用户名: 密码: 验证码:
起伏地表三维高频瑞雷面波传播特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瑞雷面波是P波和Sv波在自由界面处相长干涉而形成的沿自由界面传播,在垂直自由界面方向迅速衰减的特殊地震波,由英国数学家和物理学家Rayleigh爵士于1887年首次在理论上证明其存在。瑞雷波能量强,是天然地震中破坏性最大的波和反射地震勘探中的强干扰波。上世纪50年代,地震学家们发现瑞雷波在层状介质中的频散特性携带有地层参数的信息,可以利用其频散特性来研究地球内部结构,估计岩土力学参数。目前,利用瑞雷波的频散特性来研究各种尺度的地球物理问题已经成为热门领域,特别是基于完全弹性介质中瑞雷波传播特性的多道面波分析方法取得了长足的进步。
     现有理论框架内,瑞雷面波的频散特性只在水平层状介质中有解析解。实际地球介质并非完全水平层状介质,如地表上广泛分布的山脉、海洋、沙漠、沼泽、湖泊等复杂地形,强烈地影响沿地表面传播的瑞雷波频散性质。因此,研究复杂地表条件下瑞雷面波的传播特性,对于拓展经典理论,开展地球内部结构的精细探测均具有重要作用。文献调研表明,已有的关于瑞雷波的研究工作多局限于一维和二维地球模型,对于实际三维地球模型中瑞雷波的传播特性了解甚少。因此,开展三维起伏地表条件下瑞雷面波传播特性的数值模拟研究是必要和迫切的任务。
     本文采用交错网格有限差分方法,合理设计起伏地表边界条件,实现了起伏地表条件下的三维地震波场的高精度数值模拟。通过对几类典型三维起伏地形条件下瑞雷波传播的数值模拟试验,获得了三维起伏地表对瑞雷波传播的影响规律,为在复杂地区开展实际瑞雷波勘探奠定了基础。主要研究内容包括:
     (1)起伏地表条件下三维高频瑞雷面波数值模拟方法研究,将处理自由界面条件的声学-弹性界面近似方案与经典“以折代曲”的起伏地表离散化方法相结合,给出了起伏地表条件下三维地震波场的高精度、高效率模拟方案。
     (2)典型起伏地表条件下瑞雷面波传播特性研究。设计了包括三维单斜面、山脊、山谷、独立隆起地形、独立凹陷地形等简单常见起伏地表半空间模型,实现了高频瑞雷波在三维起伏地表模型中传播过程的数值模拟,并根据模拟结果分析了起伏地表对瑞雷波传播特性的影响。
     (3)三维多道面波分析方法研究。设计了非线型阵列观测方式,对合成地震记录采用多道面波分析方法提取其瑞雷波频散曲线,并利用所提取面波相速度反演了一维横波速度结构,论证了新的观测和数据处理方法提取的频散曲线对应接收阵列所围区域重心点处的一维横波速度结构,并讨论了新的方法在面波勘探中压制局部地形起伏影响上的优越性。
     通过对所设计的三维起伏地表模型进行瑞雷波传播的数值模拟与分析,笔者获得如下几点主要结论:
     (1)通过自由界面倾斜角度从0°到90°以10°为增量的系列含倾斜自由界面半空间模型上瑞雷面波数值模拟结果,进一步分析了2D起伏地表AEA法自由界面边界条件处理方法的精度。其实验结果表明AEA法要明显优于SIM法,特别是在倾斜角度在45°附近时。模拟误差的大小与模型剖分的精细程度有关,为保证得到各角度情况下满足精度要求的模拟结果,采用AEA法模拟,依然需要对模型进行较精细的网格剖分,发现至少需要60ppw才能满足要求,与Bohlen和Saenger(2006)的结论一致。同时发现,采用AEA的交错网格有限差分法与采用旋转交错网格(RSG)法具有类似的模拟精度,而前者比RSG法更容易实现。
     (2)二维含倾斜地表面层状介质模型的数值模拟试验表明,当瑞雷面波沿倾斜地表面传播时,其频散性质由地层的真厚度决定,而非铅垂厚度决定。因此,在多道面波勘探(MASW)中根据瑞雷面波频散曲线反演S波速度时,反演所得到的层厚度,应为层的真厚度而非铅垂厚度,仅当界面水平时二者才一致。据笔者文献调研,未见前人有相同结论。另外,数值实验结果再一次证明了多道面波分析(MASW)中排列中点假设的正确性,即多道面波分析所得频散曲线反映参与计算的多道记录中点处的地层性质。
     (3)对三维含倾斜地表面两层模型的数值模拟结果表明,非线型观测阵列合成地震记录所提取的瑞雷波频散能量的峰值与水平地表两层介质瑞雷波理论频散曲线高度拟合,从而数值验证了三维多道面波分析方法的可行性。对比发现,非线型观测阵列比线型排列所提取的频散曲线具有更好的抗假频干扰能力,高阶模式频散曲线与理论高阶模式频散曲线拟合程度更佳。
