用效率及其提高途径研究进展.山东农业科学,2001,4:47-50
    [2]杨新泉,冯锋,宋长青等.主要农田生态系统氮素行为与氮肥高效利用研究.植物营养与肥料学报,2003,9(3):373-376
    [3]Alison J. Eagle, Jeffrey A. Bird, William R. Horwath etal. Rice yield and nitrogen utilization efficiency under alternative straw management practices. Agronomy Journal,2000,92:1096–1103
    [4]纪雄辉,郑圣先,鲁艳红等.控释氮肥对洞庭湖区双季稻田表面水氮素动态及其径流损失的影响.应用生态学报, 2007,18(7):1432-1440
    [5]郑圣先,聂军,戴平安等.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响.植物营养与肥料学报, 2006,12(2):188-194
    [6]符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究.植物营养与肥料学报, 2001,7(2):145-152
    [7]徐星凯,周礼恺, OswMd Van Cieemput.脲酶抑制剂/硝化抑制剂对植稻土壤中尿素N行为的影响.生态学报, 2001,21(10):1682-1686
    [8]王光火,张奇春,黄昌勇.提高水稻氮肥利用率、控制氮肥污染的新途径—SSNM.浙江大学学报(农业与生命科学版) 2003,29(1):67~70
    [9]M. Murshedul Alam, J. K. Ladha, S. Rahman Khan, et al. Leaf color chart for managing nitrogen fertilizer in lowland rice in Bangladesh. Agronomy Journal. 2005, 97:949-959
    [10]Woon-Ho Yang, Shaobing Peng, Jianliang Huang, et al. Using leaf color charts to estimate leaf nitrogen status of rice. Agronomy Journal, 2003,95:212-217
    [11]刘立军,徐伟,徐国伟等.水稻实地氮肥管理技术的节氮效果及其机理.江苏农业学报, 2005,21(3):155-161
    [12]C. Hu, S. A. Saseendran, T. R. Green,et al. Evaluating nitrogen and water management in a double-cropping system using RZWQM. Vadose Zone Journal, 2006,5:493-505
    [13]张云桥,吴荣生,蒋宁.水稻的氮肥利用效率与品种类型的关系.植物生理学通讯,l989,(2):45-47
    [14]Broadbent F E, Datta S K, Laureles E V. Measurement of nitrogen utilization eficiency in rice genotypes. Agronomy Journal,1987, 79:786-791
    [15]De Datta S K, Broadbent F E. Nitrogen-use eficiency of 24 rice genotypes on N-deficient soil. Field Crops Research,l990,23:81-92
    [16]Stanley Omar PB. Samonte, Lloyd T. Wilson, James C. Medley, et al. Nitrogen utilization efficiency: relationships with grain yield, grain Protein, and yield-related traits in Rice.Agronomy Journal, 2006,98:168-176
    [17]Y. H. Duan, Y.L. Zhang, L.T.Ye, et al. Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Annals of Botany, 2007,99:1153-1160
    [18]Xueqiang Zhao, Shouping Zhao, Weiming Shi. Enhancement of NH4+ uptake by NO3- in relation to expression of nitrate-induced genes in rice (Oryza sativa) roots, Pedosphere, 2008,18(1):86-91
    [19]Akihiro Ohsumi, Akihiro Hamasaki, Hiroshi Nakagawa, et al. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (oryza sativa) based on leaf nitrogen content and stomatal conductance. Annals of Botany. 2007,99:265-273
    [20]Shelden M C, Doog B, De Bruxelles Gl, et al. Arabidopsis ammonium transporters, AtAMT1;2 and AtAMT l;2 have different biochemical properties and functional roles. Plant Soil, 2001,231:l5l- 160.
