用户名: 密码: 验证码:
南海次表层、中层水团结构及其运动学特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南海是北太平洋最大的边缘海,其特殊的地理位置和复杂的水深地形,使得内部水体在固有性质、运动方式和规律等方面兼有大洋和浅海双重特征,历来为海洋学者所关注。其中,南海的次表层、中层水团是水体垂向结构中两个特征最明显的水团,其物理化学性质、环流结构均为构成南海水体环境的重要部分。
     本文在收集、整理南海海区多年实际观测水文资料的基础上,融合Argo浮标观测数据、海表高度异常和蒸发降雨等再分析资料,从传统水团分析的温、盐要素出发,结合溶解氧、营养盐等化学要素,对南海水体的垂直结构和次表层、中层水团核心深度上的各要素水平空间分布情况加以阐述,分析相应层次上的水体运动特征。通过探讨气候态各要素的季节变化规律,重新给出了统计意义下的南海次表层、中层流场结构。
     文中首次将溶解氧含量纳入到南海水团的物理海洋研究中,追踪特征水体。其与垂向次表层、中层水团有着较好的对应关系,并且在等值线分布趋势中比温度、盐度变化具有更高的分辨率。
     在垂直方向上,与北太平洋水垂直分布类似,南海内部水体的温-盐关系总体上呈现反“S”结构,即在次表层水、中层水的核心深度上存在盐度极大值、极小值现象。溶解氧含量在垂直方向上形成与盐度相似的相对稳定的极值结构,即对应于水团结构其垂向上存在极大值和极小值,分别对应了次表层水的上界和中层水的下部。营养盐在垂向上表现出随深度加深,含量增大的特征,在达到极值后其量值随深度增加则几乎不变,营养盐的垂向季节变化不明显。
     黑潮入侵和南海内部水体性质在次表层的季节性变化充分反映了该层水体运动特征。统计结果显示,南海内部的次表层水体特征对南海冬季季风有着积极地响应。黑潮水在次表层主要是由吕宋海峡北部进入,沿西部陆坡向南海南部扩展,而不是按黑潮“流套”理论所示,于海峡处南进北出的路径行进;黑潮入侵在冬、夏季较强,春、秋季较弱。南海溶解氧含量终年呈现出吕宋海峡以东高于南海内部,南海内部以东南海区为低值中心的规律;营养盐含量在该水层上的分布与溶解氧截然相反,始终保持南海内部营养盐含量高于吕宋海峡以东的黑潮区,南海南部高于北部的规律,但其分布表明的水体运动态势却与溶解氧的保持基本一致。
     通过分析南海中层水核心层上多种要素的水平分布,着重以溶解氧、硝酸盐含量作为判别指标,发现中层水仍具有季节变化特征,且吕宋海峡中北部的水交换较之次表层更为复杂,导致这种变化的主要机制是海面风场引发的一种连续水体间的补偿性效应。中层水营养盐含量的分布格局总体与次表层水相同,依然是吕宋海峡以东的含量较低,南海内部含量相对较高,季节变化不明显。
     此外,本文还讨论了南海气候态年平均以及季节平均的地转流场特征,从动力学角度解释形成各要素分布结构的原因。次表层及中层流场也都具有季节变化特征,冬季南海北部二者均为气旋式环流,而夏季的次表层流场则出现偶极子结构,该结构具有约半年的时间尺度特征。结合海表面高度异常的分布,确定南海中稳定存在的两个次海盆环流分别位于吕宋岛西侧海域、越南东部外海,其时间尺度均为一个季度左右,空间尺度可达几百公里。
     最后,本文尝试将FFM (Freshwater Fraction Method)方法应用在南海与北太平洋水交换量的计算工作中,利用保守要素盐度的差异和稳定地淡水注入量估算了吕宋海峡处年平均水体交换量,结果显示吕宋海峡上400m层是水交换活跃区,水平对流在水交换过程中占据主导地位。
The South China Sea (SCS) is the largest marginal sea in the North Pacific Ocean. Since its unique geographic location and the varied topography, the SCS shows its particularities in the aspects of water inherent features, the way and the pattern of motions. All of these attract the oceanographers. The subsurface and intermediate water masses of the SCS take on prominent characteristics in the vertical. The whole environment in the SCS is influenced by the distributions and variations of physical and chemical properties and also by the circulation pattern.