     (4)对三维含山脊、山谷、独立凸起、独立凹陷等起伏地表半空间模型的数值模拟试验表明,三维起伏地表对瑞雷面波传播影响较大,在起伏地表边缘处有瑞雷波能量的反射与散射现象发生,且负地形比正地形对产生反射和/或散射瑞雷波的作用更明显。由于反射和/或散射瑞雷波能量的存在,根据线型排列所计算的频散能量图中,瑞雷波频散能量产生分叉现象,而根据非线型阵列记录所计算的频散能量中的分叉现象得到压制。对于山谷地形和独立凹陷地形模型,瑞雷波通过山谷或独立凹陷时部分能量被反射,并且以山谷或凹陷为中心,产生地震波能量的相互干涉而形成共鸣震荡现象。对于独立凸起地形模型,当瑞雷面波经过独立凸起时,由于被山包四周的地表面多次反射,有较强的能量被圈闭在山包内部。
     (5)通过对典型起伏地表模型的数值模拟试验,发现多道面波分析的平均效应虽然降低了横向分辨率,却改善了局部地形起伏对瑞雷波频散曲线的影响。二维起伏地表模型数值模拟结果表明,线型排列多道面波方法压制地形影响的效果取决于排列长度与起伏地形宽度之间的比值,在文中数值模拟记录的震源主频为20Hz的情形下,该比值大于或等于3时可基本消除正地形的影响,该比值需达到5以上才能较好地压制独立负地形的影响。当采用非线型阵列在三维起伏地表模型上观测时,阵列覆盖面积达到起伏区域面积的1.5倍可基本消除正地形的影响:阵列覆盖面积至少需达到起伏区域面积2倍以上,才能基本消除负地形的影响。
     (6)二维多道面波分析中排列中点假设已在勘探实践和数值实验中得到验证。对三维含倾斜地表双层介质断层模型和起伏地层界面模型进行了数值模拟,利用高精度线性拉东变换算法计算了非线型阵列多道记录的频散曲线,然后采用阻尼最小二乘法和模拟退火法反演获得了一维横波速度模型。对比重建的横波速度模型和理论模型,证明了三维多道面波分析中重心假设是正确的,即非线型阵列多道分析的频散曲线对应的空间位置是该阵列覆盖区域的重心。该结论为三维面波多道分析方法提供了应用基础。
Rayleigh waves propagate along the free surface and vanish exponentially in vertical direction, which are formed under the constructive interference of P-and Sv-waves near the free surface, and were first discovered in theory by Lord Rayleigh in1887. Since they have strong energy, Rayleigh waves are the most damaging wave type during earthquakes, and regarded as strong noise in petroleum exploration. However, because the dispersive characteristic of Rayleigh waves in layered earth model was found in1950's, they have been used as effective waves in several geophysical problems, for example in deducing inner structure of earth and soil mechanic parameters, material composition researching of the crust and the mantle, near-surface structure survey and non-destructive engineering detecting. At present, there are some classical literatures in describing the propagation characteristics of Rayleigh waves in elastic media. And Rayleigh waves have been widely used in several multi-scale geophysical researches, and the dispersion characteristics study of Rayleigh waves becomes a hot issue of geophysical researches. In recent years, the surface wave method based on Rayleigh waves propagation characteristics in elastic media, has been considerable advancing.
