用户名: 密码: 验证码:
TSCR过程Fe-3%Si钢带的组织和织构演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,针对传统工艺生产电工钢的流程长、成本高等问题,薄板坯连铸连轧(Thin Slab Cast Rolling,简称TSCR)短流程生产硅钢特别是取向硅钢的研究得到世界钢铁界的广泛关注,该技术的成功开发和工业化应用将会给电工钢生产带来一场深刻的变革。
     本文以Fe-3%Si电工钢为研究对象,利用热力模拟试验机,通过不同工艺参数的压缩、保温及淬火实验,分析了应力-应变曲线、显微组织形貌和再结晶动力学特征,研究了粗晶铁素体材料在高温变形过程的微观组织和晶粒取向的演变规律。在实验室条件下,模拟TSCR过程完成Fe-3%Si钢的冶炼、浇铸、高温热装加热、热轧和冷轧等工艺,其中包括铸模及成分设计、抑制剂的选取、铸坯保温输送与加热、热轧(保温、压下和冷却)、冷轧和热处理工艺的制定和优化等。在此基础上,对Fe-3%Si钢带的抑制剂的析出、显微组织和织构的形成及影响规律进行系统的研究,其成果将为短流程生产取向硅钢技术的研究和应用提供必要的参考与指导。本文的主要研究内容和结果如下:
     (1)采用不同应变、应变速率、变形温度的单道次压缩淬火等热模拟实验,通过对真应力-真应变曲线和淬火组织的分析,结果表明:Fe-3%Si钢真应力-真应变曲线是典型的动态回复型,其回复速率远高于奥氏体材料;初始奥氏体含量随着保温温度的提高而增加,大变形条件下材料内部出现连续动态再结晶特征;出现的少量奥氏体可以作为第二相钉轧晶界并阻止铁素体晶粒的长大。
     (2)采用高温压缩变形后保温不同时间喷水淬火方法,对Fe-3%Si钢再结晶行为及其显微特征进行了研究。其结果表明,随着保温(退火)时间的增加,再结晶体积分数增加,在达到峰值后形成软化率平台;显微组织主要由回复和再结晶晶粒组成,压缩后淬火的金相组织中位错线清晰、亚晶可见。
     (3)根据粗晶铁素体材料软化行为特点,采用30%再结晶的时间(t0.3)来确定静态再结晶激活能。晶界和三角地带(晶棱)是铁素体再结晶的优先形核点,奥氏体的出现促进了少量晶内再结晶的发生。静态回复发生迅速,再结晶晶粒长大速率以大于两个数量级的幅度降低,再结晶驱动力也随着退火时间的延长迅速降低。再结晶晶粒尺寸的变化依赖于初始组织(晶粒尺寸、奥氏体含量)和变形参数(应变、应变速率和温度)等因素。
     (4)在实验室模拟TSCR工艺条件下,在铸坯出模淬火的低倍组织中发现等轴晶和柱状晶的比例分别约为35%和65%,铸坯以大于1000℃入1200℃加热炉加热保温及热轧后高斯织构体积百分含量较高,且沿带钢厚度方向织构梯度比较理想。铸坯以1175℃和1150℃加热保温后热轧带钢的头部和中部显微组织差别显著。1200°C加热保温10-30min其热轧带钢各个位置的显微组织几乎没有差别,与传统工艺铸坯经1400℃高温加热生产取向硅钢热轧带钢有相似的组织形貌。
     (5)对铸坯出模、加热、保温、轧制3道次后的淬火试样和热轧及常化后带钢析出物进行TEM观察,发现在TSCR过程中热轧前保持铸坯在长、宽和厚三个方向均匀高温对抑制剂弥散、细小析出具有重要的意义。1200°C保温能够使铸坯中少量或不完全析出的抑制剂充分固溶,在随后的热轧过程通过应变诱导而析出并弥散分布,含Cu的硫化物析出尺寸相对较小。抑制剂的析出位置基本分布在晶内、位错、晶界和亚晶界上,所占的比例与热轧压下制度有重要关系。
     (6)对热轧次表层和冷轧各层宏观织构的ODF恒φ2=45。截面图分析表明,热轧次表层宏观织构主要分布在ε取向线上。而冷轧织构主要由α(<110>//RD)和γ(<111>//ND)纤维织构组成,ε取向线上高斯织构消失,高斯织构首先从H/8和H/4转变成{111}<112>织构;冷轧织构是热轧织构的连续性漫散,热轧工艺及成分对冷轧织构有一定的影响。含Al较高和添加Sn的硅钢材料更适合采用一次冷轧。工作辊辊径和冷轧压下制度对轧后{111}<112>取向密度有重大影响。
In recent years, the research of silicon steel, especially oriented silicon steel, produced by a short process has attracted more attention in world steel industry, because of the questions of traditional process such as a long process and the high cost. The success of this technology development and industrialization will bring about a profound change in the electrical steel production.