     Based on collecting and processing the historical cruise data, a climatological dataset of the hydrographic elements is accomplished in this thesis. Combined with the Argo float data, sea level anomaly, evaporation and precipitation reanalysis data, the seasonal and regional variations of the elements are discussed in this thesis, mainly focusing on the vertical and horizontal distribution for temperature, salinity, dissolved oxygen (DO) and nutrients (including nitrate, phosphate and silicate). At last, it is given of an updated circulation structures on the core depths of subsurface and intermediate water masses in the statistical sense.
     In the study of analysis of the SCS water masses, it is the first time to apply dissolved oxygen data to trace typical water body. There is a better relation between the DO concentration and the water masses than that between either temperature or salinity and the water masses in the deep sea. Moreover, DO concentration has a much higher resolution in the deeper layers.
     T-S curves showed a reversed "S" vertical structure for the water near the east of Luzon Strait (LS) and the inner SCS. The salinity reached its maximum and minimum value at the core layers of subsurface and intermediate waters respectively. It is similar to the vertical structure of dissolved oxygen. The DO maximum and minimum values corresponded well to the upper boundary of subsurface water and lower part of intermediate water. The nutrients first showed an increasing trend from the surface down to a certain depth and then kept steady in the abyss, and there were no clear seasonal variations in the distribution of nutrients.
     On the subsurface water level, the kinetic mechanism could be figured out in the seasonal variations of Kuroshio intrusion and hydrologic elements. The statistic results in this thesis show that the intrusion mainly occurred at the north of the LS and extending to the south of the SCS along the continental slope in the west. The intrusion path is different from the way mentioned in hypothesis of "loop current" in which it was believed that the Kuroshio branch came to the SCS through the south end of the LS and turned back through the north. It was also shown that the intrusion depended on the SCS monsoon. In winter and summer, it was strong and turned weak in spring and autumn. It also keeps the balance with the water near the west of Palawan Island which is characterized by the low temperature, low salinity and low dissolved oxygen. The characteristics of subsurface water could respond to the winter monsoon rapidly. The distributions of dissolved oxygen and nutrients content follow the regulations:DO concentration is higher in the Kuroshio Current region and lower in the SCS; the low concentration core in the SCS occurrs at the southeast. Additionally, the distribution of nutrients are opposite to DO, i.e. it is higher in the SCS than the North Pacific, and it is higher at the south than the north in the SCS, but this opposite distribution could reflect the same water movement trends.
     Based on the multi-elements analysis on the core level of the intermediate water, the results show that a seasonal variation for DO distribution exists. The water exchange through the middle and north part of the LS is more complex than that in the subsurface water. A kind of compensatory effect in the continuous water body is the main mechanism which can cause the seasonal phenomenon. The nutrients concentrations in the intermediate water have the same regional structures with the subsurface water, but the difference is that there is no obviously seasonal variation for them.
     Furthermore, the thesis also discusses the annual mean and seasonal mean geostrophic current under the sign of climatology and gives the dynamical mechanism for the distributions. There are the basin-scale cyclonic circulations on the core level of subsurface and intermediate water masses and the circulations change in the north of the SCS during winter monsoon. The dipole shows during summer and it has the half-year time scale characteristic in the south of the SCS. Considering the sea level anomaly simultaneously, two subbasin-scale phenomenoa exist in the west of Luzon Island and offshore region in the north of Vietnam. The time scale is about one season and the spatial scale is about several hundred kilometers.
     The Freshwater Fraction Method is applied to calculate the flushing time and water transport between the SCS and the North Pacific Ocean. The conservation of salt in the sea water, the salinity difference between east and west of the LS and the steady volume of freshwater input are the key points for this experiment. From the results, most of the water exchange occurs on the upper 400m, the advection dominates over diffusion in the water exchange through the LS.