     At present, researches of Rayleigh-waves dispersive characteristics are focused on flat layered media. However, the actual earth is not completely flat layered media. Especially the earth surface is not wholly horizontal. There are extensive complex areas on the earth surface, such as mountains, seas, deserts, marshes, lakes. Hence, research of propagation of Rayleigh waves under complex topographic surface becomes significantly important in detecting the interior structure of the earth. In addition, many researches about the dispersive characteristics and numerical simulation technique of Rayleigh wave are carried out in two dimension (2D) media. However, the real earth is three-dimension (3D). To let the models approach the real underground media, our researches should be proposed in3D. Some complex wave fields can not be well explained by2D numerical simulation results. However, the3D numerical simulation results can be used to quantitatively explain a lot phenomenon of complex wave fields. Hence, the research of propagation of Rayleigh waves in3D media with topography is an imperative work.
     To study the propagation of Rayleigh waves in3D media with topography, a reasonable free-surface condition approach for the staggered-grid finite-difference method is applied in numerical simulations. A series of typical topographic models are designed, and the propagations of Rayleigh waves in these models are numerical simulated. Some propagation regularities of Rayleigh waves on topographic surface are obtained. In our study, we focused on the following issues.
     (1) Methods for simulation of high-frequency Rayleigh waves propagation in three-dimensional media with topography. We propose a feasible finite difference scheme incorporating the acoustic/elastic interface approach (AEA) into a 'stair-case' mesh for modeling surface wave propagation with the topographic free-surface.
     (2) To study the propagation of Rayleigh waves under the topographic surface, a series of typical three-dimensional half-space models are designed, such as a slope free surface, a horst case free surface, valley case free surface, independent mountain case free surface, and independent pot case free surface. With the numerical results of Rayleigh waves on these models, we analyze the propagation characteristics of Rayleigh waves under topographic surfaces.
     (3) To study the true3D surface-wave method, we design a fan-case arbitrary acquisition geometry to get the synthetic seismograms. High-resolution linear Radon transform method is used to obtain the dispersive energy curves from the synthetic seismograms. With the dispersive energy curves, we analyze the effects of the true3D surface-wave method in eliminating influences of small topographies for Rayleigh-wave dispersion. The one dimensional S-wave profiles for the orthocenter of the fan areas are got from the inversion of the dispersive curves.
     By the analysis of the numerical simulation results of Rayleigh-wave propagation in the topographic surface models we designed, we conclude that:
     (1) A series of half-space model with slope free surface are numerically investigated with the slope angles from0degree to90degree with10degree increment. By the analysis of the numerical results, we further check the modeling precision of our2D numerical simulation approach for the topographic models. The numerical results show that our AEA method is superior to stress image method (SIM) in numerical Rayleigh wave simulation on the slope free-surface models, especially for the half-space model with45degree dipping planar free surface. It is noted that the error increases, for the dip angel increases from0to90degree, more harsh for a coarser grid spacing. The error of the AEA decreases more rapidly with increasing grid pints than the SIM. However, to achieve good accuracy for all dip angles with a fine sampling for the wavefields, approximately more than60ppw is required (also see Bohlen and Saenger,2006). And we get similar accuracy as the rotated staggered grid (RSG) finite difference method when the same ppw is used. However, it is obviously that our method is much easier in implementation.
     (2) Propagation and dispersion of Rayleigh waves in2D layered models with slope free surface are numerical analyzed. The results demonstrate that the Rayleigh-wave propagation along the slope free-surface is dominated by the real thickness of the layer. Therefore, the inverted1D S-wave velocity profile of the multichannel analysis of surface waves method (MASW) should be the S-wave velocity vs. depth in the direction perpendicular to the slope surface. To our knowledge, this conclusion points out the important characteristics of the Rayleigh-wave propagation along a slope free surface. The simulation results of a wedged layer underlying a half space model also demonstrate this important characteristics. And the numerical comparisons further prove the middle-of-receiver-spread assumption which is an implication to guide us in Rayleigh-wave exploration in practice.
     (3) Three2D linear arrays and two fan-case acquisition geometries are designed in numerical simulations. Numerical results of the3D two layer model with flat and slope free surfaces demonstrate the feasibility of the true3D surface wave method. The dispersive energy images of synthetic seismograms of linear array and arbitrary fan acquisition geometries generated by high-resolution linear Radon transform. The coincidence of the dispersive energy images with the analytical dispersion curves of a layered model demonstrates the feasibility of the true3D surface wave method.