     For the present Fe-3%Si steel, a series of laboratory tests were performed by a thermomechanical simulator including compression, soaking and quenching tests with different processing parameters. The evolution of microstructure and grain orientation during high-temperature processing in this coarse grained ferrite material was investigated by analyzing the characteristics of true strain-true stress curve, microstructure and recrystallization kinetics. Under laboratory conditions, smelting, casting, hot rolling and cold rolling were carried out to simulate thin slab cast rolling (TSCR) of Fe-3%Si steel, which mainly includes the designs of mould and chemical component, the selection of inhibiter, the determination and optimization of processing parameters in hot rolling (e.g. soaking temperature, time of ingot, reduction and cooling schedule), cold rolling and annealing etc.. The precipitation of inhibiter, formation of microstructure and texture and their influence factors in Fe-3%Si steel produced by TSCR were studied systematically. The results can provide the necessary guidance for the production and application of oriented-silicon steels using a short process. The main contents and results are as follows.
     (1) The true stress-strain curves with different stain, strain rate and deforming temperature and as-quenched microstructure for Fe-3%Si steel were analyzed. The true stress-strain curve shows that dynamic recovery is the dominant softening mechanism, and the recovery rate is far faster than austenite materials. Initial austenite content increases with heating temperature, the continuous-dynamic recrystallizing grains can be observed from in Fe-3%Si material by heavy deformation. The presence of minor austenite, acting as second phase, plays an important role in pinning the grain boundary and preventing grain growth.
     (2) The recrystallization behavior and microstructure feature of Fe-3%Si steel have been analyzed using samples which were deformed and subsequently quenched after annealing for different times. The volume fraction of recrystallization increase quickly with annealing time, and in coarse grained material, retardation of recrystallization resulted in the appearance of a plateau in the recrystallization curves. The microstructure mainly consists of recovery and recrystallization grain, and dislocation line and subgrain can be observed in optical micrographs for samples quenched immediately after deformation.
     (3) In coarse-grained ferrite materials, the activation energy for static recrystallization was determined using the time of 30% recrystallization. For the deformation conditions investigated, original grain boundaries, particularly triple points of boundaries are preferential nucleation sites for new recrystallized grains, boundaries, whereas some intragranular nucleation also occurs when austenite is present. As a result of rapid recovery in ferrite, growth rate falls by more than two orders of magnitude during recrystallization and driving pressure for growth of recrystallizing regions also falls with annealing time. The sizes of recrystallizing grains depend on initial microstructure, such as grain size and austenite content, and deforming parameters, such as strain, strain rate and temperature.
     (4) Under laboratory conditions, the proportions of equiaxed grains and columnar grains are observed to be close to 35% and 65% respectively in as-quenched macrostructure of ingot after it is pulled out from the mould, and the desired volume fraction of Goss texture and texture gradient in thickness are obtained for hot-rolled slab with reheating furnace entry temperature greater than 1000℃. There are significant differences between the microstructures of head and middle of hot-rolled sheets for ingots soaked at 1175 and 1150℃respectively. The microstructure has no clear differnce between head and middle of steel sheets when holding for 30min at 1200℃, which is very similar to that of GO steel produced by traditional process in metallography.