    [21]Tomoyuki Yamaya, Mitsuhiro Obara, Hiroyuki Nakajima, et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. Journal of Experimental Botany, 2002,53(370):917-925
    [22]Sonoda Y, Ikeda A , Saiki S, et al. Distinct expression and function of three ammonium transporter genes (OSAMT1;1-1;3) in rice. Plant Cell Physiology, 2003,44(7):726-734
    [23]Kumar A, Silim S N , Okamoto M, et al . Differential expression of three members of the AMT1 gene family encoding putative high affinity NH4+ transporters in roots of Oryza sativa subspecies Indica. Plant , Cell and Environment , 2003,26:907-914
    [24]Ishiyama K, Inoue E , Tabuchi M, et al. Biochemical background and compartmentalized function of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol, 2004,45:1640-1647
    [25]赵首萍,赵学强,施卫明.不同铵硝比例对水稻铵吸收代谢基因表达的影响.土壤学报, 2006,43(3):436-442
    [26]谢正荣,郭秧全,沈小妹等.太湖农区水稻不同类型品种及播期对生育期与实产的影响初探太湖农区水稻不同类型品种及播期对生育期与实产的影响初探.上海农业学报,2000,16(1):28-32
    [27]U. Singha, J.K. Ladhab, E.G. Castilloa,etal. Genotypic variation in nitrogen use effciency in medium- and long-duration rice. Field Crops Research,1998,58:35-53
    [28]Ligeng Jiang, Tingbo Dai, Dong Jiang, etalCharacterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Research,2004,88: 239–250
    [29]张耀鸿,张亚丽,黄启为等.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较.植物营养与肥料学报.2006,12(5):616-621
    [30]Q. Jing, B.A.M. Boumanb, H. Hengsdijk,etal. Exploring options to combine high yields with highnitrogen use efficiencies in irrigated rice in China. European Journal Agronomy,2007,26: 166–177
    [31]董明辉,张洪程,戴其根等.不同粳稻品种氮素吸收利用特点的研究.扬州大学学报(农业与生命科学版), 2002,23(4):43-47
    [32]Singh U.,Patil S.K.,Das R.O.,et al. Nitrogen dynamics and crop growth on an alfisol and a vertisol under rainfed lowland rice-based cropping system. Field Crops Research,1999,61(3):237-252
    [33]Inthapanya P.,Sihavong P.,Chanhphengsay M.,et al. Genotypic performance under fertilized and non-fertilized conditions in rainfed lowland rice. Field Crops Res.,2000,65:1-14
    [34]Inthapanya P.,Sipaseuth, Sihavong P.,et al. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. Field Crops Res.,2000,65:57-68
    [35]邢宏燕,王二明,李斌等.有效利用土壤磷的小麦种质筛选方法研究.作物学报, 2000,26(6): 839-844
    [1]刘立军,王志琴,桑大志,杨建昌.氮肥运筹对水稻产量及稻米品质的影响.扬州大学学报·农业与生命科学版, 2002, 23 (3): 46-50
    [2]叶全宝,张洪程,魏海燕,张瑛,汪本福,夏科,霍中洋,戴其根,许轲.不同土壤及氮肥条件下水稻氮利用效率和增产效应研究.作物学报, 2005,31 (11): 1422-1428
    [3]Ohnishi M, Horie T, Homma K,Supapoj N, Takano H, Yamamoto S. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand. Field Crop Res,1999, 64:109-120
