用户名: 密码: 验证码:
中国近海溶解碳水化合物的浓度分布与影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳水化合物是海洋中溶解有机碳的主要组成部分,是海洋有机体主要的能量、存储和结构物质,在海洋碳循环和食物链循环中起着非常重要的作用。因此开展典型近海海洋环境中溶解碳水化合物的生物地球化学研究,对明确有机物的性质、来源及其迁移转化过程具有重要意义。
     本文以中国近海有代表性的南海、东海、黄海和受人类活动影响较大的胶州湾为研究目标,对这些海域中溶解态单糖(MCHO)和多糖(PCHO)的浓度分布、时空变化、影响因素以及对溶解有机碳(DOC)的贡献情况进行了较为系统的研究,同时对胶州湾及其邻近海域微表层中MCHO和PCHO的浓度分布及富集情况进行了考察。主要研究结果如下:
     1.在实验室中建立了海水中溶解MCHO和PCHO的测定方法,其检测限为2.2μM C,精密度为1.7%-8.3%,与国外同类方法相当。
     2.于2009年3-4月对南海东北部及其邻近海域MCHO和PCHO的分布进行了研究,结果表明南海东北部表层海水中MCHO和PCHO的浓度分别在2.5-21.9μM C和3.4-27.9μM C之间,平均浓度分别为7.0和9.5μM C,远低于世界其他近岸海域的浓度,接近于大西洋和太平洋等开阔大洋的浓度,这显然与南海海域比较低的浮游植物生物量和生产力有关。调查海域表层海水中MCHO和PCHO浓度的高值区主要集中在珠江口附近、吕宋岛西北部和东北部附近海域。PCHO与MCHO浓度的比值在0.7-2.5之间,平均值为1.4,说明PCHO是溶解碳水化合物的主要组成部分。MCHO和PCHO浓度在150 m以浅的水体中有一个高值出现,不同深度的大洋水中(500 m、1000 m或2000 m),受复杂生物化学环境的影响,MCHO和PCHO浓度也会出现高值。周日变化的研究表明,PCHO浓度在下午15:00达到最大,在夜晚最低;MCHO浓度的高值时间滞后于PCHO浓度的高值时间,印证了“部分单糖是由多糖水解而来的”这个结论。
     3.于2007年11月和2009年5月分别对东海、南黄海不同深度海水中溶解MCHO和PCHO进行了调查。秋季东海、南黄海表层海水中MCHO和PCHO的浓度分别在3.1-11.7μM C和4.0-17.6μM C之间,平均值分别为6.2和6.7μM C;春季MCHO和PCHO浓度变化范围较大,分别在2.6-34.1μM C和3.7-75.1μMC之间,平均值分别为11.5和21.6μM C,明显高于秋季的调查结果。秋季表层海水中MCHO和PCHO分别平均占DOC的5.1%和5.5%,春季MCHO和PCHO分别平均占DOC的6.8%和13.1%,说明MCHO和PCHO是东海、南黄海表层海水中DOC的重要组成部分。受到长江冲淡水和黑潮水的影响,表层海水中MCHO和PCHO浓度的水平分布表现出由近岸向外海递减的分布趋势,但两个季节又呈现各自一定的特点。03断面黄海冷水团中的海水具有较低的MCHO、PCHO和浮游植物生物量。05断面东南部随着高盐、寡营养盐的黑潮水对东海的入侵,C0510和C0512站位100 m以深水体中出现MCHO、PCHO和浮游植物浓度的低值区。
     4.利用2007年1-10月的三个航次对北黄海MCHO和PCHO的时空分布及季节变化特征进行了系统研究。北黄海表层海水中MCHO和PCHO的浓度分别在4.5-19.3μM C和0.8-27.0μM C之间,年平均浓度分别为10.8和10.1μM C。秋季海水中溶解态MCHO和PCHO分别平均占DOC的4.1%和4.8%,是北黄海表层海水中DOC的重要组成部分。北黄海表层海水中MCHO浓度冬季最高,春季次之,秋季最低;PCHO浓度春季最高,冬季次之,秋季最低。不同季节MCHO和PCHO的水平分布特征基本相同,即呈现从辽东半岛、山东半岛近岸向外海海域逐渐降低的趋势。秋季北黄海MCHO和PCHO的垂直分布表现出类似的特征,即表层浓度略高,随着深度的增大略有减小,但变化不大。这主要是北黄海水深较浅,30 m以上水体垂直分布较为均匀,下层冷水区域内有机物沉降分解等过程对碳水化合物浓度有一定的补充作用所致。
     5.利用2007年8月-2008年4月的四个航次对胶州湾表层海水中MCHO和PCHO的时空分布及季节变化特征进行了研究,结果表明全年胶州湾表层海水中MCHO和PCHO的浓度分别在1.7-65.9μM C和0.3-210.2μM C之间,年平均浓度分别为13.2和21.0μM C。溶解态MCHO和PCHO全年分别平均占DOC的4.5%和7.4%,是胶州湾表层海水中DOC的重要组成部分。不同季节MCHO和PCHO的浓度变化范围较大,水平分布也略有差异,但其高值区大都集中在胶州湾东部和西部近岸海域,呈现出由近岸向湾中部递减的趋势,这主要是受到青岛市及周边地区工农业生产的迅速发展、大量工农业生产废水和居民生活污水的排入、湾内西部和东北部水域水产养殖业的发展以及胶州湾南北往复式的潮流体系的影响。胶州湾表层海水中MCHO和PCHO浓度呈现出明显的季节变化,冬季最高,秋夏季次之,春季最低,冬季MCHO和PCHO平均浓度值分别是春季平均值的2.6和4.4倍。胶州湾表层海水中PCHO/MCHO和PCHO/DOC也呈现出明显的季节变化,分别在冬季和夏季出现两个高峰,与浮游植物生物量的双峰型季节变化趋势一致。MCHO能够直接被异养细菌吸收利用,迅速参与新陈代谢过程,具有较强生物活性,所以MCHO/DOC的月平均变化范围较小,季节变化不明显。线性回归结果表明,夏、春季航次中,表层海水中总溶解碳水化合物浓度和盐度具有显著的线性负相关性,进一步说明了河流输入对胶州湾内碳水化合物浓度分布的重要影响。
     6.于2008年7月和11月分别对胶州湾及其邻近海域微表层与表层海水中MCHO和PCHO的浓度分布及富集情况进行了研究。夏季胶州湾微表层海水中MCHO和PCHO浓度分别为22.5(4.7-54.7)和24.3(8.3-48.6)μM C,秋季胶州湾及其邻近海域微表层海水中的浓度分别为15.3(7.5-42.5)和20.8(11.3-36.6)μM C。因此,微表层海水中MCHO和PCHO浓度呈现出一定的季节变化,夏季高于秋季,这可能是受到夏季胶州湾及其邻近海域浒苔大规模爆发的影响。夏季MCHO和PCHO在微表层的平均富集因子分别为1.3和1.4,秋季平均富集因子分别为1.9和1.6,表明MCHO和PCHO在微表层中都得到一定程度的富集,而且夏季的富集程度低于秋季,这与碳水化合物本身的物理化学性质、水体性质以及海区海况等环境条件密切相关。线性回归分析表明,微表层中MCHO、PCHO和DOC与它们在表层中的浓度显著相关,说明微表层与表层水体间具有频繁、强烈的交换作用。表层海水中总溶解碳水化合物和盐度具有显著的线性负相关性,充分说明了河流输入和水团混合过程对胶州湾及其邻近海域内碳水化合物浓度的重要影响。
Carbohydrates are the largest identified fraction of dissolved organic carbon in the ocean, and they serve as energy, storage, and structural components in marine organisms, which play important roles in the marine carbon cycle and marine food web cycle. Therefore studies on the biogeochemistry of dissolved carbohydrates in representative coastal waters will be helpful for realizing the characteristics, sources and degradation pathways of the organic matter.
     In the present dissertation, distributions, influencing factors of dissolved monosaccharides (MCHO) and polysaccharides (PCHO), and their contributions to dissolved organic carbon (DOC) in the coastal waters of China, i.e. the South China Sea, the East China Sea, the Yellow Sea and the Jiaozhou Bay, were systematically studied for the first time. Furthermore, the distributions and enrichment factors of MCHO and PCHO in the surface microlayer water of the Jiaozhou Bay and its adjacent area were detailedly investigated. The main conclusions are drawn as follows:
