用户名: 密码: 验证码:
南黄海及养殖功能海域生态动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南黄海是我国重要的近海,研究其生态过程对了解我国近海生态动力控制机制有重要意义;桑沟湾是我国重要的养殖示范区,研究该湾对认识养殖海域的生态状况和科学养殖有重要意义。本文针对两个不同尺度的典型海域进行了生态动力学模型研究。
     对两个海域,均在建立能够良好地再现水动力过程的物理模型的基础上,选取关键的生态要素和必要的生物化学过程,通过合理地参数化,分别建立两海域的生态动力学模型,通过数值模拟研究两域的生态特征。
     南黄海的水动力学模型包括了较完整的物理过程(如潮汐、波浪混合、环流等),生态变量包括浮游植物、浮游动物、营养盐和有机碎屑。桑沟湾的水动力学模型考虑了养殖影响,生态要素除以上四个变量外还包括溶解有机物,考虑养殖贝类和大型藻对饵料和营养盐的消耗或释放,在生态模型的基础上根据物质供需平衡关系或营养动态关系分别建立了贝类、大型藻、鱼类的养殖容量模型。主要得到以下结果:
     对南黄海:
     1)浪致混合和潮流分别使上、下层水体的垂直扩散系数增加10-3~10-1m2/s,使近岸海域垂向混合更加均匀,深水域上、下混合层厚度加大,温跃层强度增加。考虑潮流,模拟冬季的黄海暖流及沿岸流、夏季的台湾暖流、中国沿岸流及南黄海中部环流均有所减弱,改变了夏季朝鲜沿岸流方向(使其呈逆时针),使南黄海中部海域无潮情况下的北向流改为向南弱流。
     2)春季初级生产能力最强,浮游植物水平最高,夏季次之,冬季最小。显著水华出现在4月中下旬。南黄海春季的浮游植物净流入一直为正且较大,有助于水华形成;夏季的净流入经常为负。浮游生长大部分海域主要受磷限制。
     3)西部近岸海域:4月中下旬至9月上旬浮游植物浓度较高,分层不明显。长江口附近海域:总体上是南黄海浮游植物生物量最高的海域,5月出现显著水华;浮游植物生长受光照限制,较强的混合影响浮游植物聚集;浮游植物浓度总体上呈由近岸向外先增后降的趋势。中部海域:4~11月份浮游植物分布存在分层现象,4月中下旬发生显著水华,5月份出现次表层最大化,且次表层深度逐渐增加,8、9月份该层顶部深至30m;10月份次表层最大化逐渐消失。东部陆坡海域:下层存在上升流,营养盐浓度较高;生态特征同中部海域相似。
     4)浪混合及潮流对生态特征起着重要的控制作用。浪混合对春季水华起着延迟和加强作用,不考虑浪混合将使水华提前13天,分析了模型添加浪混合的必要性。
     5)长江径流对南黄海浮游植物水平有一定提高,主要影响在长江口附近海域。
     对桑沟湾:
     Ⅰ.观测表明养殖活动明显降低了所在水层的流速。通过在模型中布置透水摩擦板实现了养殖对水动力影响的模拟,经数值实验给出基本合理的摩擦系数。不考虑养殖影响该湾的半交换周期为7d,仅考虑贝类养殖为12d,同时考虑贝类和海带养殖半交换周期达16d。湾内西北、西南部水交换能力最差。
     Ⅱ.该湾总体上冬季浮游植物生物量较小,夏季较大,2月出现弱峰,9月全年最大,该湾的浮游生态特征与贝类养殖有关。海带、牡蛎及扇贝养殖区均有以上浮游特征。贝类养殖区的营养盐在夏、秋季出现高值,与贝类的排泄有关。
     Ⅲ.扇贝养殖容量:冬、秋季较大,春、夏季较小,4月上中旬最小;以年平均计,该湾平均规格的扇贝的养殖容量为53 ind/m2,扇贝养殖区的总养殖容量为10.1亿粒,目前实际养殖密度不宜扩大。牡蛎养殖容量:冬季较大,夏季较小,8月下旬最小,2月中旬最大;理论养殖容量为76 ind/m2,养殖区养殖总容量在41.1~51.7亿粒范围内,建议保持39333粒/亩的规模。海带养殖容量:养殖区总淡干海带的养殖容量为21250t,单位面积养殖容量384 g/m2,单位面积个体养殖容量3.84 ind/m2,建议4 ind/m2的播苗密度。不添加饵料,鱼类网箱的养殖容量为6.81g/(a·m2);桑沟湾可放养鱼类总容量为850 t/a。
South Yellow Sea(SSY) is an important offshore sea for China, and it is significant to study its ecosystem processes for understanding ecological mechanisms. Sanggou Bay(SB) is a typical aquaculture coastal area, and research on its ecosystem status is helpful to appropriate culturing activities in a such sea. The dissertation aims to model ecosystem processes for each of seas in different scale. The fist step is establishing a hydrodynamic model to reproduce physical processes of each sea. Based on the model, an ecosystem model is then developed by selecting variables and parameterizing bio-chemical processes. After validation, the model results are used to analysis the ecological characters for both seas.