     (4) Numerical results of3D half-space models with topographic surface as a horst case, a valley case, a single hill case and a single pit case show the influence of topographic surface for the propagation of Rayleigh waves. When Rayleigh waves pass the topographic areas, they are strongly influenced by the topographic surface, the wave form distorts, and the energy is reflected and scattered from the edge of the topographic surface. Numerical comparisons show that the influence of the valley case topography is more distinct than the horst case, and the influence of the single pit case topography is more distinct than the single hill case. Due to the existence of reflection and scattering of Rayleigh waves, energy bifurcations appear in the dispersive energy images generated from the synthetic seismograms of2D linear arrays. However, the energy bifurcations are suppressed obviously in the energy images of the true3D surface method. These results demonstrate the superiority of the true3D surface wave method. With the numerical results of Rayleigh wave propagation along the valley case topography and the single pit case topography, we find that the energy of Rayleigh waves is diffracted beside the valley or the single pit. And when Rayleigh waves pass the single hill topographic surface, a part of energy is trapped in the hill and reflected by the cliff again and again. This phenomenon can explain the fact when an earthquake occurs, the constructions in the mountaintop are damaged more seriously than the constructions on the bottom of the hill.
     (5) The multichannel analysis of surface wave (MASW) method has been effectively used to determine near-surface S-wave velocity. The assumption of the dispersion curves determined by the geophysical structure within the geophone spread of MASW method has been demonstrated by Luo in2009with synthetic and real-world examples. These tests also show the fact that a dispersion curve generated from the MASW spread is an average effect of the underneath geophysical structure of the receiver spread. Therefore, the MASW method possesses an average effect for underneath structure. With the numerical results of a series of2D and3D models with typical topographic free surfaces, we find that the average effect of MASW method can eliminate the harmful influences of topographic surfaces in Rayleigh-wave dispersion energy images generating. The numerical results of two2D half-space models with a single hill or a pit topographic free surface reveal the effects of2D MASW method in eliminating the harmful influences of topographic surfaces for generating Rayleigh waves dispersive energy images. By the analysis, we find that for the single-hill-case topography, when spread length is3times of the width of the hill, the harmful influences of topography can be eliminated by the MASW method. However, for the single-pit-case topography the spread length should be more than5times of width of the pit. We also analyze the average effects of the true3D surface method in eliminating the harmful influences of a3D single hill or pit topography for generating the dispersive energy images. We conclude that for the single-hill-case topography, when the arbitrary acquisition area is1.5times of the hill area, the harmful influence can be eliminated. However, for the single-pit-case topography, the acquisition area should be more than twice of the pit area. All the results point out simple but important guidelines of the MASW method.
     (6) The middle-of-receiver-spread assumption has been proved in the numerical and real-world examples by many researchers. Similar to the2D MASW method, we have an orthocenter assumption for the true3D surface wave method. The dispersion curves we get from the seismograms of an arbitrary acquisition geometry can be used to invert the underneath S-wave structure of the orthocenter of the arbitrary acquisition geometry area. The numerical results of a3D wedged layer model proved the orthocenter assumption. Based on the middle-of-receiver-spread assumption, a series of dispersion curves are generated from the numerical results of a2D two layer fault model and a3D two layer fault model with linear spread receivers. And by allying the inversion results of these dispersion curves, we get a pseudo-2D S-wave velocity profile and a pseudo-3D S-wave velocity body. As is shown on the pseudo-2D and pseudo-3D S-wave velocity results, the layer interface and the fault are reconstructed very well. Meanwhile, based on the orthocenter assumption, a series of dispersion curves are generated from numerical results of a3D two-layer topographic-layer-interface model with a series of arbitrary acquisition geometries. By allying the inversion results of these dispersion curves, we get a pseudo-3D S-wave velocity body. On the pseudo velocity body, the topographic-layer interface is reconstructed well. These inversion results prove the orthocenter assumption further and have an implication to guide us in performing Rayleigh-wave exploration in practice.