     (5) The TEM observation of as-quenched samples of ingot,3 pass and 7 pass hot rolling sheets, as-rolled and as-normalized samples, shows that it is very important that ingot maintains uniform and high temperature distribution in length, width and thickness direction before hot rolling for inhibitor precipitation with small-sized and homogenous-distributed particles in TSCR process. Minor and coarse precipitates formed in casting can be re-dissolved at 1200℃, and then precipitated once again with fine-grained and homogenous-distributed particles during hot rolling, and the particle size of copper sulfide is less than that of MnS particles. The precipitates are mainly distributed within grain, at dislocation, grain boundary and subgrain boundary, whose proportion is closely relate to rolling schedule.
     (6) Base onφ2=45°sections of the X-ray ODFs analysis, the subsurface texture of hot -rolled sheet consists of s TD//<110> fibers. But, the texture of cold-rolled sheet mainly consists ofα(<110>//RD) and y(<111>//ND) fibers, and Goss texture ({110}<001>) disappears. The Goss texture is translated to{111}<112> orientation from 1/8 and 1/4 thickness firstly. The hot rolling texture has a certain effect on the cold rolling texture. Al- or Sn-containing silicon steels are more suitable for one-stage cold rolling.{111}<112> orientation density mainly is dependent on diameter of working roll and reduction schedule of cold rolling.
引文
[1]何忠治.电工钢[M].北京:冶金工业出版社,1996.
    [2]W.F.Barrett. W.Brown and R.A.Hadfield. Sci.Trans.Roy.Dublin Soc.1900,7:67
    [3]F.Assmus, R.Boll, D.Gazu et al.具有立方织构的硅钢片[J],钢铁译丛,1958,18(6):41
    [4]N.P.Goss, US Patent 1965559,1934.
    [5]W.Carpenter:U.S. Patent 2385332,1945.
    [6]Kawasaki Steel Corp.:Jpn. Kokoku51-13469.
    [7]卢凤喜,陈卓.世界硅钢生产线扩容及硅钢产能增长情况调研[J].钢铁研究,2007,35(6):50-52
    [8]Nobuyuki Takahashi, Yozo Suga h, Hisashi Kobayashi. Recent developments in grain-oriented silicon-steel[J]. Journal of Magnetism and Magnetic Materials,1996,160: 98-101.
    [9]Yoshiyuki Ushigamia, Masato Mizokamia, Masahiro Fujikuraa. Recent development of low-loss grain-oriented silicon steel[J]. Journal of Magnetism and Magnetic Materials,2003, 254-255:307-314.
    [10]Takeshi Kubota, Masahiro Fujikura, Yoshiyuki Ushigami. Recent progress and future trend on grain-oriented silicon steel[J]. Journal of Magnetism and Magnetic Materials,2000, 215-216:69-73
    [11]金延,晓敏.电工钢的发展[J].金属功能材料,2003,6:45-46.
    [12]Sebastia C. Paolinelli, Marco A. da Cunha. Development of a new generation of high permeability non-oriented silicon steels[J]. Journal of Magnetism and Magnetic Materials, 2006,304:e596-e598.
    [13]Nobuyuki Morito, Michiro Komatsubara, Yoh Shimizu. History and Recent Development of Grain Oriented Electrical Steel at Kawasaki Steel[R]. Kawasaki Steel Technical Report,1998, 39:3-12.
    [14]方建成,王续跃,苑鸿,于俊玲.激光照射对不同厚度硅钢片铁损的影响[J].钢铁,1999,34(1):62-64.
    [15]李劲东,顾旒沁,过增元.降低取向硅钢片铁损的激光加工工艺的研究[J].钢铁,1994,8(29):44-47.
    [16]B.Weidenfeller, W. Rieheman. Domain refinement and domain wall activatin of surface trteated[J]. Journal of Magnetism and Magnetic Materials,1996,160:136-138.
    [17]Muneyuki Imafuku, Hiroshi Suzuki, Koichi Akita. Effects of laser irradiation on iron loss reduction for Fe-3%Si grain-oriented silicon steel[J]. Acta Materialia, 2005, 53:939-345.