     The hydrodynamic model of SYS almost completely includes the physical processes, such as tides, wind force, wave mixing, circulations, and so on. Variables of the SYS ecosystem model are phytoplankton, zooplankton, nutrients and detritus. For SB models, the effect of aquaculture to hydrodynamics is taken into account, and ecological elements include dissolved organic matter in addition to above variables. The processes of depletion or expiration of baits and nutrients by shellfish and large algae are parameterized. Based on the ecosystem model, the evaluation models of carrying capacity(CC) of shellfish, large algae, and fish are setup according to balance relationships between substance supply and demand or a nutrition dynamic relation respectively. The followings are obtained:
     For SYS:1) The wave mixing and tidal current make vertical diffusion coefficients crease with 10-3~10-1 m2/s in upper layers and lower layers respectively. They mix the coastal waters more uniform vertically, and enlarge the thickness of the mixed layers of both surface and bottom and increase the thermocline strength in deep sea areas. With tides, the SYS warm circulation and coastal circulations in winter, and Taiwan warm circulation, China's coastal circulation and circulations of SYS central areas in summer are all weakened compared with results without tides. Besides, the direction of Korea coastal circulation in summer is reversed in counterclockwise. In this case, circulations of SYS central areas are southward and with lower velocities, while northward lack of tidal forces. 2) Both the primary production and the phytoplankton biomass are highest in spring, and second highest in summer, lowest in winter. A significant bloom happens in mid-April. In spring, the net inflow of phytoplankton of SYS is always positive and great, which is helpful to bloom formation. While in summer the net inflow is often negative. In most areas of SYS, the phytoplankton growth is limited to phosphorus.3) In the west coastal area, phytoplankton biomass is high from late April to early September, and stratification is unobvious. In areas near Changjiang River the biomass is highest on the whole in SYS, and the significant bloom appears in May. Along with distance increase from the river inlet, the biomass generally increases firstly and then falls. In the area, phytoplankton growths object to light limitation, and strong mixing processes preclude accumulation of phytoplankton. In SYS central areas, the stratification of phytoplankton is obvious from April to November, and the prominent bloom happens in late April. From May the subsurface layer, which has the highest biomass, deepens gradually. In August and September, the layer's top is up to 30 m deep. For east areas, the ecological features are similar to central areas. The low layer exist upwelling flows, where nutrient concentration is high.4) Wave mixings and tides play important roles in formation of ecological characters. Wave mixings delay and strengthen the spring bloom. Regardless of the mixings, the bloom moves up 13d. The rationality of addition of the mixing to the model is analyzed.5) Runoff increases SYS biomass, especially for estuary.
     For SB:1) Observation indicates aquaculture activities reduce flows of culturing layers. By laying porous plates with friction, a model is developed to reproduce physical processes of the area. The friction coefficients are given. The half-exchange duration of SB is 7d without aquaculture,12d with shellfish only, and 16d with both shellfish and kelp culturing. In northwest and southwest areas of SB the water exchange ability is poor.2) As a whole, the phytoplankton biomass is relatively low in winter and high in summer, and appears a weak peak in February and a maximum in September. This is a common feature for culture areas of kelp, oyster and scallop. The ecological characters are related to aquaculture. In shellfish-culture areas, nutrient densities are high in summer and autumn, which is related with shellfish excretion.3) The CC of scallop is great in winter and autumn, small in spring and summer, and minimum in April. The annually averaged CC is 53 ind/m2, and the total CC is 10.1 billion individuals. The present density should not be enlarged. The CC of oyster is high in winter, low in summer, and lowest in late August and highest in mid-February. The CC is 76 ind/m2, and a total CC is 41.1~51.7 billion individuals for oyster-culture areas. The recommended density is 39333 ind per MU. The total CC of kelp is 21250 t, and the CC in density is 384 g/m2 i.e.3.84 ind/m2. A recommended seedling density is 4 ind/m2. Without addition of baits, the CC in a fish cage is 6.81 g/(a·m2). SB may stock 850t/a fish.
引文
[1-1]胶州湾生物资源量调查与养殖容量评估结题报告,国家海洋局第一海洋研究所,2008年。
    [1-2] Sustainable Options for People,Catchment and Aquatic Resources. Institute of Marine Research, 2008。
    [2-1]中韩黄海水循环动力学合作研究调查图集,国家海洋局第一海洋研究所,1999年。
    [3-1]庙岛湾扇贝养殖容量研究报告,国家海洋局第一海洋研究所,1999年。
    [3-2]胶州湾生物资源量调查与养殖容量评估结题报告,国家海洋局第一海洋研究所,2008年。
    [1]Aita M N, Y Yamanaka, M J Kish. Interdecadal variation of the lower trophic ecosystem in the northern Pacific between 1948 and 2002, in a 3-D implementation of the NUMURO model. Ecological Modelling,2007,202:81-94.
    [2]Arnold W.S., M.W. White, H.A. Norris, et al. Hard clam aquaculture in Florida, USA:geographic information system applications to lease site selection. Aquaculture,2000,240:267-296.
    [3]Azumaya T., Y. Isoda, S. Noriki. Modeling of the spring bloom in Funk Bay, Japan. Continental Shelf Research.2001,21:473-494.
    [4]Bacher C., J. Grant,AJS Hawkins,J et al. Modelling the effect of food depletion on scallop growth in Sungo Bay(China).Aquat. Living Resour.2003,16:10-24.
