用户名: 密码: 验证码:
恒流量配水技术在葡南油田的应用与认识
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡南油田是大庆长垣南部的一个低渗透油田,层间矛盾尤为突出,地下油层的非均质特征较为突出,加之投入开发达30多年,油田已经进入到高含水开发阶段,为了确保油田的持续稳产高产,做好分层注水工作显得尤为重要,而堵塞器技术的优劣趋势影响分层注水的质量。本文提到的恒流配水堵塞器,其特点是内部结构简单、使用期限较长、制造成本较低。通过对各类堵塞器的分析与比较,选择确定纯机械式的堵塞器,其基本结构是采用滑阀弹簧式。根据流体力学的基本知识建立了堵塞器的数学模型,并通过对堵塞器模型的动静态特性真模拟,初步得到了模型的基本物理特性。然后对恒流量堵塞器在现场应用的情况技术适应性做出系统全面的总结归纳。通过油田注水现场实际应用,明确了恒流堵塞器应用条件,第一是选井条件,其一是注水压力要求,即所选井投捞前注水压力要低于该井的破裂压力2-3MPa、能完成配注且井下有水嘴控制的井层,适用于应用恒流堵塞器;其二是地层物性要求,即地层物性差,连通性不好,注水压力接近或与上覆岩压持平的井不宜应用恒流堵塞器。第二是选层条件,其一是试验井层的水嘴要求,即层段常规水嘴直径缩至3mm以下仍不能使水量控制在配注量以内的限制层,适用于应用恒流堵塞器;其二是层段性质要求,恒流堵塞器因其良好的控水功能宜于应用于限制层,完不成配注的加强层不宜应用。第三是使用注意事项,其一是恒流式偏心配水堵塞器投捞成功后,稳定2天后再进行测试,可提高一次测试合格率;其二是恒流式偏心配水堵塞器属精密仪器,在投捞过程中不要与钝器相碰撞。恒流量配水技术能有效提高注水井的分层注水质量,减少注水井测试工作量,降低工人劳动强度,恒流式偏心配水堵塞器适应于吸水能力好、油水井层位连通好、注水压力较高但要低于破裂压力2-3MPa、井内环境清洁的井层,恒流量偏心配水堵塞器的钢体结构强度有待于进一步提高。
Punan is the Daqing oilfield in southern placanticline a low-permeability oil fields, particularly conflicts between layers, underground reservoir heterogeneity is more prominent, in addition to invest in developing more than 30 years, oil has entered the high water cut stage, in order to ensure that oilfield continued stable yield, good water injection layer is very important work, and plug the device technology trends affecting the merits of the quality of water injection layer. This constant current water allocation mentioned plug device, which is characterized by simple structure, long period of use, lower manufacturing costs. Through various types of plug for analysis and comparison, select OK to plug purely mechanical device, its basic structure is spring-loaded sliding valve. According to the basic knowledge of fluid mechanics to establish a mathematical model of blanking plug and plug the device model by dynamic and static characteristics really simulations, the initial model has been the basic physical properties. Then plug the device on the constant flow situation in the field use technology to make the system adaptive and comprehensive summarized. Through the practical application of water flooding the scene, clearly the conditions of constant application plug device, the first is the well selection conditions, The second layer is selected conditions, The third is the use of attention, In the process of pulling not collide with a blunt object. Constant flow with water injection well technology can improve the quality of stratified injection, water injection wells to reduce testing effort and reduce labor intensity, constant flow eccentric water absorption capacity adapted to plug the device is good, good connectivity layer oil wells, injection pressure than the high but lower than the breakdown pressure 2-3MPa, wells clean wells, water distribution constant flow eccentric plug for the structural strength of steel needs to be improved.