     1. The spectrophotometric method has been developed in our lab for the determination of dissolved MCHO and PCHO in seawater based on the references. The detection limit is 2.2μM C and the precision varies from 1.7% to 8.3%.
     2. The concentrations of MCHO and PCHO were determined in the northeastern South China Sea from March to April 2009. In the surface water, average concentrations of MCHO and PCHO were 7.0 and 9.5μM C, respectively. We found that these values in the study area were much lower than the values obtained from the other coastal and estuarine locations. On the other hand, our data were consistent with those of the Atlantic and Pacific Ocean water, which was attributed to the low phytoplankton biomass and primary production in this area. Higher concentrations of MCHO and PCHO occurred in the Zhujiang delta region, the northwest and northeast regions of the Luzon Island. The ratios of PCHO to MCHO ranged from 0.7 to 2.5 with an average of 1.4, suggesting that the polymeric compounds were much more abundant in total dissolved carbohydrates. Higher concentrations of MCHO and PCHO were observed in the water less than a depth of 150 m for vertical profiles. Higher values were also found in the deeper water (500 m,1000 m, or 2000 m depth). The concentrations of PCHO showed a diurnal variation at an anchor station with the highest value at 15:00 and lowest value at night. The maximum concentration of MCHO appeared at 18:00, which was later than that of PCHO. This observation further supported the hypothesis that MCHO was derived, in part, from the hydrolysis of PCHO.
     3. The horizontal and vertical distributions of MCHO and PCHO were examined in the East China Sea and the South Yellow Sea in November 2007 and May 2009, respectively. The concentrations of MCHO and PCHO in the surface water ranged from 3.1 to 11.7μM C and from 4.0 to 17.6μM C in autumn, respectively, with average values of 6.2 and 6.7μM C. In contrast, the average values of MCHO and PCHO in spring were 11.5 and 21.6μM C, respectively, which were higher than those in autumn. On average, MCHO and PCHO accounted for 5.1% and 5.5% of DOC in autumn, respectively, while MCHO and PCHO accounted for 6.8% and 13.1% of DOC in spring. This result indicated that dissolved carbohydrates were an important constituent of DOC in the surface seawater of the East China Sea and the South Yellow Sea. The horizontal distributions of MCHO and PCHO were obviously influenced by the Yangtze River effluent and the oligotrophic Kuroshio waters, decreasing from inshore to offshore sites. At transect 03, MCHO, PCHO and phytoplankton biomass showed low values in the Yellow Sea Cold Water Mass. At the southeastern part of transect 05, the low concentrations of NCHO, PCHO and phytoplankton biomass reflected the characteristics of Kuroshio waters.
     4. Seasonal variations of MCHO and PCHO were investigated during three cruises in the North Yellow Sea from January to October 2007. The concentrations of MCHO and PCHO varied from 4.5 to 19.3μM C and from 0.8 to 27.0μM C in the surface water, respectively, with annual averages of 10.8 and 10.1μM C. On average, MCHO and PCHO accounted for 4.1% and 4.8% of DOC, respectively. The concentrations of MCHO showed an obvious seasonal variation with highest average value in winter and lowest value in autumn. In contrast, the maximum average concentration of PCHO was 12.8μM C in spring and the minimum value was 8.1μM C in autumn, respectively. Both MCHO and PCHO displayed a similar distribution pattern in different seasons, decreasing gradually from the shore waters of Liaodong and Shandong Peninsula to the open sea. The concentrations of MCHO and PCHO at four stations in autumn decreased gradually from the surface layer to the bottom layer. However, the difference of concentrations between the surface and bottom water was not significant. This trend was consistent with the well-mixing aquatic system between 0 and 30 m in autumn, and the supplement of dissolved carbohydrates from the bottom water by microbial hydrolysis of organic matter.