    [5]Baretta J.W., W. Ebenhoh,P Ruardij. The European Regional Seas Ecosystem Model, a complex marine ecosystem model. NJSR.1995,33(3/4):233-246.
    [6]Beers J.R., G.L. Stewart. Microzooplankton and its abundance relative to the zooplankton and other seston components. Mar. Biol.,1969,4:182-189.
    [7]Cadee G, Hegeman J. Primary production of phytoplankton in the Dutch wadden sea. Netherland Journal of Sea Research,1974,8(2):240-259.
    [8]Carver C.E.A., A.L.Mallet. Estimating the carrying capacity of a coastal inlet for mussel culture. Aquaculture.1990,88:39-53.
    [9]Chen C., P.J.S. Franks. A 3-D prognostic numerical model study of the ecosystem over Georges Bank and adjacent regions. Part Ⅰ. Deep-sea Res.2001,48:419-456.
    [10]Christopher W. M, H. Thetmeyer,T. Laudry. Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture,2006,261: 451-462.
    [11]Congleton, W.R., B.R. Pearce, et al. Mariculture siting:a GIS description of intertidal areas. Ecological Modelling.1999,124:109-141.
    [12]Cui Maochang,Zhu Hai.Coupled physical-ecological modeling of the central part of Jiaozhou bay Ⅱ:Coupled with an ecological model. Chin. J. Oceano. Liminol.2001,19(1):21-28.
    [13]David R.P., Robert H.S., Craig L.S., et.al.. Stratified flow interactions with a suspended canopy[J]. Environmental Fluid Mechanics,2006,6(6):519-539.
    [14]Dolmer, P., R.P. Frandsen. Evaluation of the Danish mussel fishery:suggestions for an ecosystem management approach. Helgol,2002. Mar. Res.56,13-20.
    [15]Duarte P., R.Meneses, A.J.S. Hawkins et al. Mathematical modeling to assess the carrying capacity for multi-species culture within coastal waters. Ecological modeling,2003,168:109-143.
    [16]Fasham M.J.R., H.W. Ducklow, S.M.McKelvie. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res.1990,48:1-49.
    [17]Garen P., S. Robert, S. Bougrier. Comparison of growth of mussel, mytilus edulis, on longline, pole and bottom culture sites in the Pertuis Breton. France Aquaculture,2004,232:511-524.
    [18]Gibbs M.T. Interactions between bivalve shellfish farms and fishery resources. Aquaculture, 2005,240:267-296.
    [19]Grant J., Bacher C. A numerical model of flow modification induced by suspended aquaculture in a Chinese bay. Can. J. Fish. Aquat. Sci.,2001,58:1003-1011.
    [20]Gregg W W, Casey N W. Modeling coccolithophores in the global oceans. Deep-Sea Research II, 2007,54:447-477.
    [21]Gregorire M., G. Lacroix. Study of the oxygen budget of the Black Sea waters using a 3D coupled hydrodynamical model. Journal of Marine System.2001,31:175-202.
    [22]Hellerman S, Rosenstein M. Normal monthly wind stress over the world ocean with error estimates. J Phys Oceanogr,1983,13(7):1093-1104
    [23]Herral M. Evaluation of carrying capacity of the molluscan shellfish ecosystem. Aquaculture, 1990,297-318.
    [24]Holiday J.E., G.B. Maguire, J.A.Nell.Optimum stocking density for nursery culture of Sydeny rock oysters. Aquaculture,1996,96:7-16.
    [25]Horwood J.W. Algal production in the west-central North Sea. J Plankton Res.1982,4(1):103-124.
    [26]Hugh J. M, O.E. Johannsson, J. Ye, et at. Filtering impacts of an introduces bivalve (Dreissena polymorpha) in a shallow lake:application of a hydrodynamic model. Ecosystens,1999,2:338-350
    [27]Inglis G.J., B.J. Hayden, A.H. Ross. An overview of factors affecting the carrying capacity of coastal embayments for mussel culture. NIWA, Christchurch.2000. Client Report CHC00/69: vi+31p.
    [28]Kaiser, M., S.M. Stead. Uncertainties and values in European aquaculture:communication, management and policy issues in times of "changing public perceptions". Aquaculture,2003, Int.10,469-490.
    [29]Kaiser M. J., H.A. Beadman. Scoping study of the carrying capacity for bivalve cultivation in the coastal waters of Great Britain. The Crown Estate,2002, Interim Report:39p.
    [30]Lorena M.W. Brett R.D., Ruesink, J., et.al. Importance of eelgrass early life history stages in response to oyster aquaculture disturbance. Marine Ecology progress series,2007,344:71-80.
    [31]Ma Jian, Qiao Fangli,Xia Changshui et al. Tidal effects on temperature front in the Yellow Sea. Chinese Journal of Oceanography and Limnology,2004,22(3):314-321.
    [32]Margalef R., F. Vires. La vida suspendita eb las agues. Ecologia Marine, Monografia 14, Fund. La Salle de Ciencias Naturales. Caracas.1967,493-562.
    [33]Mellor GL.. Analytic prediction of the properties of stratified planetary surface layers. Journal of the Atmospheric Science,1973:30,1061-1069.
    [34]Mellor G.L, T. Yamada. A hierarchy of Turbulence Closure Models for Planetary Boundary Layers, Journal of the Atmospheric Science,1974:31,1791-1806.