引文
[1]Thomson W T. Transmission of elastic waves through a stratified solid medium. Journal of Applied Geophysics.1950,21(1):89-93.
    [2]Haskell N A. The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America.1953,43:17-34.
    [3]Aki K, Richards P G Quantitative Seismology. San Francisco:Freeman,1980.
    [4]Keilis-Borok V I. Seismic Surface Waves in Laterally Inhomogeneous Earth. Kluwer Academic Publishers,1989.
    [5]Snieder R. Scattering of surface waves, in Scattering and Inverse Scattering in Pure and Applied Science. San Diego:Academic Press,2002.562-577.
    [6]Song Y, Castagna J P, Black R A, et al. Sensitivity of near-surface shear-wave velocity determination from Rayleigh and Love waves:Technical Program with Biographies,59th Annual Meeting of the Society of Exploration Geophysicists, Dallas, Texas,1989,509-512.
    [7]Misiek R, Liebig A, Gyulai A, et al. A joint inversion algorithm to process geoelectric and surface wave data, Part II:application. Geophysics Prospecting.1997,45:65-85.
    [8]Xia J, Miller R D, Park C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave. Geophysics.1999,64:691-700.
    [9]Xia J, Miller R D, Park C B, et al. Inversion of high frequency surface waves with fundamental and higher modes. Journal of Applied Geophysics.2003,52(1):45-57.
    [10]Xu Y, Xia J, Miller R D. Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach. Geophysics.2007,72(5):SM147-SM153.
    [11]Xia J, Miller R D, Park C B, et al. Comparing shear-wave velocity profiles from multichannel analysis of surface wave with borehole measurements. Soil Dynamics and Earthquake Engineering.2002,22(3):181-190.
    [12]Xia J, Chen C, Li P H, et al. Delineation of a collapse feature in a noisy environment using a multichannel surface wave technique. Geotechnique.2004,54(1):17-27.
    [13]Xia J, Xu Y, Chen C, et al. Simple equations guide high-frequency surface-wave investigation techniques. Soil Dynamics and Earthquake Engineering.2006a,26(5):395-403.
    [14]Xia J, Xu Y, Miller R D, et al. Estimation of elastic module in a compressible Gibson half-space by inverting Rayleigh wave phase velocity. Surveys in Geophysics.2006b,27(1): 1-17.
    [15]Xia J, Xu Y, Miller R D. Generating image of dispersive energy by frequency decomposition and slant stacking. Pure and Applied Geophysics.2007,164(5):941-956.
    [16]Xia J, Miller R D, Xu Y. Data-resolution matrix and model-resolution matrix for Rayleigh-wave inversion using a damped least-square method. Pure and Applied Geophysics. 2008,165(7):1227-1248.
    [17]Xia J, Miller R D, Xu Y, et al. High-frequency Rayleigh-wave method. J. Earth Sci.2009, 20(3):563-579.
    [18]Winsborrow G, Huwsa D G, Muyzertb E. Acquisition and inversion of Love wave data to measure the lateral variability of geo-acoustic properties of marine sediments. Journal of Applied Geophysics.2003,54:71-84.
    [19]Xu Y, Xia J, Miller R D. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source. Journal of Applied Geophysics.2006, 59(2):117-125.
    [20]Luo Y, Xia J, Liu J, et al. Joint inversion of high-frequency surface waves with fundamental and higher modes. Journal of Applied Geophysics.2007,62:375-384.
    [21]Luo Y, Xia J, Miller R D, et al. Rayleigh-wave dispersive energy imaging by high-resolution linear Radon transform. Pure and Applied Geophysics.2008a,165:902-922.
    [22]Luo Y, Xia J, Liu J, et al. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves. Journal of Applied Geophysics.2008b,64(3):115-124.
    [23]Luo Y, Xia J, Liu J, et al. Research on the MASW middle-of-the-spread-results assumption. Soil Dynamics and Earthquake Engineering.2009a,29:71-79.
    [24]Luo Y, Xia J, Xu Y, et al. Dipping-interface mapping using mode-separated Rayleigh waves. Pure and Applied Geophysics.2009b,166(3):353-374.
    [25]Safani J, O'Neill A, Matsuoka T. Full SH-wavefield modelling and multiple-mode Love wave inversion. Explor. Geophys.2006,37:307-321.