    [4]Haefele S M, Wopereis M C S, Donovan C, Maubuisson J. Improving the productivity and profitability of irrigated rice production in Mauritania. Eur J Agron, 2001,14:181-196
    [5]江立庚,曹卫星,甘秀芹,韦善清,徐建云,董登峰,陈念平,陆福勇,秦华.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响.中国农业科学, 2004,37(4): 490-496
    [6]董明辉,张洪程,戴其根,霍中洋,孟立明.不同粳稻品种氮素吸收利用特点的研究.扬州大学学报·农业与生命科学版, 2002,23(4):43-47
    [7] Inthapanya P.,Sihavong P S,Chanhphengsay M, Fukai S, Basnayake J. Genotypic performance under fertilized and non-fertilized conditions in rainfed lowland rice. Field Crop Res, 2000, 65: 1-14
    [8]Inthapanya P, Sipaseuth, Sihavong P, Sihathep V, Chanphengsay M, Fukai S, Basnayake J. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized conditions [J]. Field Crop Res, 2000, 65: 57-68
    [9]单玉华,王余龙,山本由德,黄建晔,杨连新,张传胜.不同类型水稻在氮素吸收及利用上的差异.扬州大学学报·农业与生命科学版, 2001,4(3): 42-50
    [10]朴钟泽,韩龙植,高熙宗.水稻不同基因型氮素利用效率差异.中国水稻科学, 2003,17(3):233-238
    [11]江立庚,戴廷波,韦善清,甘秀芹,徐建云,曹卫星.南方水稻氮素吸收与利用效率的基因型差异及评价.植物生态学报, 2003, 27 (4): 466-471
    [12]董桂春,王余龙,张传胜,张岳芳,陈培峰,杨连新,黄建晔,龙银成.氮素籽粒生产效率不同的籼稻品种物质生产和分配的基本特点.作物学报,2007,33(1)137-142
    [13]彭少兵,黄建良,钟旭华,杨建昌,王火光,邹应斌,张福锁,朱庆森,Roland Buresh, Christian Witt.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002, 35 (9): 1095-1103
    [14]丁艳锋,刘胜环,王绍华,王强盛,黄丕生,凌启鸿.氮素基、蘖肥用量对水稻氮素吸收与利用的影响.作物学报,2004,30(8):762-767
    [15]王绍华,揭水通,丁艳锋,王强盛.控蘖剂调控水稻分蘖发生的效果.江苏农业科学,2002,18(1):29-32
    [16]万靓军,张洪程,霍中洋,林忠诚,戴其根,许轲,张军.氮肥运筹对超级杂交粳稻产量、品质及氮素利用率的影响.作物学报,2007,175-182
    [17]朴钟泽,韩龙植,高熙宗,张建明,陆家安,李培德.水稻干物质量和氮素利用效率性状的配合力分析.中国水稻科学,2005,19(6):527-532
    [18]方萍,陶勤南,吴平.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析.植物营养与肥料学报, 2001,7(2):159-165
    [19]李学勇,钱前,李家洋.水稻分蘖的分子机理研究.中国科学院院刊2003(4):274-276
    [20]Li X-Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li H Y. Control of tillering in rice.Nature,2003,422:618-621
    [21]Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005, 46: 79-86
    [1]Ramasamy S, Berge H F M, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res, 1997, 51: 65-82
    [2]Jing Q, Bouman B A M, Hengsdijk H, Keulen H V, Cao W. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China. Eur J Agron, 2007, 26: 166-177
    [3]江福英,翁伯琦.农田硝态氮的污染及其防治对策.福建农业科学, 2003,18 (3):196-200
    [4] Inthapanya P, Sipaseuth, Sihavong P, Sihathep V, Chanphengsay M, Fukai S, Basnayake J. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. Field Crops Res, 2000, 65: 57-68
    [5]Koutroubas S D, Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions. Field Crops Res, 2003, 83: 251-260
    [6]朴钟泽,韩龙植,高熙宗.水稻不同基因型氮素利用效率差异.中国水稻科学, 2003, 17 (3):233-238
    [7]鲍士旦.土壤农化分析.北京:中国农业出版社, 2000. pp 44-49