     5. The distributions and seasonal variations of MCHO and PCHO in the surface water of the Jiaozhou Bay were investigated during four cruises from August 2007 to April 2008. The concentrations of MCHO and PCHO ranged from 1.7 to 65.9μM C and from 0.3 to 210.2μM C for all samples, respectively, with annual averages of 13.2 and 21.0μM C. On average, MCHO and PCHO accounted for 4.5% and 7.4% of DOC, respectively. This result indicated that dissolved carbohydrates were an important constituent of DOC in the surface seawater of the Jiaozhou Bay. Although the concentrations of MCHO and PCHO varied during difference cruises, higher concentrations occurred in the east and west coast region, decreasing gradually from the coast to the central region. This pattern may be strongly influenced by the industrial and domestic waste discharges, the development of shellfish aquaculture in the western and northeastern eutrophic coast, and the tidal current which moves back and forth in the north-south direction. The concentrations of MCHO and PCHO exhibited a marked seasonal variation, with the highest values in winter and the lowest in spring. As a mean, the concentrations of MCHO and PCHO in winter are 2.2 and 4.4 times higher than those in spring, respectively. The ratios of PCHO to MCHO exhibited two peaks in winter and summer, respectively, as well as the ratios of PCHO to DOC, which fundamentally coincided with those of phytoplankton biomass in the bay. MCHO were biologically labile molecules, which could be taken up directly and metabolized quickly by heterotrophic bacteria. Chemically they would be more stable than PCHO in seawater. Thus, it was reasonable that the ratios of MCHO to DOC varied less than those of PCHO. Negative correlations between concentrations of total dissolved carbohydrates and salinity in summer and spring suggested that riverine input around the Jiaozhou Bay had an important contribution to the concentrations of dissolved carbohydrates in surface seawater.
     6. The properties and enrichment factors of dissolved MCHO and PCHO were studied in the sea surface microlayer and their related bulk surface water of the Jiaozhou Bay and its adjacent area in July and November,2008, respectively. The concentrations of MCHO and PCHO in the surface microlayer varied in the ranges of 4.7-54.7 and 8.3-48.6μM C in July, respectively, compared to 7.5-42.5 and 11.3-36.6μM C in November. Average concentrations in July were 22.5 and 24.3μM C for MCHO and PCHO, respectively, while those values in November were 15.3 and 20.8μM C. The values were higher in July than in November, presumably due to the remarkably high phytoplankton biomass caused by a green-tide occurred in July 2008 in the bay and its adjacent area. MCHO and PCHO exhibited an extent of enrichment in the microlayer relative to those in the surface water. The average enrichment factors of MCHO and PCHO in the surface microlayer were 1.3 and 1.4 in July, respectively. In contrast, the average enrichment factors of MCHO and PCHO in November were 1.9 and 1.6. Thus, the microlayer enrichment of MCHO and PCHO also displayed seasonal variation, with smaller value in summer, which was attributed to the carbohydrate characteristics and the physical and chemical environment. Our data also showed that the concentrations of MCHO, PCHO, and DOC in the surface microlayer were strongly correlated with those in the surface water, indicating that there was a strong exchange effect between the microlayer and the underlying water. The concentrations of total dissolved carbohydrates in the bulk surface water were closely correlated with salinity during the cruises, suggesting that riverine input and water exchange processes had an important effect on the concentrations of dissolved carbohydrates in surface seawater of the investigated area.
引文
[1]Adamson A W. Physical chemistry of surfaces. New York:John Wiley & Sons, Inc.,1976, 698
    [2]Benner R, Opsahl S. Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi river plume. Organic Geochemistry,2001,32:597-611
    [3]Benner R, Pakulski J D, McCarthy M, Hedges J I, Hatcher P G. Bulk chemical characteristics of dissolved organic matter in the ocean. Science,1992,255:1561-1564'
    [4]Bhosle N B, Bhaskar P V, Ramachandran S. Abundance of dissolved polysaccharides in the oxygen minimum layer of the Northern Indian Ocean. Marine Chemistry,1998,63: 171-182
    [5]Bhosle N B, Sankaran P D, Wagh A B. Monosaccharide composition of suspended particles from the Bay of Bengal. Oceanologica Acta,1992,15:279-286
    [6]Bianchi A, Wambeke F V, Garcin J. Bacterial utilization of glucose in the water column from eutrophic to oligotrophic pelagic areas in the eastern North Atlantic Ocean. Journal of Marine Systems,1998,14:45-35
    [7]Biddanda B, Benner R. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnology and Oceanography,1997,42:506-518
    [8]Borch N H, Kirchman D L. Concentration and composition of dissolved combined neutral sugars (polysaccharides) in seawater determined by HPLC-PAD. Marine Chemistry,1997, 57:85-95
    [9]Borsheim K Y, Myklestad S M, Sneli J A. Monthly profiles of DOC, mono-and polysaccharides at two locations in the Trondheimsfjord (Norway) during two years. Marine Chemistry,1999,63:255-272