    [26]Song X, Gu H, Liu J, et al. Estimation of shallow subsurface shear-wave velocity by inverting fundamental and higher-mode Rayleigh waves. Soil Dynamics and Earthquake Engineering. 2007,27(7):599-607.
    [27]Song X, Gu H. Utilization of multimode surface wave dispersion for characterizing roadbed structure. Journal of Applied Geophysics.2007,63(2):59-67.
    [28]Zeng C, Liang Q, Chen C. Comparative analysis on sensitivities of Love and Rayleigh waves. Technical Program with Biographies, SEG,77th Annual Meeting.2007,1138-1141.
    [29]赵硕九,金刚燮,汪利民.瑞雷面波在多尺度勘探上的研究现状与展望.勘探地球物理进展.2010,33(1):1-10.
    [30]李庆春,邵广周,刘金兰等.瑞雷波勘探的过去、现在和未来.地球科学与环境学报.2006,28(3):74-77.
    [31]凡友华.层状介质中瑞利面波频散曲线的正反演研究:[学位论文].哈尔滨:哈尔滨工业大学,2001.
    [32]凡友华,陈晓非,刘雪峰等.Rayleigh波的频散方程高频近似分解和多模式激发数目.地球物理学报.2007,50(1):233-239.
    [33]鲁来玉.分层介质半空间瑞利波模式分析和介质参数反演:[学位论文].北京:中国科学院声学研究所,2004.
    [34]梁志强.层状介质中多模式面波频散曲线研究:[学位论文].西安:长安大学,2006.
    [35]杨天春,王齐仁,肖江等.两种计算瑞利波理论频散曲线的传递法模拟对比.物探与化探.2008,32(4):424-429.
    [36]Ryden N, Miehael J S L. Guided wave propagation in three-layer pavement structures. J.Acoust.Soe.Am.2004,116(5):2902-2913.
    [37]Verruijt A. An approximation of the Rayleigh Stress waves generated in an elastic half plane. Dynamics and Earthquake Engineering.2008,28:159-168.
    [38]Bohlen T, Saenger E H. Accuracy of heterogeneous staggered grid finite difference modeling of Rayleigh waves. Geophysics.2006,71(4):109-115.
    [39]周红,陈晓非.凹陷地形对Rayleigh面波传播影响的研究.地球物理学报.2007,50(4):1182-1189.
    [40]Moczo P, Kristek J, Halada L.3D Fourth-Order Staggered-Grid Finite-Difference Schemes: Stability and Grid Dispersion. Bulletin of the Seismological Society of America.2000,90(3): 587-603.
    [41]Hestholm S O, Ruud B O, Husebye E S.3D versus 2D finite-difference seismic synthetics including real surface topography. Physics of the Earth and Planetary Interiors.1999, 113:339-354.
    [42]Sharma M D. Spatial dispersion of surface waves at the free surface of a general anisotropic elastic medium. Journal of Seismology.2007,11:187-197.
    [43]Lu C, Zhang Z. Finite-difference simulation of Rayleigh wave scattering at a surface crack with experimental verification. Piezoelectricity, Acoustic Waves, and Device Applications (SPAWPA,2008).2008,468-472.
    [44]Zhang S, Wang Y, Zhou H, et al. Dispersion splitting of Rayleigh waves in layered azimuthally anisotropic media. Journal of Aaplied Geophysics.2009,67:130-142.
    [45]Hevin G, Abraham O, Pedersen H A, et al. Characterisation of surface cracks with Rayleigh waves:a numerical model. Nondestructive Testing and Evaluation International.1998,31(4): 289-297.
    [46]Nasseri-Moghaddam A, Cascante G, Phillips C, et al. Effects of underground cavities on Rayleigh waves Field and numerical experiments. Soil Dynamics and Earthquake Engineering.2007,27:300-313.
    [47]汪利民.三维带地形瑞雷面波交错网格有限差分法正演技术研究:[学位论文].武汉:中国地质大学(武汉),2009.
    [48]Rosebaum J H. A note on the computation of Rayleigh wave dispersion curves for layered elastic media. Bulletin of the Seismological Society of America.1964,53(3):1013-1019.