    [8]魏海燕,张洪程,戴其根,霍中洋,许轲,杭杰,马群,张胜飞,张庆,刘艳阳.不同水稻氮利用效率基因型的物质生产与积累特性.作物学报, 2007, 33(11):1802-1809
    [9]Tirol-padre A, Ladhs J K, Singh U, Laureles E, Punzalan G, Akita S. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res, 1996, 46:127-143
    [10]Inthapanya P, Sipaseuth, Sihavong P, Sihathep V, Chanphengsay M, Fukai S, Basnayake J. Genotypic performance under fertilized and non-fertilized conditions in rainfed lowland rice. Field Crops Res, 2000, 65: 1-14
    [11]单玉华,王海候,龙银成,王余龙,潘学彪.不同库容量类型水稻在氮素吸收利用上的差异.扬州大学学报·农业与生命科学版, 2004, 25 (1): 41-45
    [12]张岳芳,王余龙,张传胜,董桂春,杨连新,黄建晔,陈培锋,龚克成.籼稻品种间氮素吸收利用的差异及其对产量的影响.江苏农业科学, 2006, 22 (4): 318-324
    [13] Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res, 2002, 74: 93-101
    [14] Jiang L G, Dai T B, Jiang D, Cao W X, Gan X Q, Wei S Q. Charactering physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res, 2004, 88: 239-250
    [15]张耀鸿,张亚丽,黄启为,徐春阳,沈其荣.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较.植物营养与肥料学报, 2006,12(5): 616-621
    [16]彭少兵,黄建良,钟旭华,杨建昌,王火光,邹应斌,张福锁,朱庆森,Roland Buresh, Christian Witt.提高中国稻田氮肥利用率的研究策略.中国农业科学2002, 35(9):1095-1103
    [17]Ladha J K, Kirk G J D, Bennett J, Peng S, Reddy C K, Reddy P M, Singh U. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm, Field Crops Res, 1998,56:41-71
    [18]万靓军,张洪程,霍中洋,林忠诚,戴其根,许轲,张军.氮肥运筹对超级杂交粳稻产量、品质及氦素利用率的影响.作物学报,2007,33(2): 175-182
    [19]朴钟泽,韩龙植,高熙宗,张建明,陆家安,李培德.水稻干物质量和氮素利用效率性状的配合力分析.中国水稻科学, 2005,19(6): 527-532
    [20]江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径.中国水稻科学, 2002, 16(3): 261-264
    [1]王余龙,陈林,姚有礼,李昙云,蒋军民,蔡建中.不同类型水稻品种的发根规则与活力差异及其原因分析.江苏农学院学报, 1994, 15 (1): 11-16
    [2]董桂春,王余龙,王坚刚,单玉华,马爱京,杨洪建,张传胜,蔡惠荣.不同类型水稻品种间根系性状的差异.作物学报, 2002, 28 (6): 749-755
    [3]程建峰,戴廷波,荆奇,姜东,潘晓云,曹卫星.不同水稻基因型的根系形态生理特性与高效氮素吸收.土壤学报, 2007, 44 (2): 266-272
    [4]樊小林,史正军,吴平.水肥(氮)对水稻根构型参数的影响及其基因型差异.西北农林科技大学学报, 2002, 30 (2): 1-5
    [5]董桂春,王余龙,吴华,周小冬,单玉华,王坚刚,蔡惠荣,蔡建中.水稻主要根系性状对施氮时期反应的品种间差异.作物学报, 2003, 29 (6): 871-877
    [6]王彦荣,华泽田,陈温福,代贵金,郝宪彬,王岩,张忠旭,隋国民.粳稻根系与叶片早衰的关系及其对籽粒灌浆的影响.作物学报, 2003, 29 (6): 892-898
    [7]郎有忠,杨建昌,朱庆森.亚种间杂交稻根系形态生理特征及其与籽粒充实度关系的研究.作物学报, 2003, 29 (2): 230-235
    [8]张传胜,王余龙,龙银成,董桂春,杨连新,黄建晔.影响籼稻品种产量水平的主要根系性状.作物学报, 2005, 31 (2): 137-143
    [9]郑家奎,袁祚廉,阴国大,何光华,杨正林,蒋开锋.水稻苗期发根力的遗传研究.中国水稻科学, 1996, 10(1): 51-53
    [10]王彦荣,华泽田,代贵金,张忠旭,陈温福.北方粳型杂交稻根系生长特征研究.沈阳农业大学学报, 2001, 32 (6): 407-410
    [11]蔡昆争,骆世明,段舜山.水稻根系在根袋处理条件下对氮养分的反应.生态学报, 2003, 23(6): 1109-1116
    [12]王彦荣,华泽田,陈温福,代贵金,王岩,郝宪彬,张忠旭,苏玉安.粳型超级杂交稻辽优3225根系生理特性研究.中国水稻科学, 2003, 17(1): 37-41
    [13]李锋,曲雪艳,潘晓华,姚锋先,杨福孙.不同水稻品种对难溶性磷利用能力的初步研究.植物营养与肥料学报, 2003, 9(4): 420-424