    [18] M.F.Littmann. Structures and magnetic properties of grain-oriented 3.2% silicon-iron [J] , J.Appl.Phys., 1967,38(3): 1104-1108
    [19] S.Nakashima, K.Takashima, J.Harase. Effect of thickness on secondary recrystallization of Fe-3%Si [J]. Acta Metallurgical et Materialia, 1994,42: 539
    [20] H.Shimanaka et al. Magnetism and Magnetic Materials, 1982,41: 57
    [21] #12
    [22] J.Harase, R.Shimizu and N.Takahashi. Effect of cold rolling reduction on the secondary recrystallization in 3%Si-Fe alloy [J], J.Japan Inst Metals, 1990, 54:381-383
    [23] J.C.Perrier, A.Lebouc, P.Brissonnean et al. Magnetic properties of a new grade of thin grain-oriented 3% silicon-iron [J]. IEEE Transactions on Magnetics, 1990,26(5): 2214-2216
    [24] 高秀华.异步轧制取向硅钢极薄带的研究[D].沈阳:东北大学博士学位论文,2002.
    [25] Y.Yoshitomi, N.Takahashi ect.Ultrathick glassless high-permeability grain-oriented silicon steel sheets with high workability [J]. Journal of Magnetism and Magnetic Materials, 1996,160:123-124.
    [26] 熊星云.降低取向硅钢板坯烧损的研究[J].钢铁,1996,31(9):64-68.
    [27] 张译中.国外晶粒取向硅钢技术的进展[J].上海金属,2002,24(3):31-38.
    [28] 朱文英.板坯低温加热工艺生产取向硅钢片[J].上海金属,2001,4(33):33-37.
    [29] 卢凤喜.日本取向硅钢板坯低温加热的研制现状[J].钢铁研究,1996,6:54-59.
    [30] 魏天斌.国内外冷轧硅钢片供需现状及发展趋势[J].武钢技术,2006,44(4):51-55.
    [31] 卢凤喜,陈卓,谌剑.中日硅钢产销回顾与展望[J].冶金信息导刊,2007,5:49-51.
    [32] 何忠治.电王钢的现状与展望[J].中国冶金,2001,4:14-17.
    [33] 何忠治.电工钢的现状与展望(续)[J].中国冶金,2001,5:15-17.
    [34] 刘光穆,刘继申等.电工钢的生产开发现状和发展趋势[J].特殊钢,2005,1(26):38-41.
    [35] 魏天斌.国外取向电工钢工艺发展新趋势[J].钢铁研究,2007,35(1):55-58.
    [36] 田乃媛.薄板坯连铸连轧[M].北京:冶金工业出版社,2004.
    [37] 周德光,傅杰,金勇等.CSP薄板坯的铸态组织特征研究[J].钢铁,2003,38(8):47-50.
    [38] 徐匡迪,刘清友.薄板坯流程连铸连轧过程种的细晶化现象分析[J].钢铁,2005,40(12):1-9.
    [39] 仇圣桃,项利,赵沛.薄板坯连铸连轧流程生产取向硅钢技术分析[J].钢铁,2008,43(9):1-7.
    [40] 宋波.薄板坯连铸连轧生产工艺技术及应用[J].武钢技术,2006,44(2).
    [41]Honma.K, Nozaw.T. Development of non-oriened and grain-oriented silicon steel(invited)[J]. IEEE Transactions on magnetics,1985,21(5):1903-1905.
    [42]刘光穆,郑柏平,焦国华.薄板坯与厚板坯生产电工钢的比较与分析[J],钢铁,2004,39(10):28-31.
    [43]西本昭彦,细谷佳弘.无方向性电磁钢板的制造方法[P].日本公开特许公报,平3-260017.
    [44]屋铺裕义,冈本笃树.无方向性电磁钢板的制造方法[P].日本公开特许公报,昭63-600227.
    [45]刘光穆,刘继申等.电工钢的生产开发现状和发展趋势[J].特殊钢,2005,1(26):38-41
    [46]Fortunati. Process for the production of grain oriented electrical steel strip starting from thin slabs[P].US.:6273964,2001.
    [47]Picher Hans. Process for the production of grain-oriented electric quality sheet with low remagnetization loss and high polarization[P].US.:6524400,2003.