引文
[1]Astraldi M., Conversano F., Civitarese G., Gasparini G.P., Ribera d'Alcala M.and Vetrano A.. Water mass properties and chemical signatures in the central Mediterranean region. Journal of Marine Systems,2002,33-34(2002):155-177
    [2]Barker P.M., Dunn J.R., Wijffels S.E. and Domingues C.M.. Correcting pressure sensor drifts in Argo's APEX floats and evaluating their impact on estimates of ocean temperature, salinity, and thermosteric sea level. (submitted)
    [3]Beranger K., Barnier B., Gulev S. and Crepon M.. Comparing 20 years of precipitation estimates from different sources over the world ocean. Ocean Dynamics,2006,56 (2):104-138
    [4]Chen C.T.A., Huang M.H.. A mid-depth front separating the South China Sea water and the Philippine Sea Water. Journal of Oceanolography,1996,52(1):17-25
    [5]Chu P. and Li R.F.. South China Sea isopycnal-surface circulation. Journal of Physical Oceanography,2000,30:2419-2438
    [6]Ding, Y.H.. Summer monsoon rainfall in China. Journal of Meteorology Society of Japan, 1992,70:373-396
    [7]Dietrich G., Kalle K., Krauss W.. General Oceanography.2nd Ed. New York:A Wiley-Interscience Publication, John Wiley & Sons,1980.1-626
    [8]Fang W.D., Fang G.H., Shi P., Huang Q.Z. and Xie Q.. Seasonal structures of upper layer circulation in the southern South China Sea from in situ observations. Journal of Geophysical Research,2002,107(c11),3202, doi:10.1029/2002JC001343
    [9]Gan J.P. and Qu T.D.. Coastal jet separation and associated flow variability in the southwest South China Sea. Deep Sea Research I,2008,55,1-19
    [10]Hwang C. and Chen S.A.. Circulations and eddies over the South China Sea derived from TOPEX/POSEIDON altimetry. Journal of Geophysical Research,2000,105:23943-23965
    [11]Ivers W. D., The deep circulation in the northern North Atlantic, with especial reference to the Labrador Sea:[Ph.D thesis], Scripps Institute of Oceanography, University of California, San Diego.1975
    [12]Levitus, S.. Climatological atlas of the world ocean, Professional Paper 13, National Oceanic and Atmospheric. Administration, U.S. Department of Commerce, Washington, D. C.1982.
    [13]Li, L., Nowlin W.D. and Su J.L.. Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research-Part Ⅰ,1998,45:1469-1482
    [14]Lynn, R.J. and Reid J.L.. Characteristics and circulation of deep and abyssal waters. Deep Sea Research,1968,15:577-598
    [15]Liu, Q.Y., Jiang X., Xie S.P. and Liu W.T.. A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter:Seasonal development and interannual variability. Journal of Geophysical Research,2004,109, C07012, doi:10.1029/2003JC002179
    [16]Liu Z.Y., Yang H.J., Liu Q.Y.. Regional dynamics of seasonal variability in the South China Sea. Journal of Physical Oceanography,2001,31,272-284
    [17]Macdonald A.M., Suga T., Curry R.G.. An isopycnally averaged North Pacific climatology. Journal of Atmospheric and Oceanic Technology,2001,18 (3),394-420
    [18]McDougall T.J.. Neutral Surfaces, Journal of Physical Oceanography,1987,17:1950-1964
    [19]Metzger E.J. and Hurlburt H.E.. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. Journal of Geophysical Research,1996,101,12331-12352
    [20]Montgomery, R.B.. Circulation in upper layers of southern North Atlantic deduced with use of isentropic analysis. In:Physical Oceanography and Meterology,1938,6(2):1-55
    [21]Nitani H.. Beginning of the Kuroshio, In:Kuroshio, Physical aspects of the Japan current, edit by H. Stommel and K. Yoshida, editors, Univ. of Wash. Press, Seattle,1972,129-163
    [22]Qu T.D., Mitsudera H. and Yamagata T.. A climatology of the circulation and water mass distribution near the Philippine Coast. Journal of Physical Oceanography,1999,29:1488-1505
    [23]Qu T.D.. Upper layer circulation in the South China Sea, Jouranl of Physical Oceanography, 2000a,30:1450-1460
    [24]Qu T. D.. Mitsudera H. and Yamagata T.. Intrusion of the North Pacific waters into the South China Sea. Journal of Geophysical Research,2000b,105(C3):6415-6424
    [25]Qu T.D.. Evidence for water exchange between the South China Sea and the Pacific Ocean through the Luzon Strait. Acta Oceanologica Sinica (English),2002,21(2):175-185
    [26]Qu T.D., Kim Y.Y., Yaremchuk, M., Tozuka, T., Ishida, A. and Yamagata, T.. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? Journal of Climate, 2004,17(18):3644-3657
    [27]Qu T.D., Girton J.B. and Whitehead J. A.. Deepwater overflow through Luzon Strait. Journal of Geophysical Research,2006,111, C01002, doi:10.1029/2005 JC003139.