    [14]郭玉春,林文雄,石秋梅,梁义元,何华勤,陈芳育.低磷胁迫不同磷效率水稻苗期根系的生理适应性研究.应用生态学报, 2003, 14(1): 61-65
    [15]刘建祥,杨肖娥,杨玉爱,吴良欢.低钾胁迫下水稻钾高效基因型若干生长特性和营养特性的研究.植物营养与肥料学报, 2003, 9 (2): 190-195
    [16]台德卫,张效忠,苏泽胜,王元垒,罗彦长,夏家发.全球水稻分子育种核心种质资源耐低钾品种的苗期筛选.植物遗传资源学报,2004, 5 (4): 356-359
    [17]曾翔,李阳生,谢小立,肖国樱,廖江林.不同灌溉模式对杂交水稻生育后规根系生理特性和剑叶光合特性的影响.中国水稻科学, 2003, 17(4): 355-359
    [18]杨长明,杨林章,欧阳竹.不同养分与水分管理对水稻植株根系形态及其活力的影响.中国生态农业学报, 2004,12 (4): 82-85
    [19]郑圣先,聂军,戴平安,郑颖俊.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响.植物营养与肥料学报, 2006,12 (2): 188-194
    [20]唐拴虎,徐培智,张发宝,陈建生,谢春生.一次性全层施用控释肥对水稻根系形态发育及抗倒伏能力的影响.植物营养与肥料学报, 2006, 12(1): 63-69
    [21]Yang C M, Yang L Z, Yang Y X, Ou-Yang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agr Water Manag, 2004, 70: 67-81
    [22]冯跃华,邹应斌, Buresh R J,李合松,高彧,许桂玲,王淑红,敖和军.不同耕作方式对杂交水稻根系特性及产量的影响.中国农业科学, 2006, 39 (4): 693-701
    [23]钱永德,李金峰,郑桂萍,吕艳东,郭晓红,孙长艳.垄作栽培对寒地水稻根系生长的影响.中国水稻科学, 2005,19 (3): 238-242
    [24]Ladha J K, Kirk G J D, Bennett J, Peng S, Reddy C K, Reddy P M, Singh U. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Res, 1998, 56: 41-71
    [1]吴平.水稻氮素光合效率及有关叶片参数的测定.浙江农业学报,1994,6(2):131-134
    [2]徐克章,黑田荣喜,平野贡.水稻开花后叶片含氮量与光合作用的动态变化及其关系.作物学报,1995,21(2):171-175.
    [3]刘宛,徐正进,陈温福等.氮素水平对不同穗型水稻品种植株衰老和产量的影响.沈阳农业大学学报,2001,32(4):243-246
    [4]N. Sultana, T. Ikeda, M.A. Kashem. Effect of foliar spray of nutrient solutions onphotosynthesis, dry matter accumulation and yield inseawater-stressed rice. Environmental and Experimental Botany,2001,46: 129-140
    [5]R.W. Gesch, J.L. Heilman. Responses of photosynthesis and phosphorylation of the light-harvesting complex of photosystem II to chilling temperature in ecologically divergent cultivars of rice. Environmental and Experimental Botany,1999,41:257-266
    [6]王荣富,张云华,钱立生等.超级杂交稻两优培九及其亲本的光氧化特性.应用生态学报, 2003,14(8):1309-1312
    [7]Yumiko San-oh, Tamizi Sugiyama, Daisaku Yoshita, etal. The effect of planting pattern on the rate of photosynthesis and related processes during ripening in rice plants. Field Crops Research,2006,96:113-124
    [8]张荣铣,戴新宾,许晓明,等.叶片光合功能期与作物光合生产潜.南京师范大学学报,1999,22(3):250-260
    [9]Hiroyuki Shiratsuchi, Tohru Yamagishi, Ryuichi Ishii. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice. Field Crops Research,2006:95: 291–304
    [10]Wu P, Tao Q N. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different notrogen regimes. Journal Palnt Nutrition,1995,18(3):487-500
    [11]张云桥,吴荣生,蒋宁等.水稻的氮素利用效率与品种类型的关系.植物生理学通讯,1989,(2):45-47
    [12]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis.Annual Review of Plant Physiology and Plant Molecular Bbiology, 1982, 33: 317-345.