    [35]Mellor G.L, T. Yamada. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics,1982,20:851-875.
    [36]Mellor G.L, T. Ezer, L.Y. Oey. The pressure gradient conundrum of sigma coordinate ocean models. Journal of atmospheric and oceanic technology.1994,11:1126-1134.
    [37]Michael D. A bio-physical coastal ecosystem model for assessing environmental effects of marine bivalve aquaculture. Ecological Modelling,2005,183:323-346.
    [38]Mohamed A.A. Modeling coupling between eelgrass zosterina and water flow[J]. Marine Ecology Progress Series,2007,338:81-96.
    [39]Moll A. Regional distribution of primary production in the North Sea simulated by a three-dimensional model. Jounal of Marien Systems.1998,16(1-2):157-170.
    [40]Nunes J.P., J.G. Ferreira, F. Gazeau, et. al. Amodel for sustainable management of shellfish polyculture in coastal bays. Aquaculture,2003,219:257-277.
    [41]Radach G., A. Moll. State if the art in algal bloom modeling. Water Pollution Resaerch Report 12, Brusseks.1990,116-149.
    [42]Radach G., A. Moll. Estimation of the variability of producation by simulating annual cycle of phytoplankton in the central North Sea. Prog. Oceanog.1993,31:339-419.
    [43]Riley G.A., H. Stommel, D.F. Bumpus. Quantitative ecology of the plankton of the Western North Atlantic. Bull Bingham Oceanogr Coll,1949,121-169.
    [44]Parsons T.R., M. Takahashi, B. Hargrave. Biological Oceanography Processes. Pergamon Press, Oxford,1973,332.
    [45]Pichot G., Y. Runfola. Mathematical model of the nitrogen cycle in the Southern Bight of the North Sea.10th European Symposium on Marine Biology. Qstende, Begium.1975,467-476.
    [46]Pilditch C. A, Grant J., Bryan K R. Seston supply to sea scallops(Placopecten magellanicus) in suspended culture[J]. Can. J. Fish. Aquat. Sci.,2001,58:241-253.
    [47]Plew D.R., C.L. Stevens, R.H. Spigel, et.al. Hydrodynamic implications of large offshore mussel farms. Oceanic Engineering,2005,30(1):95-108.
    [48]Sara G., A.Mazzola. The carrying capacity for Mediterranean bivalve suspension feeders: evidence from analysis of food availability and hydrodynamics and their integration into a local model. Ecological modeling,2004,179:281-296.
    [49]Skogen M.D. Modeling the primary production in the North Sea using a coupled 3D physical-chemical-biogical ocean model. Estuarine.Coastal and Shelf Science.1995,41:545-565.
    [50]Skogen M.D., H. Soiland, E. Svendsen. Effect of changing nutrient loads to the North Sea. Journal of Marine Systems,2004,46:23-28.
    [51]Soares A.G., T.A. Schlacher. Carbon and nitrogen exchange between sandy beach clams (Donax serra) and beds in the Benguela coastal upwelling region. Marine Biology,1997,127:657-664.
    [52]Sole J., M. Estrada, E. Garcia-Ladona. Biological control of harmful algal blooms:A modelling study. Journal of Marine Systems,2006,61:165-179.
    [53]Solidoro C., R. Pastres, R.Melaku. et.al. Tidal motion and the seston supply to the benthic macrofaune in the Oosterchelde. DHL report,2000,R1310-14.
    [54]Vichi M., S. Masina, A. Navarra. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part Ⅱ:Numerical simulations. Journal of Marine Systems,2007,64:110-134.
    [55]Wan Zhenwen, Yuan Yeli. PECOM Manual.First Institute of Oceanography,SOA.2001.
    [56]Yamamoto T., G. Hatta. Pulsed nutrient supply as a factor inducing phytoplankton diversity. Ecological modeling,2004,171:247-270.
    [57]Yang Yongzeng,Qiao Fangli,Xia Changshui, et al. Wave-induced mixing in the yellow sea.Chin. J. Oceano. Limnol.2004,22(3):322-326.
    [58]Zhu Hai, Cui Maochang. Coupled physical-ecological modeling of the central part of Jiaozhou bay I:Physical modeling.Chin.J.Oceano.Liminol,2000,8(4):309-314.
    [59]毕远博,董婧.小窑湾双壳贝类筏式养殖对海域环境的影响.应用与环境生物学报,2002,8(3):270-275.
    [60]蔡立胜.浅海规模化贝类养殖系统氮、磷营养盐的垂直通量研究[硕士学位论文].中国海洋大学,2003.
    [61]陈长胜.海洋生态系统动力学与模型.北京:高等教育出版社,2003.
    [62]陈国珍等.渤海、黄海、东海海洋图集(水文).北京:海洋出版社,1992.
    [63]陈聚法,赵俊,孙耀,等.桑沟湾贝类养殖水域沉积物再悬浮的动力机制及其对水体中营养盐的影响.海洋水产研究,2007,28(3):105-111.
    [64]邓景耀,朱金生,程济生,等.渤海主要无脊椎动物及其渔业生物学.海洋水产研究,1986,9:1-120.
    [65]董双林,李德尚,潘克厚.论海水养殖的养殖容量.青岛海洋大学学报,1998,28(2):253-258.