    [49]Thrower E N.The computation of elastic waves in layered media. J Sound Vib.1965,2:210-226.
    [50]Harkrider D G. Surface waves in multilayered elastic media I Rayleigh and Love waves from buried sources in a multilayered elastic half-space. Bulletin of the Seismological Society of America.1964,54(2):627-679.
    [51]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅰ. Low-frequency range. J. Acoust. Soc. Am.1956a,28:168-178.
    [52]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ Higher frequency range. J. Acoust. Soc. Am.1956b,28:179-191.
    [53]Jones J. Rayleigh wave in a porous elastic saturated solid. J. Acoust. Soc. Am.1961,33: 959-962.
    [54]John P. Rayleighwaves in a porous, elastic, saturated solid. The journal of the acoustical society of American.1961,33(7):625-630.
    [55]Chiang C M, Mostafa A F. Wave-induced responses in a fluid-filled poro-elastic solid with a free surface boundary layer theory. Geophys J R Astr Soc,1981,66:597-631;
    [56]Tajuddin M. Rayleigh waves in poroelastic half space. J acoust soc Am.1984,75(3):682-684.
    [57]夏唐代,陈云敏,吴世明.成层地基中Love波弥散特性.浙江大学学报,1992,26:224-230.
    [58]夏唐代,吴世明.流体-固体介质中瑞利波特性.水利学报.1994,1:67-75.
    [59]夏唐代,蔡袁强,吴世明等.各向异性成层地基中Rayleigh波的弥散特性.振动工程学报.1996,9(2):191-196.
    [60]陈龙珠,黄秋菊,夏唐代.饱和地基中瑞利波的弥散特性.岩土工程学报.1998,20(3):6-9.
    [61]Park C B, Miller R D, Xia J. Multichannel analysis of surface waves. Geophysics.1999,64: 800-808.
    [62]鲁来玉.近地表面波的散射研究:[学位论文].北京:中国地震局地球物理研究所,2007.
    [63]Zhang J, Liu T. Numerical Simulation of elastic wave propagation in anisotropic media. Acta Mechanica Solida Sinica.2000,13(1):50-59.
    [64]高广运,李志毅,邱畅.弹性半空间不规则异质体引起的瑞利波散射.岩土工程学报.2005,27(4):378-382.
    [65]Cao M T, Moreno C, Quintelal P. Simulation of Rayleigh waves in cracked plates. Math Meth AppI Sci.2007,30:15-42.
    [66]Nasseri-Moghaddam A, Cascante G, Phillips C, et al. Effects of underground cavities on Rayleigh waves Field and numerical experiments. Soil Dynamics and Earthquake Engineering.27:300-313.
    [67]Destrade M. Seismic Rayleigh waves on an exponentially graded, orthotropic half-space. Proc. R. Soc. A.2007,46(3):495-502.
    [68]柴华友,吴慧明,张电吉等.弹性介质中表面波理论及其在岩土工程中应用.北京:科学出版社.2008,253-260.
    [69]熊章强,张大洲,肖柏勋.裂缝介质中瑞雷面波传播的渐变非均匀交错网格数值模拟.湖南大学学报(自然科学版).2008,35(8):24-28.
    [70]Lo W C. Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium. Advances in Water Resources,2008,31:1399-1410.
    [71]Zhang S, Wang Y, Zhou H, et al. Dispersion splitting of Rayleigh waves in layered azimuthally anisotropic media. Journal of Applied Geophysics.2009,67:130-142.
    [72]Bodet L, Abranham O, Clorennec D. Near-offset effects on Rayleigh-wave dispersion measurements:Physical modeling. Journal of Applied Geophysics.2009,68:95-103.
    [73]唐圣松.二维起伏地表模型瑞雷波场正演研究.长沙:中南大学,2009.
    [74]秦臻,张才,郑晓东.高精度有限差分瑞雷面波模拟及频散特征提取.石油地球物理勘探.2010,45(1):40-46.
    [75]Alterlman Z, Karal J F C. Propagation of elastic waves in layered media by finite-difference methods. Bulletin of the Seismological Society of America.1968,58:367-398.
    [76]Boore D M. Finite difference methods for seismic wave propagation in heterogeneous materials. In:Methods in Bolt B A Ed. Computational physics. Academic Press.Inc.1972.