    [48]王小燕,刘学华,姚静.薄板坯连铸连轧生产电工钢现状及其优势[J],钢铁研究,2006,34(3):58-62
    [49]刘中柱.冷轧电工钢中非金属夹杂物及第二相粒子行为研究[D].北京:北京科技大学,2001.
    [50]P.Horky, P.Pacl. Effective grain growth inhibition in silicon steel[J].Journal of Magnetism and Magnetic Materials,1984,41:14-16.
    [51]Jong Soo Woo. Chan-HeeHan. Byung-Deu etc. Secondary Recrystallization of the Nitrided Fe-3% Si Alloy[J]. ISIJ International,1998,38(10):1114-1120.
    [52]Tomoji Kumanoa, Yoshifumi Ohatab and Norikazu Fujii. Effect of nitriding on grain oriented silicon steel bearing aluminum (the second study)[J]. Journal of Magnetism and Magnetic Materials,2006,304:e602-e607
    [53]Katsunari OIKAWA, Hiroshi OHTAN1. The Control of the Morphology of MnS Inclusions in Steel during solidification[J]. ISIJ International,1995,35 (4):402-408.
    [54]M.Bahgat, M.Radwan and F.E.Farghaly. Formation of AlN from Secondary Al Resources[J]. J.Mater. Sci. Technol.,2006,22 (5):621-624.
    [55]Y.Hayakawa, J.A. Szpuar. A new model of goss texture development during secondary recrystallization of electrical steel[J]. Acta mater,1997,45(11):4713-4720.
    [56]L.F.Mondolfo. Effect of Interfacial Energies on Heterogeneous Nucleation[J]. Materials Science and Technology,1989,5:118-122.
    [57]H. A. Wriedt and Hsun HU. The Solubility Product of Manganese Sulfide in 3Pct Silicon-Iron at 1270 to 1670K[J]. Metallurgical Transactions A,1976,5(7A):711-718.
    [58]N.P.Sun, W.J.Liu, J.J.Jonas. Creep Technique for MnS Precipitation in Si Steels[J]. Metallurgical Trans.,1989,20A:2707-0714.
    [59]W.P. Sun, M.Militzer, and J.J.Jonas. Strain-induced nucleation of MnS in Electrical Steel[J]. Metallurgical Transactions A,1992,3(23A):821-830.
    [60]Norman G, Ainsilie, Alan U. Seybolt. Diffusion and solubility of sulphur in iron and silicon-iron alloys[J]. Journal of the iron and steel institute,1960,3:341-350.
    [61]Irou Harase, Ryo Shimizu, Kunihide Takashima. Effect of AlN on the Secondary Recrystallization of 3%Si-Fe Alloy [J]. Transaction ISIJ,1987,27:965-973.
    [62]Norman G, Ainslie and Alan U. Seybolt. Diffusion and Solubility of Sulphur in iron and silicon-iron alloys[J]. Journal of the Iron and Steel Institute,1960,3:341-350.
    [63]Anatoly Zaveryukha, Claire Davis. An investigation into the cause of inhomogeneous distributions of aluminium nitrides in silicon steels[J]. Materials Science and Engineering A, 2003,345:23-27.
    [64]蒙肇斌,赵宇,何忠治.高磁感取向硅钢常化处理过程氮化物的沉淀[J].特殊钢,1999,20(1):24-26.
    [65]赵宇,何忠治,翁宇庆,吴宝榕.电工钢中的晶界偏聚[J].钢铁研究学报,1995,1(7):66-73.
    [66]赵宇,何忠治,朱静,翁宇庆,吴宝榕.Cu在高磁感取向硅钢中的作用[J].1994,1(6):37-42.
    [67]蒙肇斌,赵宇,何忠治.铸坯加热温度和Mo对高磁感取向硅钢第二相析出形态的影响[J].钢铁研究学报,1996,6(8):19-23.
    [68]卢凤喜,董晶.节能型取向硅钢生产技术研究[J].冶金信息导刊,2005,6:12-14
    [69]F.Maury, N.Lorenzelli, C.H. de Novion and P.Laarde. Exafa study the copper precipitation in an FeCuMn dillute alloy[J]. Scripta Metallurgica et Materialia,1991,25:1839-1844.