    [66]杜琦,卢振彬等.同安湾贝类的养殖容量.上海水产大学学报,2000,9(1):22-27.
    [67]方建光,匡世焕,孙慧玲,等.桑沟湾栉孔扇贝养殖容量的研究.海洋水产研究,1996a,17(2):18-31.
    [68]方建光,匡世焕,孙慧玲,等.桑沟湾海带养殖容量的研究.海洋水产研究,1996b,17(2):7-17.
    [69]方建光,孙慧玲,匡世焕,等.桑沟湾海水养殖现状评估及优化措施.海洋水产研究,1996c,17(2):95-102.
    [70]方国洪,魏泽勋,王凯,等.中国近海域际水、热、盐输运:全球变网格模式结果.中国科学,2002,32(12):969-977.
    [71]费尊乐.近海水域漫衰减系数的估算.黄渤海海洋,1984,2(1):26-29.
    [72]高会旺.海洋浮游生态系统分析及模型研究.青岛海洋大学博士后出站工作报告,1998.
    [73]高会旺,等.渤海初级生产力的若干理化影响因子初步分析.青岛海洋大学学报.2001,31(4):487-494.
    [74]高会旺,王强.1999年渤海浮游植物生物量的数值模拟.中国海洋大学学报.2004,34(5):867-873.
    [75]管卫兵,王丽娅,许东峰.珠江河口氮和磷循环及溶解氧的数值模拟Ⅰ模式建立.海洋学报,2003,25(1):52-60.
    [76]官文江,何贤强,潘德炉,等.渤、黄、东海海洋初级生产力的遥感估算.水产学报,2005,29(3):367-372.
    [77]桂祈军,沙文钰.黄渤海春季浪流耦合数值模拟.解放军理工大学学报(自然科学版).2005,6(1):71-75.
    [78]郭炳火等.中国近海及邻近海域海洋环境.北京:海洋出版社,2004.
    [79]国家海洋局第一海洋研究所.桑沟湾增养殖环境综合调查研究.青岛出版社,1988.
    [80]胡好国.南黄海浮游生态动力学研究[硕士学位论文].青岛:国家海洋局第一海洋研究所,2003.
    [81]胡好国,袁业立,万振文.海浪混合参数化的渤海、黄海、东海水动力环境数值模拟.海洋学报,2004,26(4):19-32.
    [82]胡好国,万振文,袁业立.南黄海浮游植物季节性变化的数值模拟与影响因子分析.海洋学报,2004,26(6):74-88.
    [83]黄道健,黄小平,岳维忠.大型海藻体内TN和TP含量及其对近海环境修复的意义.台湾海峡,2005,24(3):316-321.
    [84]黄洪辉,林钦,贾晓平,等.海水鱼类网箱养殖场有机污染季节动态与养殖容量限制关系.集美大学学报(自然科学版),2003,8(2):103-107.
    [85]黄立文,王立军,邓建,等.完全强迫下夏季黄东海环流三维高分辨数值模拟.武汉理工大学学报(交通科学与工程版),2004,28(5):629-633.
    [86]黄立文,王立军,邓建,等.夏季中国海海流系统的高分辨率数值模拟.武汉理工大学学报(交通科学与工程版),2005,29(2):163-166.
    [87]黄小平,温伟英.上川岛公湾海域环境对其网箱养殖容量限制的研究.热带海洋,1998,17(4):57-64.
    [88]季如宝,毛兴华,朱明远.贝类养殖对海湾生态系统的影响.黄渤海海洋,1998,16(1):21-27.
    [89]蒋增杰.桑沟湾栉孔扇贝大规模死亡原因分析.齐鲁渔业,2004,21(8):10-11.
    [90]矫晓阳,朱明远.集中海洋浮游植物的光量子产值研究.生态学报,1993,13(1):17-24.
    [91]金海燕,等.黄海、东海颗粒有机碳的分布特征及其影响因子分析.海洋学报.2005,27(5):46-53.
    [92]匡世焕,孙慧玲,李锋,等.栉孔扇贝生殖活动前后的滤食和生长.海洋水产研究,1996,17(2):80-86.
    [93]李洪波,等.南黄海潮汐锋对浮游细菌生物量分布的影响.生态学报.2004,24(11):2608-2615.
    [94]李吉强,高伟,迟晓.胶州湾滩涂养殖业存在的问题与对策.渔业致富指南,2006,20:11-13.
    [95]李庆彪.养殖扇贝的大量死亡与环境容纳量.国外水产,1990,2:9-11.
    [96]李超伦,王荣,孙松.南黄海鳀产卵场中华哲水蚤的数量分布及其摄食研究.水产学报,2003,25S:55-64.
    [97]李雁宾.长江口及临近海域季节性赤潮生消过程控制机理研究[博士学位论文].青岛:中国海洋大学,2008.
    [98]林金美,林加涵.南黄海浮游甲藻的生态研究.生态学报.1997,17(3):252-257.
    [99]林卫青,卢士强,矫吉珍.长江口及毗邻海域水质和生态动力学模型与应用研究.水动力学研究与进展,2008,23(5):522-531.
    [100]刘桂梅,孙松,王辉,等.春秋季黄海海洋锋对中华哲水蚤分布的影响.自然科学进展.2002,12(11):1150-1154.