    [10]Borsheim K Y, Vadstein O, Myklestad S M, Reinertsen H, Kirkvold S, Olsen O. Photosynthetic algal production, accumulation and release of phytoplankton storage carbohydrates and bacterial production in a gradient in daily nutrient supply. Journal of Plankton Research,2005,27:743-755
    [11]de Brouwer J F C, de Deckere E M G T, Stal L J. Distribution of extracellular carbohydrates in three intertidal mudflats in Western Europe. Estuarine, Coastal and Shelf Science,2003, 56:313-324
    [12]Burney C M, Davis P G, Johnson K M, Sieburth J M. Diel relationships of Microbial trophic groups and in situ dissolved carbohydrate dynamics in the Caribbean Sea. Marine Biology,1982,67:311-322
    [13]Burney C M, Johnson K M, Lavoie D M, Sieburth J M. Dissolved carbohydrate and microbial ATP in the North Atlantic:concentrations and interactions. Deep-Sea Research, 1979,26A:1267-1290
    [14]Burney C M, Sieburth J M. Dissolved carbohydrates in seawater:Ⅱ A spectrophotometric procedure for total carbohydrate analysis and polysaccharide estimation. Marine Chemistry, 1977,5:15-28
    [15]Carlson D J, Mayer L M. Enrichment of dissolved phenolic organic material in the surface microlayer of coastal waters. Nature,1980,286:482-483
    [16]Carlson D J. Surface microlayer phenolic enrichments indicate Sea Surface Slicks. Nature, 1982,296:426-429
    [17]Carlson D J. Dissolved organic materials in surface microlayers:temporal and spatial variability and relation to sea state. Limnology and Oceanography,1983,28:415-431
    [18]Carlson D J, Canter J L, Cullen J J. Desription of and results from a new surface microlayer sampling device, Deep-Sea Research,1988,35:1205-1213
    [19]Chen C T A. Chemical and physical fronts in the Bohai, Yellow and East China seas. Journal of Marine Systems,2009,78:394-410
    [20]Cheng X H, Kaplan L A. Improved analysis of dissolved carbohydrates in stream water with HPLC-PAD. Analytical Chemistry,2001,73:458-461
    [21]Clarke A J, Sarabia V, Keenleyside W, Maclachlan P R, Whitfield C. The compositional analysis of bacterial extracellular polysaccharides by high-performance anion-exchange chromatography. Analytical Biochemistry,1991,199:68-74
    [22]Compiano A-M, Romano J-C, Garabetian F, Laborde P, de la Giraudiere I. Monosaccharide composition of particulate hydrolysable sugar fraction in surface microlayers from brackish and marine waters. Marine Chemistry,1993,42:237-251
    [23]Dagg M, Benner R, Lohrenz S, Lawrence D. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers:plum processes. Continental Shelf Research,2004,24:833-858
    [24]Daumas R A, Pierre L L, Marty J C, Saliot A. Influence of sampling method on the chemical composition of water surface film. Limnology and Oceanography,1976,21: 319-326
    [25]Eberlein K, Brockmann U H, Hammer K D, Kattner G, Laake M. Total dissolved carbohydrates in an enclosure experiment with unialgal Skeletonema costatum culture. Marine Ecology-Progress Series,1983,14:45-58
    [26]Engbrodt R, Kattner G. On the biogeochemistry of dissolved carbohydrates in the Greenland Sea (Arctic). Organic Geochemistry,2005,36:937-948
    [27]Garcia-Flor N, Guitart C, Abalos M, Dachs J, Bayona J M, lbaiges J. Enrichment of organochlorine contaminants in the sea surface microlayer:An organic carbon-driven process. Marine Chemistry,2005,96:331-345
    [28]Garrett W D. Collection of slick-forming materials from the sea surface. Limnology and Oceanography,1965,10:602-605
    [29]Gors S, Rentsch D, Schiewer U, Karsten U, Schumann R. Dissolved organic matter along the eutrophication gradient of the Darβ-Zingst Bodden Chain, Southern Baltic Sea:Ⅰ. Chemical characterisation and composition. Marine Chemistry,2007,104:125-142
    [30]Granum E. Metabolism and function ofβ-1,3-glucan in marine diatoms:[Ph.D. Thesis]. Trondheim:Norwegian University of Science and Technology,2002
    [31]Gremm T J, Kaplan L A. Dissolved carbohydrates in streamwater determined by HPLC and pulsed amperometric detection. Limnology and Oceanography,1997,42:385-393
    [32]Guo L D, Hung C-C, Santschi P H, Walsh I D.234Th scavenging and its relationship to acid polysaccharide abundance in the Gulf of Mexico. Marine Chemistry,2002,78:103-119
    [33]Guo L D, Tanaka T, Wang D L, Tanaka N, Murata A. Distributions, speciation and stable isotope composition of organic matter in the southeastern Bering Sea. Marine Chemistry, 2004,91:211-226
    [34]Hama T, Yanagi K. Production and neutral aldose composition of dissolved carbohydrates excreted by natural marine phytoplankton populations. Limnology and Oceanography,2001, 46:1945-1955
    [35]Handa N. Distribution of dissolved carbohydrate in the Indian Ocean. Journal of the Oceanographical Society of Japan,1966a,22:50-55
    [36]Handa N. Examination on the applicability of the phenol sulfuric acid method to the determination of dissolved carbohydrate in sea water. Journal of the Oceanographical Society of Japan,1966b,22:79-86
    [37]Harvey G W. Microlayer collection from the sea surface:A new method and initial results. Limnology and Oceanography,1966,11:608-613
    [38]Hayakawa K. Seasonal variations and dynamics of dissolved carbohydrates in Lake Biwa. Organic Geochemistry,2004,35:169-179
    [39]Hedges J I. Global biogeochemical cycles:progress and problems. Marine Chemistry,1992, 39:67-93
    [40]Hellebust J A. Extracellular products. In:Algal Physiology and Biochemistry. Stewart, W D P, ed. Cambridge:Blackwell Scientific Publications,1974:838-854.