引文
[1]刘霞,霍金良,张春祥.葡萄花油田南部扶余油层开发首钻井区块钻井设计[J].2005,2~3
    [2]杨宝侠,张艳琴,宋丽敏.葡南油田葡333-葡462区块扶余油层区块钻井地质设计[J].2004,3~4
    [3]何星,霍金良,宋波.葡萄花油田滚动扩边区块钻井设计[J].2007,5~6
    [4]周望,李志,谢朝阳.大庆油田分层开采技术的发展与应用[J].大庆石油地质与开发.1998,17(01):36~39
    [5]伍建林,李著信,赵扬名.地面恒流量注水器的研究及试验[J].石油机械.2005,33(04):58~59
    [6]刘翔鹗,王浦潭.采油工程技术的发展与展望[J].石油钻采工艺.2000,24(03):42~49
    [7]赵振旺,王春纭,赵梅庆.分层注水定量配水工艺技术研究与应用[J].石油钻采工艺.2000,22(04):63~65
    [8] Y.M.Zheng.A New Control Strategy for Hydraulic Valve Applications in Oil Field.Electrical and Computer Engineering.1997,2:708~711
    [9] M.C.Chang,J.Wang,Y.S.Lai.Water Flow Control for Air-ConditionerUsing Inverter-Controlled Induction Motor Drives.Power EngineeringSociety Summer Meeting.2000,4:2459~2462
    [10] Y.C.Su,L.Lin,A.P.Pisano.Water-Powered Osmotic Microactuator.The14th IEEE International Conference on MEMS.2001:393~396
    [11] M.Capanu,J.G.Boyd,P.J.Hesketh.Design,Fabrication and Testing of ABistable Electromagnetically Actuated Microvalve.Journal ofMicroelectromechanical Systems.2000,9(02):181~189
    [12] H.An,M.W.Plesniak,J.Suh,S.H.Frankel.Flow in A Co-Axial ControlValve.ASME International Mechanical Engineering Congress.2003,15-21:457~465
    [13] A.Jack,王金旗,孟金焕.智能井系统发展现状与趋势[J].国外油田工程.2004,20(02):23~25
    [14]E.Sigurd,孟金焕,王金旗.世界第一口多光纤传感器智能井[J].2004,20(02):26~28
    [15]曲昌学,王玉玲,智勤功.油田注水井智能双流调节阀装置的研制[J].石油机械.2002,30(06):24~27
    [16]张健,丛洪良,李光.免投堵塞器恒流量偏心配水器的研制[J].石油机械.2001,29(11):17~18
    [17]杨国瑜,张丽娟,季振业.膜片式调速阀的结构和分析[J].流体机械.1998,26(10):39~41
    [18] G.Jeroen,S.W.Wong,M.Tor,Z.Robert,D.Brett.Pulsed Water InjectionDuring Waterflooding.International Improved Oil Recovery Conference inAsia Pacific.2003:37~52
    [19]万大松.油田注水自动化的设计与应用[J].中国仪器仪表.2005,(06):79~81
    [20]王尊策,崔海青,赵立新.定量注水堵塞器的性能研究[J].石油机械.2001,29(03):19~21
    [21]周晓东,檀朝东,张士诚.新型KPX型偏心自调配水器的研制[J].石油钻采工艺.1997,19(01):88~92
    [22]李学丰,丁建国,林洪山.压差式定量配水器的研制与应用[J].石油钻采工艺.1998,20(05):102~104
    [23] J.A.Frank,A.P.Pisano.Low-Leakage Micro Gate Valves.12th International Conference on Actuators and Microsystems.2003,1:143~146
    [24]侯鹏倩.自力式调节阀及其应用[J].石油化工自动化.2005,(01):83~85
    [25]朱华兴.高性能调速阀的设计和使用方法的研究[J].机床与液压.1996,(05):38~45
    [26]老国鎏.国内外流量阀结构分析[J].机床与液压.1994,(04):194~200
    [27]官忠范.几种新型实用的液压控制阀[J].液压与气动.1997,(02):33~36
    [28] W.Borutzky.Bond Graph Modeling from An Object Oriented Modeling Point of View.Simulation Practice and Theory.1999,(7):439~461
    [29] H.Matthies,J.Steindorf.Partitioned Strong Coupling Algorithms for Fluidstructure Interaction.Computer&Structures.2003,81:805~812
    [30] W.Borutzky,B.Barnard,J.Thoma.An Orifice Flow Model for Laminar and Turbulent Conditions.Simulation Modelling Practice and Theory.2002, (10):141~152