    [101]刘桂梅,孙松,王辉.海洋生态系统动力学模型及其研究进展.地球科学进展.2003,18(3):427-432.
    [102]刘浩,潘伟然.营养盐负荷对浮游植物水华影响的模型研究.水科学进展,2008,19(3):345-351.
    [103]刘慧,方建光,董双林,等.莱州湾和桑沟湾养殖海区浮游植物的研究Ⅱ.海洋水产研究,2003,24(3):20-28.
    [104]刘剑昭,李德尚,董双林.关于水产养殖容量的研究.海洋科学,2000,24(9):33-35.
    [105]刘瑞玉.关于我国海洋生物资源的可持续利用.科技导报.2004,11:28-31.
    [106]刘霞,孙耀,石晓勇,等.桑沟湾养殖海域沉积物中N的溶出动力学特性.海洋环境科学,2008,27(4):305-308.
    [107]刘新成,沈焕庭,黄清辉.长江入河口区生源要素的浓度变化及通量估算.海洋与湖沼,2002,33(3):332-340.
    [108]卢振彬,杜琦等.大港湾贝类养殖容量的评价.福建水产,2000,1:1-6.
    [109]卢振彬,杜琦,蔡清海,等.福建罗源湾贝类的养殖容量.中国水产科学,2004,2(11):104-110.
    [110]卢振彬,杜琦,钱小明,等.福建诏安湾贝类养殖容量的研究.南方水产,2005a,1(5):5-9.
    [111]卢振彬,杜琦,许翠娅,等.福建泉州湾贝类养殖容量评估.热带海洋学报,2005b,24(4):22-29.
    [112]卢振彬,杜琦等.厦门大嶝岛海域贝类的养殖容量.应用生态学报,2005c,16(5):961-966.
    [113]卢振彬,方民杰,杜琦.厦门大嶝岛海域紫菜、海带养殖容量研究.南方水产,2007,3(4):52-59.
    [114]毛玉泽.桑沟湾滤食性贝类养殖对环境的影响及其生态调控[博士学位论文].中国海洋大学,2004.
    [115]樊伟,吕咸青.基于参数空间分布的海洋生态系统模拟.海洋科学进展,2009,27(1):24-33.
    [116]樊星,魏皓,原野,等.近岸典型养殖海区的潮流垂直结构特征.中国海洋大学学报,2009,39(2): 181-186.
    [117]乔方利,袁业立,朱明远,等.长江口海域赤潮动力学模型及赤潮控制因子研究.海洋与湖沼,2000,31(1):93-100.
    [118]乔方利,马建,夏长水,等.波浪和潮流混合对黄海、东海夏季温度垂直结构的影响研究.自然科学进展,2004,14(12):1434-1441.
    [119]曲克明,宋云利,徐勇,等.桑沟湾养殖水域春季和夏季营养限制的现场实验.海洋环境科学,2008,27(2):124-127.
    [120]任慧军,詹杰民.黄海冷水团的季节变化特征及其形成机制研究.水动力学研究与进展A辑,2005,20(S):887-896.
    [121]任玲.胶州湾生态系统中浮游体系氮循环模型的研究[博士学位论文].青岛:中国海洋大学,1999.
    [122]丘书院.论东海鱼类资源量的估算.海洋渔业,1997,2:49-51.
    [123]山东省科学技术委员会.山东近海水文图集.济南:山东省地图出版社,1988.
    [124]商少凌,柴扉,洪华生.海洋生物地球化学模式研究进展.地球科学进展.2004,19(4):621-629.
    [125]沈国英.海洋生态学.北京:科学出版社,2002.
    [126]沈永明,郑永红,吴修广.近岸海域污染物迁移转化的三维水质动力学模型.自然科学进展.2004,14(6):694-670.
    [127]宋洪军,李瑞香,王宗灵,等.桑沟湾浮游植物多样性年际变化.海洋科学进展,2007,25(3):332-339.
    [128]宋书群,孙军,俞志明.长江口及其临近水域叶绿素a的垂直格局及成因初析.植物生态学报,2009,33(2):369-379.
    [129]宋云利,崔毅,孙耀,等.桑沟湾养殖海域营养状况及其影响因素分析.海洋水产研究,1996,17(2):41-51.
    [130]苏纪兰.中国近海的环流动力机制研究.海洋学报.2001,23(4):1-16.
    [131]苏纪兰,唐启升.我国海洋生态系统基础研究的发展—国际趋势和国内需求.地球科学进展.2005,20(2):139-143.
    [132]舒廷飞,温琰茂,贾后磊,等.哑铃湾网箱养殖水体中N、P的形态特征及其季节变化调控机制.海洋环境科学,2004,23(3):12-15.
    [133]孙慧玲,方建光,匡世焕,等.不同季节海鞘滤水率的测定,海洋水产研究,1996,17(2):103-107.
    [134]孙丕喜,张朝晖,郝林华,等.桑沟湾海水中营养盐分布及潜在性富营养化分析.海洋科学进展,2007,25(4):436-445.
    [135]孙松,张永山,吴玉霖,张光涛,张芳,蒲新明.胶州湾初级生产力周年变化.海洋与湖沼,2005,36(6):481-487.