    [13]吴良欢,陈峰,方萍等.水稻叶片氮素营养对光合作用的影响.中国农业科学,1995,28(增刊):104-107
    [14]张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报. 1999,16(4):444-448
    [15]彭建伟,刘强,荣湘民等.氮磷钾配比及氮用量对水稻光合特性及产量的影响.湖南农业大学学报(自然科学版),2004,30(2):123-127
    [16]杨勇,蒋德安,孙骏威等.不同供镁水平对水稻叶片叶绿素荧光特性和能量耗散的影响.植物营养与肥料学报,2005,11(1):79-86
    [17]李志刚,叶正钱,杨肖娥等.不同养分管理对杂交稻生育后期功能叶生理活性和籽粒灌浆的影响.浙江大学学报(农业与生命科学版),2003,29(3):265-270
    [18]谈建康,张亚丽,沈其荣等.不同形态氮素比例对水稻苗期水分利用效率及其生物效应的影响.南京农业大学学报,2002,25(3):49-52
    [19]王娜,陈国祥,邵志广等.不同形态氮素配比对水稻光合特性的影响.江苏农业学报,2002,18(1):18-22
    [20]杨长明,杨林章.不同养分模式对水稻叶片衰老的影响研究.中国生态农业学报.2003,11(1)14-16
    [21]聂军,郑圣先,戴平安等.控释氮肥调控水稻光合功能和叶片衰老的生理基础.中国水稻科学,2005,19(3):255-26
    [22]曾翔,李阳生,谢小立等.不同灌溉模式对杂交水稻生育后期根系生理特性和剑叶光合特性的影响.中国水稻科学,2003,17(4):355-35
    [23]林贤青,周伟军,朱德峰等.稻田水分管理方式对水稻光合速率和水分利用效率的影响.中国水稻科学,2004,18(4):333-338
    [24]Xianqing Lin, Weijun Zhou, Defeng Zhu, etal. Effect of SWD irrigation on photosynthesis and grain yieldof rice (Oryza sativa L.). Field Crops Research,2005,94:67-75
    [25]刘怀年,李平,邓晓建.水稻种质资源单叶光合速率研究.作物学报,2006,32(8):1252-1255
    [26]曹树青,翟虎渠,杨图南等.水稻种质资源光合速率及光合功能期的研究.中国水稻科学,2001,15(1):29-34
    [27]屠曾平,林秀珍,蔡惟涓等.水稻高光效育种的再探索.植物学报,1995, 37: 641-651.
    [28]屠曾平.水稻光合特性研究与高光效育种.中国农业科学,1997,30(3):28-35
    [29]赵秀琴,赵明,陆军等.热带远缘杂交水稻高光效后代在温带的光合特性观察.中国农业大学学报, 2002,7(3): 1-6.
    [30]Sakae Agarie, Akiko Miura, Reina Sumikura,etal. Overexpression of C4 PEPC caused O2-insensitive photosynthesisin transgenic rice plants. Plant Science,2002,162:257-265
    [31]王仁雷,华春,李霞等.光抑制条件下转PEPC基因水稻的光合表现.作物学报,2002,28(5):321-326
    [1]王彦荣,华泽田,陈温福等.粳稻根系与叶片早衰的关系及其对籽粒灌浆的影响.作物学报,2003,29(6):892-898
    [2]朱诚,傅亚萍,孙宗修.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系.中国水稻科学,2002,16(4):326-330
    [3]吴荣生,焦德茂,李黄振等.杂交稻旗叶衰老过程中超氧自由基与超氧物岐化酶活性的变化.中国水稻科学, 1993,(7):151-54
    [4]王向阳,彭文博,崔金梅等.有机酸和硼、锌对小麦旗叶活性氧代谢及籽重的影响.中国农业科学, 1995, 28(1):69-74
    [5]K T Hung, C H Kao. Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. Journal Plant Physiology, 2004,161(12):1347-1357
    [6]李奕松,黄丕生,黄仲青等.两系籼型杂交水稻齐穗后光合作用和衰老特性的研究.中国水稻科学,2002,16(2):141-145
    [7]段俊,梁承邺,张明永等.水稻结实期间叶片衰老与膜脂过氧化的关系.中国水稻科学,1997,11(3):190-192
    [8]关欣,陈温福,殷红等.不同年代水稻品种齐穗后叶片保护酶活性及膜脂过氧化作用比较分析.沈阳农业大学学报,2003,34(5):351-354
    [9]王荣富,张云华,焦德茂等.超级杂交稻两优培九及其亲本生育后期的光抑制和早衰特性.作物学报,2001,30(4):393-397
    [10]焦德茂,李霞,黄雪清等.不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系.中国农业科学,2002,35(5):487-492
    [11] Murchie E H, etal. Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field grown rice. Plant Physiology, 1999, 119: 553-563(基因型差异)
    [12]沈成国,余松烈,于振文.一次结实植物的衰老与氮再分配.植物生理学通讯,1998,34(4):288-296
    [13]Mae T, Ohira K.The remobilization of nitrogen related to leaf growth and senescence in rice plants. Plant Cell Physiol, 1981, (22):1067-1074.