    [70]Schoen, Jerry w. regular grain oriented electrical steel production process [P].U.S., 5421911,1995:6.
    [71][韩国]Chol. Gyu Seung等.浦项取向电工钢板生产采用低温板坯加热工艺[J].武钢技术,1997,8:52-57.
    [72]卢凤喜,姚成君.日本高磁感取向硅钢最新进展(Ⅰ)[J].金属功能材料,2006.13(3):34-37.
    [73]卢凤喜,姚成君.日本高磁感取向硅钢最新进展(Ⅱ)[J].金属功能材料,2006.13(4):40-43.
    [74]郭亚东,肖丽俊等TSCR工艺生产SPHC板过程硼微合金化对AlN、MnS析出的影响[J].钢铁研究学报,2007,19(7):24-27.
    [75]B.Garbarz, J. Marcisz, J.Wojtas. TEM analysis of fine sulphides dissolution and pricipitation in steel[J].2003,81:486-489.
    [76]A. Brahmi and R. Borrelly. Study-of Aluminium nitride precipitation in pure Fe-Al-N alloy thermoelecteic power measurements[J]. Acta mater.1997,45(5):1889-1897.
    [77]Jiehua Wu, Baoshun, Jingkun Guo. The influence of additin of AlN particles on mechanical properitiesof SiO2 mtrix composites doped with AlN particle[J].Materials Letters,1999 41:145-148.
    [78]YU Hao, KANG Yonglin, ZHAO Zhengzhi, SUN Hao. Morphology and precipitation kinetics of MnS in Low-Carbon steel during thin slab continuous casting process[J]. Journal of Iron and Steel Research International.2006,13(5):30-36.
    [79]Burke,Turnbull. Prog. Meta Phys.1952,3:220
    [80]Cahn, J.W.. Acta, Metall. J.Inst. Mteals,1949,76:121.
    [81]R.D.Doherty,D.A.Hughes, F.J.Humphreys, J.J.Jonas ect. Current issues in recrystallization:a review[J]. Materials Science and Engineering,1997,A238:219-274.
    [82]F.J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena[M]. Great Britiain BPC wheations Ltd.,1996.
    [83]Drury, M.D, Humphreys, F.J.. Acta Metall,1986,34:2259.
    [84]B. Eghbali, A. Abdollah-Zadeh, H. Beladi, P.D. Hodgsonc. Characterization on ferrite microstructure evolution during largestrain warm torsion testing of plain low carbon steel[J]. Materials Science and Engineering A,2006,435-436:499-503.
    [85]B. Eghbali, A. Abdollah-zadeh, P.D. Hodgson. Dynamic softening of ferrite during large strain warm deformation of a plain-carbon steel[J]. Materials Science and Engineering A, 2007,462:259-26.
    [86]A.Abdollah-Zadeh, B.Eghbali. Mechanism of ferrit grain refinement during warm deformation of a low carbon Nb-microalloyed steel[J]. Materials Science and Engineering A, 2007,457:219-225.
    [87]Hotaka Homma, Bevis Hutchinson, Takeshi Kubota. The production mechanism of extensively sharp Goss orientation in Hi-B material[J].Journal of Magnetism and Magnetic Materials,2003,254-255:331-333.
    [88]Y. Shimizu, Y.Ito, and Y.Iida, Formation of the Goss Orientation near the Surface of 3 Pct Silicon Steel during Hot Rolling[J]. Metallurgical Transactions A,1986,17A:1323-1333.
    [89]Hotaka Homma, Bevis Hutchinson. Orientation dependence of secondary recrystallisation in silicon-iron[J]. Acta Materialia,2003,51:3795-3805.
    [90]Tomoji Kumano, Tsutomu Haratani and Yoshiyuki Ushigami, Influence of Primary Recrystallization Texture through Thickness to Secondary Texture on Grain Oriented Silicon Steel[J]. ISIJ International,2003,3(43):400-409.
    [91]A. Morawiec. Grain Misorientations in Theories of Abnormalgrain Growth in Silicon Steel[J], Scripta Mater,2000,43:275-278.