    [136]孙文心,等.黄东海环流的数值研究Ⅱ潮及潮致环流模拟.青岛海洋大学学报.2001,31(3):297-304.
    [137]孙耀,宋云利,崔毅,等.桑沟湾养殖海域无机氮营养盐的分布与行为.海洋水产研究,1996,17(2):52-59.
    [138]孙耀,赵俊.桑沟湾养殖海域的水环境特征.中国水产科学,1998,5(3):69-75.
    [139]孙玉娟,乔方利,王关锁,等.MASNUM海浪数值模式业务化预报与检验.海洋科学进展,2009,27(3):281-294.
    [140]檀赛春,石广玉.中国近海初级生产力的遥感研究及其时空演化.地理学报,2006,61(11):1189-1199.
    [141]唐启升.关于容纳量及其研究.海洋水产研究,1996,17(2):1-5.
    [142]唐启升,苏纪兰.中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.北京:科学出版社,2000.
    [143]唐启升,苏纪兰.海洋生态系统动力学研究与海洋生物资源可持续利用.地球科学进展.2001,16(1):5-11.
    [144]田恬,魏皓,苏健,等.黄海氮磷营养盐的循环和收支研究.海洋科学进展.2003,21(1):1-11.
    [145]万小芳.黄海冷水团水域水层-底栖耦合生态系统建模研究[硕士学位论文].中国海洋大学.2003.
    [146]万振文,乔方利,袁业立.渤、黄、东海三维潮波运动数值模拟.海洋与湖沼.1998,29(6):611-616.
    [147]万振文.二阶湍封闭生态动力学数值模式及其小中尺度应用[博士学位论文].中国科学院海洋研究所,1999.
    [148]万振文,袁业立.海洋浮游生态系统连续介质动力学模型湍封闭研究.水动力学研究与进展:A辑,2000a,15(2):229-239.
    [149]万振文,袁业立.海洋赤潮生态模型参数优化研究.海洋与湖沼,2000b,31(2):205-209.
    [150]王保栋.黄海冷水域生源要素的变化特征及相互关系.海洋学报,2000,22(6):47-54.
    [151]王保栋,刘峰,站闰.黄海生源要素的生物地球化学研究评述.黄渤海海洋,2001,19(2):99-106.
    [152]王保栋,单宝田,战闰,等.黄、渤海无机氮的收支模式初探.海洋科学,2002,26(2):33-36.
    [153]王保栋.黄海和东海营养盐分布及其对浮游植物的限制.应用生态学报,2003,14(7):1122-1126.
    [154]王波.秋季桑沟湾贝类养殖对海域水质影响的数值研究[硕士学位论文].中国海洋大学,2007.
    [155]王洪礼等.渤海赤潮藻类生态动力学模型的非线性动力学研究.海洋技术,2002,21(3)
    [156]王军,苏永全.福建罗源湾鱼类食物网研究.中国水产月刊(中国台湾),1996,518:55-56.
    [157]汪兆椿.面向21实际的海洋行动纲领.海洋开发与管理.1995,4:15-18.
    [158]魏皓,王磊,林以安,等.黄海中部营养盐的贯跃层输运.海洋科学进展,2002,20(3):15-20.
    [159]魏皓,赵亮,冯士榨.渤海浮游植物生物量与初级生产力变化的三维模拟.海洋学报.2003,25(2):66-72.
    [160]韦晟,姜卫民.黄海鱼类食物网的研究.海洋与湖沼,1992,23(2):182-192.
    [161]武晋宣.桑沟湾养殖海域氮、磷收支及环境容量模型[硕士学位论文].中国海洋大学,2005.
    [162]吴荣军,吕瑞华,朱明远,等.海水混合和层化对叶绿素a垂直分布的影响.生态环境.2004,13(4):515-519.
    [163]吴荣军,张学雷,朱明远,等.养殖海带的生长模型研究.海洋通报,2009,28(2):34-40.
    [164]吴玉霖,孙松,等.胶州湾浮游植物数量长期动态变化的研究.海洋与湖沼,2004,35(6):518-523.
    [165]吴增茂,俞光耀,等.胶州湾北部水层生态动力学模型与模拟Ⅱ胶州湾北部水层生态动力学的模拟研究.青岛海洋大学学报,1999,29(3):429-435.
    [166]吴增茂,翟雪梅,张志南,等.胶州湾北部水层-底栖耦合生态系统的动力数值模拟分析.海洋与湖沼,2001,32(6):588-597.
    [167]夏滨,吕瑞华,孙丕喜.2000年秋季黄、东海典型海区叶绿素a的时空分布及其粒径组成特征.黄渤海海洋,200,19(4):37-42.
    [168]夏洁,高会旺.南黄海东部海域浮游生态系统要素季节变化的模拟研究.安全与环境学报,2006,6(4):59-65.
    [169]夏长水.基于POM的浪流耦合模式的建立及其在大洋和近海的应用[博士学位论文].中国海洋大学,2005.
    [170]夏综万,等.大鹏湾的赤潮生态仿真模型.海洋与湖沼.1997,28(5):468-474.
    [171]徐青,刘玉光,程永存,等.伴随同化技术在渤、黄海生态模式中的应用:控制变量的选取与孪生实验.高技术通讯,2006,16(1):78-63.
    [172]许卫忆,朱德弟,卜献卫,等.赤潮发生和蔓延的动力机制数值模拟.海洋学报.2002,24(5):91-97.