    [14]Mei H S, Thimann K V. The relation between nitrogen deficiency and leaf senescence. Physiol.Plant,1984,(62):157-161
    [15]王绍华,吉志军,刘胜环等.水稻氮素供需差与不同叶位叶片氮转运和衰老的关系.中国农业科学,2003,36(11):1261-1265
    [16]王三根.细胞分裂素在植物抗逆和延衰中的作用.植物学通报.2000,17(2):121-126
    [17]杨安中,黄义德.旱作水稻喷施6-苄基腺嘌呤的防早衰及增产效应.南京农业大学学报,2001,24(2):12-15
    [18]张文学,彭春瑞,孙刚等.不同外源激素对二晚后期叶片衰老的影响.江西农业学报. 2007,19(2):11-13
    [19]曾富华,罗泽民.赤霉素对杂交水稻生育后期剑叶中活性氧清除剂的影响.作物学报.1994,20(3):347-351
    [20]朱诚,曾广文. 4PU-30对水稻叶片衰老与活性氧代谢的影响.浙江大学学报(农业科学与生命科学版), 2000,26(5):483-488
    [21]汤日圣,梅传生,吴光南. 4PU-30延缓杂交水稻叶片衰老的生理基础.中国水稻科学,1996,10(1):23-28
    [22]汤日圣,刘晓忠,陈以峰等. 4PU-30延缓杂交水稻叶片衰老的效果与作用.作物学报,1998,24(2):
    [23]汤日圣,谷启荣,张福田等.一种GA3/4PU-30(90-09)对杂交水稻叶片衰老的调节.江苏农业学报,1997,13(1):10-13
    [24]王熹,陶龙兴,黄效林等.粒粒饱对水稻灌浆期间衰老的延缓作用.中国水稻科学,2000,14(4):253-255
    [25]李玥莹.烯效唑对水稻叶片衰老及产量的影响.沈阳师范学院学报(自然科学版),2002,20(1):42-45
    [26]叶春升,罗奇祥,李祖章等.不同钾肥品种在水稻防早衰上的应用.江西农业学报,2005,17(4):15-20
    [27]郑炳松,蒋德安,翁晓燕等.钾营养对水稻剑叶光合作用关键酶活性的影响.浙江大学学报(农业与生命科学版),2001,27(5):189-191
    [28]Yuanman Huang, Chien Teh Chen, Ching Huei Kao. Senescence of rice leaves XXⅣ. Involvement of calcium and calmodulin in the regulation of senescence. Plant and Cell Physiology, 1990,31(7):1015-1020
    [29]宋松泉,付家瑞.Ca2+在杂交稻叶片衰老后期中的影响.中山大学学报,1996,35(4):70-74
    [30]梁颖,王三根,李榜秀.钙对离体水稻叶片和地上部衰老的影响.西南农业大学学报,1997,19(2):121-125
    [31]潘伟彬,李延.镁对水稻剑叶和根系衰老的影响。闽西职业大学学报,2000(1):1-2
    [32]付永彩,丁月云,刘新仿.抑制衰老的嵌合基因在水稻中的转化.科学通报,1998,43:1963-1967
    [33]曹孟良.农杆菌介导的水稻高效遗传转化体系的建立.湖南农业大学学报, 1999,25:349-356
    [34]林拥军,曹孟良,徐才国等.通过转PSAG12-IPT基因培育延缓叶片衰老水稻.植物学报,2002,44(11):1333-1338
    [35]李双成,张玉,王世全等.延缓衰老基因PPF1转化水稻的初步研究.作物学报,2005,31(8):1014-1020
    [1]K. G. Cassman, S. Peng, D. C. Olk. Etal. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Research,1998,56: 7-39
    [2]J. K. Ladha, G. J. D. Kirk, J. Bennett. etal. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplas. Field Crops Research,1998,56:41-71
    [3]罗志祥,苏泽胜,施伏芝等.氮肥高效利用水稻育种的现状与展望.中国农学通报,2003,19(1):66-68
    [4]Rawat S R, Silim S N, Kronzucker H J, et al AtAMT1 gene expression and NH4+ uptake in roots of arabidopsis thaliana: evidence for regulation by root glutamine levels. Plant J, 1999,19:143-152.