    [31]胡晓林,王仲范,廖连莹.变结构系统的键合图仿真[J].机械设计.2004,21(5):41~43
    [32] J.F.Broenink.20-SIM Software for Hierarchical Bond-Graph/Block-Diagram Models.Simulation Practice and Theory.1999,(7):481~492
    [33]严桃平,包海涛,常绿.液压阀失效分析与消除措施[J].机械工人(冷加工).2004,(03):55~56
    [34] M.Casland,H.Gai,M.F.Barrilleaux.Predicting and Mitigating Erosion of Downhole Flow-Control Equipment in Water-Injector Completions. 2004,35:26~29
    [35] A.S.Shehata,S.A.Nosier,G.H.Sedahmed.The Role of Mass Transfer InThe Flow-Induced Corrosion of Equipments Employing Decaying Swirl Flow.Chemical Engineering and Processing.2002,41:659~666
    [36]王培智.1Cr18Ni9Ti不锈钢耐蚀性能研究[J].机械工程与自动化.2004,26(01):202~204
    [37]S.M.Borghei,M.R.Jalili,M.Ghodsian.Discharge Coefficient for Sharp- Crested Side Weir In Subcritical Flow.Journal of Hydraulic Engineering, 1999,125(10):1051~1056
    [38] V.C.Ting,E.H.Jr.Jones,D.G.Ferguson.Discharge Changes InCritical Flow Venturi Nozzles After Severe Field Service.Devices for Flow Measurement and Analysis.1997,12:140~145
    [39]A.N.Johnson,J.D.Wright,S.Nakao,C.L.Merkle,M.R.Moldover.Effectof Vibrational Relaxation on The Discharge Coefficient of Critical Flow Venturis.Flow Measurement and Instrumentation.2000,11(04):315~327
    [40] Z.B.Luo,Z.X.Xia,J.X.Hu.Numerical Simulation of Synthetic Jet Flow Field and Parameter Analysis of Actuator.Journal of Propulsion Technology. 2004,25(03):199~205
    [41] D.R.Gao,Y.Q.Wang,Y.K.Zhao.Numerical Simulation of Flow Field Inside Hydraulic Spool Valve.Journal of Hydrodynamics.2002,14(04):31~39
    [42] K.Funazaki,C.Favaretto,F.Felipe,M.Kamata,T.Tanuma.NumericalSimulation On the Flow Field In A Turbine Stage With Upstream FlowInjection From the Outer Casing:Effects of the Injection Angle.Fluids and Thermal Engineering.2003,46(01):173~183
    [43]冀宏,傅新,杨华勇.非全周开口滑阀稳态液动力研究[J].机械工程学报.2003,39(06):13~17
    [44]王艳珍,于兰英,柯坚.水压锥阀流场的CFD解析[J].机械.2003,30(05):20~22
    [45]曹秉刚,史维祥,中野和夫.内流式锥阀液动力的理论探讨[J].西安交通大学学报.1995,29(07):1~6
    [46]廖义德,张铁华,李壮云.无液动力分流阀设计及仿真研究[J].武汉化工学报.2002,24(03):79~80
    [47] S.K.Cho,V.M.Korwi.Port Design Optimization Using CFD Analysis.Journal of Advanced Manufacturing Systems.2004,3(01):21~32
    [48] M.Peric,R.Kessler,G.Scheuerer.Comparison of Finite Volume Numerical Methods with Staggered and Colocated Grids.Comp.Fluids.1988,16:389~403
    [49] S.Ghorai,K.D.P.Nigam.CFD Modeling of Flow Profiles and Interfacial Phenomena in Two-Phase Flow In Pipes.Chemical Engineering and Processing.2006,45(01):55~65
    [50]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展.1997,2(25):19~38
    [51]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报(自然科学版).2004,(6):123~126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700