    [41]Henrichs S M, Williams P M. Dissolved and particulate amino acids and carbohydrates in the sea surface microlayer. Marine Chemistry,1985,17:141-163
    [42]Hernes P J, Hedges J I, Peterson M L, Wakeham S G, Lee C. Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific. Deep-Sea Research II, 1996,43:1181-1204
    [43]Hung C-C, Gong G-C, Chiang K-P, Chen H-Y, Yeager K M. Particulate carbohydrates and uronic acids in the northern East China Sea. Estuarine, Coastal and Shelf Science,2009,84: 565-572
    [44]Hung C-C, Guo L D, Santschi P H, Alvarado-Quiroz N, Haye J M. Distributions of carbohydrate species in the Gulf of Mexico. Marine Chemistry,2003,81:119-135
    [45]Hung C-C, Tang D G, Warnken K W, Santschi P H. Distributions of carbohydrates, including uronic acids, in esturarine waters of Galveston Bay. Marine Chemistry,2001,73: 305-318
    [46]Hung C-C, Warnken K W, Santschi P H. A seasonal survey of carbohydrates and uronic acids in the Trinity River, Texas. Organic Geochemistry,2005,36:463-474
    [47]Jahnel J B, Ilieva P, Frimmel F H. HPAE-PAD-a sensitive method for the determination of carbohydrates. Journal of Analytical Chemistry,1998,360:827-829
    [48]Jensen M M, Holmer M, Thamdrup B. Composition and diagenesis of neutral carbohydrates in sedments of the Baltic-North Sea transition. Geochimica et Cosmochimica Acta,2005,69: 4085-4099
    [49]Johnson K M, Sieburth J M. Dissolved carbohydrates in seawater. I. A precise spectrophotometric analysis for monosaccharides. Marine Chemistry,1977,5:1-13
    [50]Jorgensen N O G, Jensen R E. Microbial fluxes of free monosaccharides and total carbohydrates in freshwater determined by PAD-HPLC. FEMS Microbiology Ecology, 1994,14:79-94
    [51]Kaiser K, Benner R. Biochemical composition and size distribution of organic matter at the Pacific and Atlantic time-series stations. Marine Chemistry,2009,113:63-77
    [52]Kaiser K, Benner R. Determination of amino sugars in environmental samples with high salt content by high-performance anion-exchange chromatography and pulsed amperometric detection. Analytical Chemistry,2000,72:2566-2572
    [53]Kahler P, Bjornsen P K, Lochte K, Antia A. Dissolved organic matter and its utilization by bacteria during spring in the Southern Ocean. Deep-Sea Research Ⅱ,1997,44:341-353
    [54]Kerherve P,Buscail R, Gadel F, Serve L. Neutral monosaccharides in surface sediments of the northwestern Mediterranean Sea. Organic Geochemistry,2002,33:421-435
    [55]Khodse V B, Fernandes L, Gopalkrishna V V, Bhosle N B, Fernandes V, Prabhu Matondkar S G, Bhushan R. Distribution and seasonal variation of concentrations of particulate carbohydrates and uronic acids in the northern Indian Ocean. Marine Chemistry,2007,103: 327-346
    [56]Liss P S. Chemistry of the sea-surface microlayer. In:Chemical Oceanography. Riley J P, Skirrow G, eds. New York:Academic Press,1975:193-243
    [57]Liss P S, Duce R A. The Sea Surface and Global Change. Cambridge:Cambridge University Press,1997
    [58]Liu D Y, Keesing J K, Xing Q G, Shi P. World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Marine Pollution Bulletin,2009,58:888-895
    [59]Liu D Y, Sun J, Zhang J, Liu G S. Response of the diatom flora in Jiaozhou Bay, China to environmental changes during the last century. Marine Micropaleontology,2008b,66: 279-290
    [60]Liu K-K, Peng T-H, Shaw P-T, Shiah F-K. Circulation and biogeochemical processes in the East China Sea and the vicinity of Taiwan:an overview and a brief synthesis. Deep-Sea Research II,2003,50:1055-1064
    [61]Liu Q J, Parrish C C, Helleur R. Lipid class and carbohydrate concentrations in marine colloids. Marine Chemistry,1998,60:177-188
    [62]Liu S M, Ye X W, Zhang J, Zhang G S, Wu Y. The silicon balance in Jiaozhou Bay, North China. Journal of Marine Systems,2008a,74:639-648
    [63]Liu S M, Zhang J, Chen H T, Zhang G S. Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China. Progress in Oceanography,2005,66:66-85
    [64]Liu Z, Wei H, Liu G S, Zhang J. Simulation of water exchange in Jiaozhou Bay by average residence time approach. Estuarine, Coastal and Shelf Science,2004,61:25-35