    [28]Reid J.L. and Lynn R.J.. On the influence of the Norwegian-Greenland and Weddell Seas upon the bottom waters of the Indian and Pacific oceans. Deep Sea Research,1971,18:1063-1088
    [29]Reid J. L.. On the mid-depth circulation of the world ocean, In Evolution of Physical Oceanography. B. A. Warren and C. Wunsch, eds.,1981,70-111
    [30]Shaw P.T.. The intrusion of water masses into the sea southwest of Taiwan. Journal of Geophysical Research,1989,94:18213-18226
    [31]Shaw P. T.. The seasonal variation of the intrusion of the Philippine Sea Water into the South China Sea. Journal of Geophysical Research,1991,96:821-827
    [32]Shaw P.T. and Chao, S.Y.. Surface circulation in the South China Sea. Deep Sea Research Part I-Oceanographic Research Papers,1994,41 (11-12):1663-1683
    [33]Shaw P.T., Chao S.Y. and Fu L.L.. Sea surface height variation in the South China Sea from satellite altimetry. Oceanologica Acta,1999,22(1):1-17
    [34]Sverdrup H. U., Johnson M. W. and Fleming R. H.. The Oceans, their physics, chemistry and general biology. New York:Prentice-Hall, INC,1946:1-1087
    [35]Tian J.W., Yang Q.X., Liang X.F., Hu D.X., Wang F. and Qu T.D.. Observation of Luzon Strait transport, Geophysical Research Letters,2006,33, L19607, doi:10.1029/2006GL026272
    [36]Tomczak M., personal web page for lecture notes:Shelf and Coastal Oceanography.2000, http://www.es.flinders.edu.au/-mattom/ShelfCoast/notes/chapterl5.html
    [37]Tseng C.M., Wong G.T.F., Lin I.I., Wu C.R. and Liu K.K.. A unique seasonal pattern in phytoplanktion biomass in low-latitude waters in the South China Sea. Geophysical Research Letters,2005,32, L08608, doi:10.1029/2004GL022111
    [38]Strutton P.G., Bye J.A.T. and Mitchell, J.G.. Determining coastal inlet flushing times:a practical expression for use in aquaculture and pollution management. Aquaculture Research, 1996,27,497-504
    [39]Wang G.H., Su J.L., Chu P.C.. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters,2003,30 (21),2121, doi:10.1029/2003GL018532.
    [40]Wang J.. Observation of abyssal flows in the northern South China Sea. Acta Oceanographica Taiwanica,1986,16,36-45
    [41]Wust, G. Das Bodenwasser und die Gliederung der Atlantischen Tiefsee. Wiss. Ergebn. Dtsch. Atlant. Exped. "Meteor",1933,6(1), (1):1-107
    [42]Wyrtki K.. Physical oceanography of the southern Asian waters. NAGA Report, University of California, SIO,2,1961:1-195
    [43]Xu J.P., Shi M.C., Zhu B.K. and Liu Z.H.. Several characteristics of water exchange in the Luzon Strait. Acta Oceanologica Sinica,2004,23(1):11-22
    [44]You Y.Z., Chern C.S., Yang Y. and Liu C.T.. The South China Sea, a cul-de-sac of North Pacific Intermediate Water. Journal of Oceanography,2005,61:509-527
    [45]You Y.Z.. Review of Global Ocean Intermediate Water Masses:1.Part A,the Neutral Density Surface (the'McDougall Surface') as a Study Frame for Water-Mass Analysis. Journal of Ocean University of China,2006,5(3):187-199
    [46]Yuan D.L.. Dynamics of the Luzon Strait transports. Acta Oceanologica Sinica,2002,21(2): 175-185
    [47]Yuan Y.C., Liu Y.H., Liu C.T. and Su J.L.. The Kuroshio east of Taiwan and the currents east of the Ryukyu-gunto during October of 1995. Acta Oceanologica Sinica,1998a,17(1):1-13
    [48]Yuan Y.C., Kaneko A., Su J.L., Zhu X.H., Liu Y.G., Gohda N. and Chen H.. The Kuroshio East of Taiwan and in the East China Sea and the Currents East of Ryukyu Islands during Early Summer of 1996. Journal of Oceanography,1998b,54:217-226
    [49]Zeng L. L., Shi P., Liu W.T. and Wang D.X.. Evaluation of a satellite- derived latent heat flux product in the South China Sea:A comparison with moored buoy data and various products. Atmospheric Research,2009, doi:10.1016/j.atmosres.2008.12.007.