    [5]Shelden M C, Doog B, De Bruxelles Gl, et al. Arabidopsis ammonium transporters, AtAMT1;2 and AtAMT l;2 have different biochemical properties and functional roles. Plant Soil, 2001,231:l5l- 160.
    [6]Tomoyuki Yamaya, Mitsuhiro Obara, Hiroyuki Nakajima, et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. Journal of Experimental Botany, 2002,53(370):917-925
    [7]Sonoda Y, Ikeda A , Saiki S, et al. Distinct expression and function of three ammonium transporter genes (OSAMT1;1-1;3) in rice. Plant Cell Physiology, 2003,44(7):726-734
    [8]Kumar A, Silim S N , Okamoto M, et al . Differential expression of three members of the AMT1 gene family encoding putative high affinity NH4+ transporters in roots of Oryza sativa subspecies Indica. Plant , Cell and Environment , 2003,26:907-914
    [9]Ishiyama K, Inoue E , Tabuchi M, et al. Biochemical background and compartmentalized function of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol, 2004,45:1640-1647
    [10]赵首萍,赵学强,施卫明.不同铵硝比例对水稻铵吸收代谢基因表达的影响.土壤学报, 2006,43(3):436-442
    [11]Hitoshi Sakakibara, Kentaro Takei, Naoya Hirose. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science, 2006,11(9):440-448
    [12]杨新泉,冯锋,宋长青等.主要农田生态系统氮素行为与氮肥高效利用研究.植物营养与肥料学报,2003,9(3):373-376
    [13]高辉,张洪程,戴其根等.不同土种土壤氮素等养分与水稻基础产量的关系.扬州大学学报(农业与生命科学版), 2007,28(1):49-53
    [14]李琴.农田土壤氮素循环及其对土壤氮流失的影响.安徽农业科学, 2007,35(11):3310-3312
    [15]陈安磊,王凯荣,谢小立等.长期有机养分循环利用对红壤稻田土壤供氮能力的影响.植物营养与肥料学报, 2007,13(5):838-843
    [16]郝晓晖,肖宏宇,苏以荣等.长期不同施肥稻田土壤的氮素形态及矿化作用特征.浙江大学学报(农业与生命科学版), 2007,33(5):544-550
    [17]石英,沈其荣,茆泽圣等.旱作水稻根际土壤铵态氮和硝态氮的时空变异.中国农业科学,2002,35(5):520-524
    [18]K. Schmidt-Rohr, J.D. Mao, and D. C. Olk. Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping. PNAS.2004,101(17):6351-6354
    [19]Nguyen Bao Ve, D. C. Olk, K. G. Cassman. Nitrogen mineralization from humic acid fractions in rice soils depends on degree of humification. Soil Sci. Soc. Am. J. 2004,68:1278-1284
    [20]Nguyen Bao Ve, D. C. Olk, K. G. Cassman. Characterization of humic acid fractions improves estimates of nitrogen mineralization kinetics for lowland rice soils. Soil Sci. Soc. Am. J.2004,68:1266-1277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700