    [65]Marina K, Cindy L. Enhanced extracellular enzymatic peptide hydrolysis in the sea-surface microlayer. Marine Chemistry,2001,73:319-332
    [66]Meon B, Kirchman D L. Dynamics and molecular composition of dissolved organic material during experimental phytoplankton blooms. Marine Chemistry,2001,75:185-199
    [67]Mopper K. Improved chromatographic separations on anion-exchange resins III. Sugars in borate medium. Analytical Biochemistry,1978,87:162-168
    [68]Mopper K, Dawson R, Liebezeit G, Ittekot V. The monosaccharide spectra of natural waters. Marine Chemistry,1980,10:55-66
    [69]Morris I, Seka W. Products of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine. Marine Biology,1978,47:303-312
    [70]Myklestad S. Production of carbohydrates by marine planktonic diatoms. I Comparison of nine different species in culture. Journal of Experimental Marine Biology and Ecology, 1974,15:261-274
    [71]Myklestad S M, B(?)rsheim K Y. Dynamics of carbohydrates in the Norwegian Sea inferred from monthly profiles collected during 3 years at 66°N,2°E. Marine Chemistry,2007,107: 475-485
    [72]Myklestad S M, Djurhuus R, Mohus A. Determination of exo-(β-1,3)-D-glucanase activity in some planktonic diatoms. Journal of Experimental Marine Biology and Ecology,1982, 56:205-211
    [73]Myklestad S M, Skan(?)y E, Hestmann S. A sensitive and rapid method for analysis of dissolved mono-and polysaccharides in seawater. Marine Chemistry,1997,56:279-286
    [74]Myklestad S M, Swift E. A new method for measuring soluble cellular organic content and a membrane property, Tm, of planktonic algae. European Journal of Phycology,1998,33: 333-336
    [75]Pakulski J D, Benner R. An improved method for the hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater. Marine Chemistry,1992,40:143-160
    [76]Pakulski J D, Benner R. Abundance and distribution of carbohydrates in the ocean. Limnology and Oceanography,1994,39:930-940
    [77]Panagiotopoulos C, Sempere R. Analytical methods for the determination of sugars in marine samples:A historical perspective and future directions. Limnology and Oceanography (Methods),2005,3:419-454
    [78]Parsons T R, Maita Y, Lalli C M. A manual for chemical and biological methods for seawater analysis. Oxford:Pergamon Press,1984,23-58
    [79]Parsons T R, Takahashi M, Hargrave B. Biological oceanographic processes. Oxford: Pergamon Press,1984
    [80]Pettine M, Capri S, Manganelli M, Patrolecco L, Puddu A, Zoppini A. The dynamics of DOM in the Northern Adriatic Sea. Estuarine, Coastal and Shelf Science,2001,52:471-489
    [81]Pettine M, Patrolecco L, Manganelli M, Capri S, Farrace M G. Seasonal variations of dissolved organic matter in the northern Adriatic Sea. Marine Chemistry,1999,64:153-169
    [82]Rawn J D. Traite de Biochimie. Paris:Editions Universitaires Belin,1990:1146
    [83]Reinthaler T, Sintes E, Herndl G. Dissolved organic matter and bacterial production and respiration in the seasurface microlayer of the open Atlantic and the western Mediterranean Sea. Limnology and Oceanography,2008,53:122-136
    [84]Repeta D J, Quan T M, Aluwihare L I, Accardi A. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters. Geochimica et Cosmochimica Acta,2002,66:955-962
    [85]Rich J, Gosselin M, Sherr E, Sherr B, Kirchman D L. High bacterial production, uptake and concentrations of dissolved organic matter in the Central Arctic Ocean. Deep-Sea Research Ⅱ,1997,44:1645-1663
    [86]Sharp J H, Benner R, Bennett L, Carlson C A, Fitzwater S E, Peltzer E T, Tupas L M. Analyses of dissolved organic carbon in seawater:the JGOFS EqPac methods comparison. Marine Chemistry,1995,48:91-108
    [87]Shen Z. Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science,2001,52:211-224
    [88]Skoog A, Benner R. Aldoses in various size fractions of marine organic matter:implications for carbon cycling. Limnology and Oceanography,1997,42:992-996
    [89]Skoog A, Biddanda B, Benner R. Bacterial utilization of dissolved glucose in the upper water column of the Gulf of Mexico. Limnology and Oceanography,1999,44:1625-1633