    [50]Zhu Q.G., He J.H. and Wang P.X.. A study of circulation differences between East-Asian and Indian summer monsoons with their interactions, Advances in Atmospheric Sciences,1986,3: 466-477
    [51]蔡树群,龙小敏,陈荣裕,王盛安,黄企洲.春季南沙群岛海区环流结构的探讨.热带海洋学报,2004,23(2):37-44
    [52]刁焕祥,姜传贤,陆家平.南海溶解氧垂直分布最大值.海洋学报,1984,6(6):770-780
    [53]范立群,苏育嵩,李凤岐.南海北部海区水团分析.海洋学报,1988,10(2):136-145
    [54]方文东,郭忠信,黄羽庭.南海南部海区的环流观测研究.科学通报,1997,42(21):2264-2271
    [55]方文东,黄企洲,邱章,施平.春夏季季风转换期南海南部异常表层水.热带海洋学报,2001,20(1):77-81
    [56]冯士榨,李凤岐,李少菁等.海洋科学导论.北京:高等教育出版社,1999.ISBN7-04-007267-X
    [57]郭忠信,杨天鸿,仇德忠.冬季南海暖流及其右侧的西南向海流.热带海洋,1985,4(3):1-8
    [58]赫崇本,管秉贤.南海中部NE-SW向断面海水热盐结构以及海盆冷水来源的分析.海洋与湖沼,1984,15(5):411-415
    [59]黄企洲.巴士海峡的海洋学状况.南海海洋科学集刊,1984,6:54-66
    [60]黄企洲,邱章.1989年南沙群岛海区的温、盐度分布和水团.中国科学院南沙综合科学考察队.南沙群岛海区物理海洋学研究论文集Ⅰ.北京:海洋出版社,1994.178-190
    [61]黄自强,暨卫东.用水文化学要素聚类分析台湾海峡西部水团.海洋学报,1995,17(1):40-51
    [62]兰健,于非,鲍颖.南海南部海域的多涡结构.海洋科学进展,2005,23(4):408-413
    [63]李凤岐,苏育嵩,范立群.南海北部海区水团的判别分析.海洋湖沼通报,1987,3:15-20
    [64]李凤岐,苏育嵩.海洋水团分析.青岛:青岛海洋大学出版社,ISBN 7-81067-100-6,1999.1-397
    [65]李凤岐,李磊,王秀芹,刘长乐.1998年夏、冬季南海的水团及其与太平洋的水交换.青岛海洋大学学报,2002,32(3):329-336
    [66]李立.南海海水的T-S特性点聚图及其简要说明.台湾海峡,1987,6(1):93-96
    [67]李立.南海中尺度海洋现象研究概述.台湾海峡,2002,21(2):265-274
    [68]李薇,李立,刘秦玉.吕宋海峡及南海北部海域的水团分析.台湾海峡,1998,17(2):207-213
    [69]李磊,李凤岐,苏洁,许建平.1998年夏、冬季南海水团分析.海洋与湖沼,2002,33(4):393-401
    [70]廖光宏,袁耀初,王彰贵.1998年夏季南海环流的三维结构.海洋学报,2006,28(5):15-25
    [71]林洪瑛,韩舞鹰,王汉奎,程赛伟.南沙群岛海域溶解氧垂直分布最大值的季节特征.海洋学报,2001,23(5):65-69
    [72]林洪瑛,程赛伟,韩舞鹰,王汉奎.南沙群岛海域次表层溶解氧垂直分布最大值的强度特征.热带海洋学报,2003,22(3):9-15
    [73]刘长建,杜岩,张庆荣,王东晓.南海次表层和中层水团年平均和季节变化特征.海洋与湖沼,2008,39(1)55-64
    [74]刘克修,马继瑞,许建平,韩桂军,范振华等.用TOPEX/POSEIDON资料研究南海海面高度和地转流的季节变化.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001.231-239
    [75]刘金芳,毛可修,闫明,张绪东,石永军.吕宋冷涡时空特征概况.海洋预报,2006,23(2):39-44
    [76]刘秦玉,杨海军,李薇,刘倬腾.吕宋海峡纬向海流及质量输送.海洋学报,2000,22(2):1-8
    [77]刘小涯,潘建明,张海生,姚龙奎.南海海水中DO的平面、垂直分布以及海气交换通量.海洋学研究,2005,23(4):41-48
    [78]刘增宏,李磊,许建平,侍茂崇.1998年夏季南海水团分析.东海海洋,2001a,19(3):1-10