    [92]Yoshihiro Ozaki, Mineo Muraki and Takashi Obara. Microscale texture and recrystallized orientations of coarse grained 3%Si-steel rolled at high temperature[J].1998,38(6):531-538.
    [93]Ruer D, Baro R. A new method for the determination of the texture of materials of cubic structure from incomplete reflection pole figures[J], Adv. X-Ray Anal.,1977,20(2): 187-189.
    [94]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002:9-10.
    [95]Barnett M R. Role in grain shear bands in the nucleation of<111> ND recrystallization texture in warm rolled steel[J]. ISIJ Int.,1998,38(1):78-85.
    [96]毛卫民,张新明.晶粒材料织构定量分析[M].北京:冶金工业出版社,1993:104.
    [97]杨平,电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007.
    [98]毛卫民.晶粒材料的结构[M].北京:冶金工业出版社,1998.
    [99]Yuriy SidorT, Frantisek Kovac. Microstructural aspects of grain growth kineticsin non-oriented electrical steels[J]. Materials Characterization,2005,55:1-11.
    [100]O. Fischer, J.Schneider. Influence of deformation process on the improvement of non-oriented electrical steel[J]. Journal of Magnetism and Magnetic Materials. 2003,254-255:302-306.
    [101]张正贵,祝晓波,刘沿东等.无取向硅钢热轧板的织构[J].钢铁,2007,42(6):74-77.
    [102]金自力,任慧平,张红杰.无取向硅钢退火织构的演变与磁性能关系的研究[J].材料热处理学报,2007,28(2):77-80.
    [103]Dong Nyung Lee and Hyo-Tae Jeong. The evolution of the Goss texture in silicon steel[J]. Scripta Materialia,1998,38(8):1219-1223.
    [104]Martin F. Littmann. Development of Improved Cube-on-Edge Texture from Srrand Cast 3Pct Silicon-Iron[J]. Metallurgical Transaction A,1975,6A:1041-1048.
    [105]S.Cicale, Samajdar.B. Development of cold rolled texture and microstructure in a hot band Fe-3%Si steel[J]. ISIJ International,2007,42(7):770-778.
    [106]J. Harase, R. Shimizu. Infuence of cold rolling reduction on the grain boundary character distribution and secondary recrystallization initrided Fe 3% Si alloy[J]. Journal of Magnetism and Magnetic Materials,2000,215-216:89-91.
    [107]Tanya Ros-Yanez, Daniel Ruiz, Jos'e Barros. Study of deformation and aging behaviour of iron-silicon alloys[J]. Materials Science and Engineering A,2006:1-8.
    [108]J. Barrosa, T. Ros-Yaneza,O. Fischerb. Texture development during the production of high Si steel by hot dipping and diffusion annealing[J]. Journal of Magnetism and Magnetic Materials,2006,304:e614-e616.
    [109]M. Nakano, K. Ishiyama, K.I. Arai, H. Fukunaga. Relationship between rolling direction and texture in thin grain-oriented 3% silicon sheets[J]. Journal of Magnetism and Magnetic Materials,1999,196-197:344-345.
    [110]Dorothe'e Dornera, Stefan Zaefferera, Ludger Lahn. Overview of Microstructure and Microtexture Development in Grain-oriented Silicon Steel[J]. Journal of Magnetism and Magnetic Materials,2006,304:183-186.
    [111]S. CICALE, G. Abbruzzese and P. Van Houtte. Development of Cold Rolled Texture and Microstructure in a Hot Band Fe-3%Si Steel [J]. ISIJ International,2002,42 (7):770-778.
    [112]Yasunari Yoshitomi, Kenzou Iwayama, Takeo Nagashima. Coincidence grain boundary and role of inhibitor for secondary recrystallization[J]. Acta metall. Mater,1993,41 (5):1577-1585.
    [113]K.T.Lee, J.A.Szpunar. the role of special grain boundary during the grain growth in Fe-3%Si[J].Canadian Metallurgical Quarterly,1995,3(34):257-263.