    [90]Smith D J, Underwood G J C. The production of extracellular carbohydrates by estuarine benthic diatoms:the effects of growth phase and light and dark treatment. Journal of Phycology,2000,36:321-333
    [91]Strom S L, Benner R, Ziegler S, Dagg M J. Plankton grazers are a potential important source of marine dissolved organic carbon. Limnology and Oceanography,1997,42: 1364-1374
    [92]Su J L. Circulation dynamics of the China seas north of 18 °N. In:Robinson A R, Brink K H, eds. The Sea. New York:John Wiley & Sons, Inc.,1998,11:483-505
    [93]Walsh G E. Studies on dissolved carbohydrate in Cape Cod waters. Ⅱ Diurnal fluctuation in oyster pond. Limnology and Oceanography,1965,10:577-582
    [94]Wang B D, Wang X L, Zhan R. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science,2003,58:127-136
    [95]Wang D L, Henrichs S, Guo L D. Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean. Continental Shelf Research,2006,26: 1654-1667
    [96]Wangersky P J. Isolation of ascorbic acid and rhamnoside from sea water. Science,1952, 115:685
    [97]Williams P M, Carlucci A F, Henrichs S M, Van Vleet E S, Horrigan S G, Reid F M H, Robertson K J. Chemical and microbiological studies of sea-surface films in the southern Gulf of California and off the west coast of Baja California. Marine Chemistry,1986,19: 17-98
    [98]Witter A E, Luther III G W. Spectrophotometric measurement of seawater carbohydrate concentrations in neritic and oceanic waters from the U.S. Middle Atlantic Bight and the Delaware estuary. Marine Chemistry,2002,77:143-156
    [99]Wurl O, Obbard J P. A review of pollutants in the sea-surface microlayer (SML):a unique habitat for marine organisms. Marine Pollution Bulletin,2004,48:1016-1030
    [100]Wurl O, Miller L, Rottgers R, Vagle S. The distribution and fate of surface-active substances in the sea-surface microlayer and water column. Marine Chemistry,2009, doi:10.1016/j.marchem.2009.04.007
    [101]Yang G P, Chen Y, Gao X C. Distribution of dissolved free amino acids, dissolved inorganic nitrogen and chlorophyll a in the surface microlayer and subsurface water of the Yellow Sea, China. Continental Shelf Research,2009,29:1737-1747
    [102]Yang G P, Jing W W, Li L, Kang Z Q, Song G S. Distribution of dimethylsulfide and dimethylsulfoniopropionate in the surface microlayer and subsurface water of the Yellow Sea, China during spring. Journal of Marine Systems,2006,62:22-34
    [103]Yang G P, Tsunogai S. Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer of the western North Pacific. Deep-Sea Research I,2005,52:553-567
    [104]Zein-Eldin Z P, May B Z. Improved n-ethylcarbazole determination of carbohydrates with enphasis on seawater samples. Analytical Chemistry,1958,30:1935-1941
    [105]Zhang G L, Zhang J, Ren J L, Li J B, Liu S M. Distributions and sea-to-air fluxes of methane and nitrous oxide in the North East China Sea in summer. Marine Chemistry,2008, 110:42-55
    [106]Zhang G L, Zhang J, Xu J, Zhang F. Distributions, sources and atmospheric fluxes of nitrous oxide in Jiaozhou Bay. Estuarine, Coastal and Shelf Science,2006,68:557-566
    [107]Zhang Z B, Wang J T, Liu L S. Dissolved organic carbon in the East China Sea in autumn. Chinese Journal of Oceanology and Limnology,1997,15:137-144
    [108]白洁,时瑶,宋亮,李正炎.黄海西北部浮游细菌生物量分布特征及其与环境因子的 关系.中国海洋大学学报,2009,39(4):592-596
    [109]陈建芳,Wiesner M G, Wong H K,郑连福,郑士龙,徐鲁强.南海颗粒有机碳通量的垂向变化及早期降解作用的标志物.中国科学,1999,29:372-378
    [110]陈尚,朱明远,马艳,李瑞香,李宝华,吕瑞华.富营养化对海洋生态系统的影响及其围隔实验研究.地球科学进展,1999,14(6):571-584
    [111]戴民汉,魏俊峰,翟惟东.南海碳的生物地球化学研究进展.厦门大学学报,2001,40:545-551
    [112]德斯马,道森.海洋有机化学.(纪明侯,钱佐国等译).北京:海洋出版社,1992
    [113]邓春梅,于志刚,姚鹏,陈洪涛,薛春勇.东海、南黄海浮游植物粒级结构及环境影响因素分析.中国海洋大学学报,2008,38:791-798
    [114]丁海兵,刘效兰.海洋微表层取样方法研究.化工时刊,1999,4:32-34
    [115]方文东,施平,毛庆文,甘子钧.南海北部上层海洋变化的定点观测分析.海洋学报,2000,22:23-30
    [116]高爽,李正炎.北黄海夏、冬季叶绿素和初级生产力的空间分布和季节变化特征.中国海洋大学学报,2009,39(4):604-610
    [117]郭水伙.南海水体三项无机氮含量的垂直变化特征及与其他环境要素的相关性.台湾海峡,2009,28:71-76
    [118]韩舞鹰.南海海洋化学.北京:技术出版社,1998,174
    [119]何碧烟,戴民汉,曹莉,徐立,黄伟,王新红.气相色谱法分析海洋沉积物中多糖的单糖组成.海洋与湖沼,2003,34(3):232-240
    [120]胡好国,万振文,袁业立.南黄海浮游植物季节性变化的数值模拟与影响因子分析.海洋学报,2004,26(6):74-88