    [79]刘增宏,许建平,李磊,侍茂崇.1998年夏冬季节的南海水团及其分布.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001b.221-229
    [80]毛汉礼,任允武,万国铭.应用T-S关系定量地分析浅海水团的初步研究.海洋与湖沼,1964,6(1):1-22
    [81]仇德忠,杨天鸿,郭忠信.夏季南海北部一支向西流动的海流.热带海洋,1984,3(4):65-72
    [82]侍茂崇,江明顺,许建平,薛惠洁,柴扉.南海西南部环流.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001.57-63
    [83]苏纪兰,许建平,蔡树群,王欧.南海的环流和涡旋.见:丁一汇和李崇银.南海季风爆发和演变及其与海洋的相互作用.北京:气象出版社,1999.66-72
    [84]苏纪兰.南海环流动力机制研究综述.海洋学报,2005,27(6):1-8
    [85]孙成学.吕宋岛西北海域气旋式涡旋的结构及其形成机制:[博士学位论文].青岛:中国海洋大学,2009
    [86]田天,魏皓.南海北部及巴士海峡附近的水团分析.中国海洋大学学报,2005,35(1):9-13
    [87]王凡,赵永平,冯志刚,白学志,吴爱明.1998年春夏南海温、盐结构及其变化特征.海洋学报,2001,23(5):1-12
    [88]王东晓,杜岩,施平.南海上层物理海洋学气候图集.北京:气象出版社,2002.
    [89]王东晓,陈举,陈荣裕,朱伯承,郭小刚,许金电,吴日升.2000年8月南海中部与南部海洋温、盐与环流特征.海洋与湖沼,2004,35(2):97-109
    [90]王胄,陈庆生.南海东北部海域次表层水与中层水之流径.热带海洋,1997,16(2):24-41
    [91]王桂华.南海中尺度涡的运动规律探讨:[博士学位论文].青岛:中国海洋大学,2004
    [92]王桂华,苏纪兰,齐义泉.南海中尺度涡研究进展.地球科学进展,2005,20(8):882-886
    [93]吴日升,李立.南海上升流研究概述.台湾海峡,2003,22(2):269-277
    [94]吴巍,Tomczak M.,方欣华,吴德星.南海南部海区的障碍层.科学通报,2001,46(7):590-594
    [95]许建平,苏纪兰.黑潮水入侵南海的水文分析Ⅱ.1994年8-9月观测结果.热带海洋,1997,16(2):1-23
    [96]许建平,潘玉球,柴扉,刘增宏,朱康伯.1998年春夏季南海若干重要水文特征及其形成机制分析.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001a,211-219
    [97]许建平,李金洪,刘增宏,朱伯康.1998年夏季风暴发前后南海海洋水文特征及其变异.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001b.197-210
    [98]薛惠洁,柴扉,徐丹亚,侍茂崇.南海沿岸流特征及其季节变化.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001a.64-75
    [99]薛惠洁,柴扉,徐丹亚,侍茂崇等.南海海流数值计算.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001b.1-13
    [100]薛惠洁,柴扉,侍茂崇.南海东北部黑潮的入侵及其环流.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001c.23-37
    [101]薛惠洁,柴扉,侍茂崇.吕宋海峡水平通量计算.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001d.152-167
    [102]徐锡祯,邱章,陈惠昌.南海水平环流概述.中国海洋湖沼学会水文气象学会学术会议(1980)论文集.北京:科学出版社,1982.127-145
    [103]许艳苹.南海西部冷涡区域上层海洋营养盐的动力学.:[硕士学位论文].厦门:厦门大学,2009
    [104]杨嘉东.南海中部海区溶解氧垂直分布最小值.海洋与湖沼,1991,22(4):353-359
    [105]叶安乐,李凤岐.物理海洋学.青岛:青岛海洋大学出版社,1992.ISBN7-81026-061-8/P.10,16-48
    [106]朱赖民,暨卫东.夏季南海水团垂直分布的聚类分析研究.海洋湖沼通报,2002,4:1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700