    [114]Tomoji Kumano, Tsutomu Haratani. The Improvement of Primary Texture for Sharp Goss Orientation on Grain Oriented Silicon Steel[J]. ISIJ International,2003,43 (5):736-745.
    [115]P. Gangli, J.A.Szpunar. The role of Σ5 coincidence boundaries in the growth selection of Fe-3%Si[J]. Journal of Materials Processing Technology,1994,47:167-184
    [116]Hotaka Homma a, Bevis Hutchinson. Orientation dependence of secondary recrystallisation in silicon-iron[J].2003,51:3795-3805.
    [117]W.C.Leslie, R.L.Rickett. Trans.ASM,1961,53:715.
    [118]G.Azevedo, R.Barbosa, E.V.Pereloma. Development of ultrafine grain ferrite in low C-Mn and Nb-Ti microalluyed steels after warm torsion and intercritical annealing[J]. Materials Science and Engineering A,2005,402:98-108.
    [119]B. KOWALSKI, C. M. SELLARS1) and M. PIETRZYK. Development of a Computer Code for the Interpretation of Resultsof Hot Plane Strain Compression Tests[J]. ISIJ International,2000,40(12):1230-1236.
    [120]H. J. Whittaker, PhD Thesis, University of Sheffield,1973.
    [121]刘振宇,许云波,王国栋.热轧钢材组织-性能演变的模拟和预测[M].沈阳:东北大学出版社,2004,18.
    [122]A.Abdollah-Zadeh, B.Eghbali. Mechanism of ferrit grain refinement during warm deformation of a low carbon Nb-microalloyed steel[J]. Materials Science and Engineering A,2007,457:219-225
    [123]P.L.Orsetti-Rossi and C.M.Sellars:Quantitativel Metallography of Recrystallization[J]. Acta. Mater.,1997,45:137-148
    [124]J.W. Cahn and W. agel:Decomposition of Austenite by Diffusional Processes[M], V. F. Zackay and H.I. Aaronson, eds., New York:Interscience Publishers,1962:131-96.
    [125]C. M. Sellars and Q. Zhu. Microstructural modelling of aluminium alloys during thermomechanical processing[J].Materials Science and Engineering A,2000,280(1):1-7.
    [126]F.J.Humphreys and M. Hatherley:Recrystallization and related annealing phenomena[M]. New York:Pergamon Press,1996.
    [127]R.L.Higginson and C.M.Sellars. Worked Examples in Quantitative Metallography[M]. London:Maney Publications,2003.
    [128]E.E. Underwood. Quantitative Stereology[M]. Philippines:Addison-Wwsley Publishing Co. Inc.,1970.
    [129]Muetsugu Matsuo, Tomohiko Sakai. Oringin and Development of Through the Thickness Variations of Texture in the Processing of Grain Oriented Silicon Steel[J]. Metallurgical Transactions A,1986,17A:1313-1322.
    [130]Y.Shimizu, Y, ITO, and Y.IIDA. Formation of the Goss Orientation near the Surface of 3 Pct Silicon Steel during Hot Rolling[J].Metallugical Transactions A,1986,17A:1323-1334.
    [131]G. Salje and M.Feller-Kiepmeier.The Diffusion and Solubility of Copper in Iron[J]. Journal of Applied Physics,1977,48(5):1833-1839.
    [132]F. Perrard, A. Deschamps, P. Maugis. Modelling the precipitation of NbC on dislocations in a-Fe[J]. Acta Materialia,2007,55:1255-1266.
    [133]雍歧龙,,刘清友.硫化锰在钢中的Ostwald熟化过程的控制性元素的理论分析[J].特殊钢,2004,6(25):7-9.
    [134]马红旭,李友国.硅钢中析出物的尺寸分布以及体积分数的测定[J].材料科学与工程,2002,20(3):328-331.
    [135]Dorothee Dorner, Stefan Zaefferer, Dierk Raabe.Retention of the Goss orientation between micobands during cold rolling of an Fe3%Si single crystal[J].Acta Materialia,2007, 55:2519-2530.
    [136]Raabe D, LUcke K. Rolling and annealing textures Of Bcc metals[J], Materials Science Forum,1994,597-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700