    [121]黄邦钦,刘媛,陈纪新,王大志,洪华生,吕瑞华,黄凌风,林以安,魏皓.东海、黄海浮游植物生物量的粒级结构及时空分布.海洋学报,2006,28(2):156-164
    [122]纪明侯,曹文达,裘香荃.胶州湾可溶态碳水化合物的分布.海洋湖沼通报,1983,2:40-44
    [123]景伟文.海水微表层和次表层中DMS和DMSP的生物地球化学研究:[博士学位论文].青岛:中国海洋大学,2006
    [124]乐凤凤,宁修仁,刘诚刚,郝锵,蔡昱明.2006年冬季南海北部浮游植物生物量和初级生产力及其环境调控.生态学报,2008,28:5775-5784
    [125]乐凤凤,孙军,宁修仁,宋书群,蔡昱明,刘诚刚.2004年夏季中国南海北部的浮游植物.海洋与湖沼,2006,37:238-248
    [126]李宝华.南极长城站码头及临近海域夏季叶绿素α含量及变化.极地研究,2004,16(4): 332-337
    [127]李超伦,张芳,申欣,杨波,沈志良,孙松.胶州湾叶绿素的浓度、分布特征及其周年变化.海洋与湖沼,2005,36(6):499-506
    [128]李立,吴日升,郭小钢.南海的季节环流—TOPEX/POSEIDON卫星测高应用研究.海洋学报,2000,22(6):13-26
    [129]刘福寿,王揆洋.胶州湾沿岸河流及其地质作用.海洋科学,1992,1:25-28
    [130]刘玲莉,胡敏,马奇菊,任久长,刘峰.陆源营养盐输入对青岛近岸海域DMS生物生产的影响.环境科学,2004,25(2):56-60
    [131]刘素美,张经,陈洪涛.黄海和东海生源要素的化学海洋学.海洋环境科学,2000,19(1):69-74
    [132]陆道明,张再峰,张经,任素梅.雨水中碳水化合物的分析.海洋环境科学,1995,14(1):38-43
    [133]潘友联.叶绿素与海洋初级生产力.海洋科学,1987,2(1):63-65
    [134]彭欣,宁修仁,孙军,乐凤凤.南海北部浮游植物生长对营养盐的响应.生态学报,2006,26.3960-3968
    [135]乔方利,马德毅,朱明远,李瑞香,臧家业,于洪军.2008年黄海浒苔爆发的基本状况与科学应对措施.海洋科学进展,2008,26:409-410
    [136]邱雨生,陈敏,黄奕普,刘广山.南极普里兹湾及其邻近海域溶解有机碳的分布.海洋学报2004,26(3):38-46
    [137]沈志良,陆家平,刘兴俊.长江口区营养盐的分布特征及三峡工程对其影响.海洋科学集刊,1992,33:109-130
    [138]石晓勇,臧璐,张传松,王丽莎.北黄海典型断面生源要素四季变化的研究.中国海洋大学学报,2009,39(4):575-766
    [139]宋秀贤,俞志明.胶州湾东北部养殖海域夏季营养盐分布特征及其对浮游植物生长的影响.海洋与湖沼,2007,38:446-452
    [140]孙林枫,任素梅,唐思齐.长江口及舟山附近海水中碳水化合物的分布特征.海洋与湖沼,1988,19(4):359-367
    [141]孙明昆,钱佐国,胡薇.海水中总溶解碳水化合物测定方法的研究——酚硫酸法的温度效应.山东海洋学院学报,1982,12(1):48-52
    [142]孙湘平.中国近海区域海洋.北京:海洋出版社,2006
    [143]孙耀,陈聚法,张友篪.胶州湾海域营养状况的化学指标分析.海洋环境科学,1993,12(3-4):25-31
    [144]谭娟,沈新勇,李清泉.海洋碳循环与全球气候变化相互反馈的研究进展.气象研究与应用,2009,30(1):33-36
    [145]唐思齐,宫明岗,陈德昌.海水中碳水化合物测定方法研究——二、蒽酮法测定颗粒 态碳水化合物总量.山东海洋学院学报,1985b,15(4):47-54
    [146]唐思齐,李珊,李莎.海水中碳水化合物测定方法研究——一、苯酚硫酸法测定可溶态碳水化合物总量.山东海洋学院学报,1985a,15(3):48-52
    [147]王保栋.长江冲淡水的扩展及其营养盐的输运.黄渤海海洋,1998,16(2):41-47
    [148]王江涛,张正斌,刘莲生,杨桂朋,赵卫红,牛增元.南沙及邻近海区冬季的溶解有机碳.张正斌等编.南沙群岛海区化学过程研究.北京:科学出版社,1996,72-80
    [149]王荣,焦念志,李超伦,沈志良.胶州湾的初级生产力和新生产力.海洋科学集刊,1995,36:181-194
    [150]王荣华,纪明侯.胶州湾碳水化合物组分的研究.海洋学报,1995,17(6):58-64
    [151]吴永森,辛海英,吴隆业,李文渭.2006年胶州湾现有水域面积与岸线的卫星调查与历史演变分析.海岸工程,2008,27(3):15-22
    [152]吴玉霖,傅月娜,张永山,蒲新明,周成旭.长江口海域浮游植物分布及其与径流的关系.海洋与湖沼,2004a,35:246-251
    [153]吴玉霖,孙松,张永山,张芳.胶州湾浮游植物数量长期动态变化的研究.海洋与湖沼,2004b,35:518-523
    [154]吴玉霖,孙松,张永山.环境长期变化对胶州湾浮游植物群落结构的影响.海洋与湖沼,2005,36:487-498
    [155]忻丁豪,任松,何培民,刘富平,张丽旭,徐韧,程祥圣.黄海海域浒苔属(Enteromorpha)生态特征初探.海洋环境科学,2009,28:190-192
    [156]熊辉,于志刚,陈洪涛,张经.鸭绿江口溶解态P、Si的地球化学研究.海洋环境科学,1999,18(2):1-5
    [157]徐鲁强,陈建芳,郑连福.南海北部沉降颗粒物中的糖类分布.海洋通报,1996,15(4):29-36
    [158]杨东方,王凡,高振会,崔文林,霍素霞.胶州湾浮游藻类生态现象.海洋科学,2004,28:71-74
    [159]杨桂朋,张正斌,刘莲生.1994年秋季南沙海域二甲基硫的时空分布及其影响因素.张正斌等编.南沙群岛海区化学过程研究.北京:科学出版社,1996,87-96
    [160]姚云,沈志良.胶州湾海水富营养化水平评价.海洋科学,2004,28(6):14-22
    [161]姚云,沈志良.水域富营养化研究进展.海洋科学,2005,29(2):53-57
    [162]姚云,郑世清,沈志良.胶州湾营养盐及富营养化特征.海洋通报,2007,26(4):91-98
    [163]于培松,扈传昱,朱小萤,潘建明,张海生.南极普里兹湾沉积物中的糖类分布及意义.海洋学报,2008,20(1):59-66
    [164]于志刚,张正斌,刘莲生.海洋微表层化学研究进展.海洋环境科学,2000,19(3): 75-80
    [165]俞建銮,李瑞香.渤海、黄海浮游植物生态的研究.黄渤海海洋,1993,11(3):52-59
    [166]曾丽丽,贾英来,施平.黑潮反气旋涡脱落时南海北部的海温分布.海洋通报,2006,25(5):77-83
    [167]张继红,方建光,孙松,赵俊梅.胶州湾养殖菲律宾蛤仔的清滤率、摄食率、吸收效率的研究.海洋与湖沼,2005,36:548-555
    [168]张穗,方正信.大亚湾水体中溶解的碳水化合物.热带海洋,1991,10(4):89-93
    [169]张再峰,任素梅,张经.青岛地区大气沉降物中碳水化合物初步研究.海洋科学,1994,3:49-53
    [170]张正斌,刘莲生,牛增元.海洋微表层化学研究Ⅰ.海洋微表层中化学物质的平均富集因数的Gibbs吸附.张正斌等著.南沙群岛海区化学过程研究.北京:科学出版社,1996a,1-13
    [171]张正斌.海洋化学.青岛:中国海洋大学出版社,2004
    [172]张正斌,杨桂朋,刘莲生.1993年冬季南沙海域二甲基硫的分布特征初探.张正斌等编.南沙群岛海区化学过程研究.北京:科学出版社,1996b,97-106.
    [173]张智芳,林文庭,陈灿坤.浒苔水溶性多糖提取工艺研究.中国食物与营养,2009,3,39-41
    [174]赵亮,魏皓,赵建中.胶州湾水交换的数值研究.海洋与湖沼,2002,33:23-29
    [175]赵三军,肖天,岳海东.秋季东、黄海异养细菌(Heterotrophic Bacteria)的分布特点.海洋与湖沼,2003,34(3):295-305
    [176]郑国侠,宋金明,戴纪翠,王益鸣.南黄海秋季Chl-a的分布特征.海洋学报,2006,28(3):109-118
    [177]郑雪红,郑爱榕,陈祖峰.气相色谱法分析海洋胶体中的单糖组成.分析测试学报,2004,23(4):58-60
    [178]郑雪红,郑爱榕,陈祖峰.厦门海域水体中胶体多糖的醛糖组成.海洋与湖沼,2005,36:10-17
    [179]郑重.浮游生物学概论.北京:科学出版社,1965,262
    [180]朱明远,毛兴华,吕瑞华,孙明华.黄海海区的叶绿素α和初级生产力.黄渤海海洋,1993,11(3):38-51
    [181]邹娥梅,郭炳火,汤毓祥,李载学,熊学军,曾宪模.秋季南黄海水文特征及海水的混合与交换.海洋学报,1999,21(5):12-21
    [182]邹娥梅,郭炳火,汤毓祥,李载学.1996年春季南黄海水文特征和水团分析.海洋学报,2000,22(1):17-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700