    [173]徐永福.模拟浮游生物的季节变化.生态学报,1995,15(3):245-250.
    [174]许忠能,林小涛,周小壮,等.广东省海水养殖对海区环境影响的夏季调查.环境科学,2002,23(6):79-85.
    [175]杨红生,张福绥.浅海筏式养殖系统贝类养殖容量研究进展.水产学报,1999,23(1):84-90.
    [176]杨卫华.胶州湾扇贝养殖对环境的影响及其数值模型研究[硕士学位论文].中国海洋大学,2005.
    [177]杨卫华,高会旺,张永举.海水养殖对近岸海域环境影响的研究进展.海洋湖沼通报,2006,1:100-107.
    [178]尹晖.乳山湾滩涂贝类养殖容量评估模型[硕士学位论文].中国海洋大学,2006.
    [179]尹晖.孙耀,徐林梅,等.乳山湾滩涂贝类养殖容量的估算.水产学报,2007,31(5):669-674.
    [180]俞光耀,吴增茂,张志南,等.胶州湾北部水层生态动力学模型与模拟Ⅰ胶州湾北部水层生态 动力学模型.青岛海洋大学学报,1999,29(3):421-428.
    [181]袁业立.中国陆架海海洋环流与海洋科学研究及展望.世界科技研究与发展.1998,4:18-24.
    [182]袁业立,乔方利.海洋动力系统与MASNUM海洋数值模式体系.自然科学进展,2006,16(10):1257-1267.
    [183]詹力扬,郑爱榕,陈祖峰.厦门同安湾牡蛎养殖容量的估算.厦门大学学报,2003,42(5):644-647.
    [184]张国森.大气的干、湿沉降以及对东、黄海海洋生态系统的影响[硕士学位论文].中国海洋大学,2004.
    [185]张继红,方建光.栉孔扇贝对春季桑沟湾颗粒有机物的摄食压力.水产学报,30(2):277-80.
    [186]张金良,于志刚,张经,等.黄海西部大气湿沉降(降水)中各元素沉降通量的初步研究.环境化学,2000,19(4):352-356.
    [187]张其永,林秋眠,林尤通,等.闽南台湾浅滩渔场鱼类食物网研究.海洋学报,1981,3(2):275-290.
    [188]张新玲.渤海水层底栖耦合生态系统的多箱建模和关键性问题的实验研究[博士学位论文].中国海洋大学,2002.
    [189]张书文.黄海水动力环境及其对生物、化学要素影响的研究.博士后出站报告,2001.
    [190]张书文,夏长水,袁业立.黄海冷水团水域物理-生态耦合数值模式研究.自然科学进展.2002,12(3):315-340.
    [191]张书文.黄海冷水团夏季叶绿素垂向分布结构的影响机制.海洋湖沼,2003,34(2):179-176.
    [192]张学雷.滤食性贝类与环境间的相互影响及其养殖容量研究[博士学位论文].中国海洋大学,2003.
    [193]张学雷,朱明远,李瑞香,等.贝类养殖环境的多参数同步连续监测.海洋科学进展,2004,22(3):340-346.
    [194]赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数值模拟.海洋学报.1994,16(5):1-10.
    [195]赵俊,周诗赉,孙耀,等.桑沟湾增养殖水文环境研究.海洋水产研究,1996,17(2):68-79.
    [196]赵亮.渤海浮游植物生态动力学模型研究[博士学位论文].青岛海洋大学,2002.
    [197]赵亮,魏皓.渤海氮磷营养盐循环和收支研究.环境科学.2002,23,(1):78-81.
    [198]赵一阳,何丽娟,陈毓蔚.论黄海沉积物元素区域分布格局.海洋科学,1989,1:1-5.
    [199]中国海湾志编纂委员会.中国海湾志第四分册.北京:海洋出版社,1993.
    [200]邹立.胶州湾生态系统中浮游体系氮循环模型的研究[博士学位论文].青岛海洋大学,1999.
    [201]周巍,吕咸青.伴随同化方法在渤、黄海生态模式中的应用—生态参数的空间分布.海洋湖沼通报,2009,1:19-28.
    [202]周伟华,袁翔城,霍文毅,等.长江口邻域叶绿素a和初级生产力的分布.海洋学报,2004,26(3):143-150。
    [203]朱建荣,肖成猷,沈焕庭.财产夏季长江冲淡水扩展的数值模拟.海洋学报,1998,20(5):13-22.
    [204]朱建荣,丁平兴,朱首贤.黄海、东海夏季环流的数值模拟.海洋学报,2002,24(S1):123-133.
    [205]朱建荣,戚定满,吴辉.吕泗上升流观测和动力机制模拟分析.华东师范大学学报(自然科学版),2004a,2:87-92.
    [206]朱建荣,吴辉,张衡等.包括潮流作用的黄东海环流模式的开边界条件研究.自然科学进展,2004b,14(6)689-693.
    [207]朱明远,毛兴华,吕瑞华,等.黄海海区的叶绿素a和初级生产力.黄渤海海洋,1993,11(3):38-51.
    [208]朱明远,张学雷,汤庭耀.应用生态模型研究近海贝类养殖的可持续发展.海洋科学进展,2002,20(4):34-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700