    [77]Alford R M, Kelly K R, Boore D M. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics.1974,39:838-842.
    [78]Virieux J. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method. Geophysics.1986,51(4):889-901.
    [79]Levander A R, Fourth-order finite-difference P-SV seismograms. Geophysics.1988,53(11): 1425-1436.
    [80]Robertsson J O. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topographys. Geophysics.1996,61(6):1921-1934.
    [81]Graves R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America.1996,86:1091-1106.
    [82]Gold N, Shapiro S A, and Burr E. Modeling of high contrasts in elastic media using a modified finite difference scheme:68th Annual International Meeting, SEG, Expanded Abstracts,1997.
    [83]Saenger E H, Gold N, Shapiro S A. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion.2000,31:77-92.
    [84]Saenger E H, Bohlen T. Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics.2004,69:583-591.
    [85]Thomas B, Saenger E H. Accuracy of heterogeneous staggered-gridfinite-difference modeling of Rayleigh waves. Geophysics.2006,71(4):T109-T115.
    [86]Moczo P. Introduction to modeling seismic wave propagation by the finite-difference method. Disaster Prevention Research Institue:Kyoto University,1998.
    [87]Pitarka A.3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing. Bulletin of the Seismological Society of America.1999,89(1):54-68.
    [88]Moczo P, Kristek J, Halada L.3D Fourth-Order Staggered-Grid Finite-Difference Schemes: Stability and Grid Dispersion. Bulletin of the Seismological Society of America.2000,90(3), 587-603.
    [89]Igel H, Nissen-Meyer T, Jahnke G. Wave propagation in 3D spherical sections:effects of subduction zones. Physics of the Earth and Planetary Interiors.2002,132:219-234.
    [90]董良国,马在田.一阶弹性波方程交错网格高阶差分解法稳定性问题.地球物理学报.2000,43(6):856-864.
    [91]裴正林.任意起伏地表弹性波方程交错网格高阶有限差分数值模拟.石油地球物理勘探.2004,39(6):629-634.
    [92]Zahradnik J, Priolo E. Heterogeneous formulations of elasto-dynamic equations and finite-difference schemes. Geophysical Journal International.1995,120:663-676.
    [93]Zhang J, Liu T. Numerical Simulation of elastic wave propagation in anisotropic media. Acta Mechanica Solida Sinica.2000,13(1):50-59.
    [94]Mittet R. Free-surface boundary conditions for elastic staggered-grid modeling schemes. Geophysics.2002,67(5):1616-1623.
    [95]Kristek J, Moczo P, Archuleta R J. Efficient Methods to Simulate Planar Free Surface in the 3D 4th-Order Staggered-Grid Finite-Difference Schemes. Studia Geophysica et Geodaetica. 2002,2:355-381.
    [96]Minkoff S E. Spatial parallelism of a 3d finite difference velocity-stress elastic wave propagation code. SI AM Journal on Scientific Computing.2002,24(1):1-19.
    [97]Bohlen T, Lorang U, Rabbel W, et al. Rayleigh-to-shear wave conversion at the tunnel face-From 3D-FD modeling to ahead-of-drill exploration. Geophysics.2007,72(6):67-79.
    [98]Lu C, Zhang Z. Finite-difference simulation of Rayleigh wave scattering at a surface crack with experimental verification. Piezoelectricity, Acoustic Waves, and Device Applications (SPAWPA,2008).2008,468-472.
    [99]Knopoff L. A matrix method for elastic wave problems. Bulletin of the Seismological Society of America.1964,54(1):431-438.
    [100]Thrower E N. The computation of the dispersion of elastic wave in layered media. Journal of Sound and Vibration.1965,2(3):210-226.
    [101]Waston H T. A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space. Bulletin of the Seismological Society of America.1970,60 (1):161-166.
    [102]Anas A-Z. Dispersion function computation for unlimited frequency values. Geophysical Journal International.1979,58(1):91-105.
    [103]Menke W. Comment on'Dispersion function computation for unlimited frequency values' by Anas-Zena. Geophysical Journal of the Royal Astronomical Society.1979,59(2):315-323.
    [104]Kennett B L N. Reflection rays and reverberations. Bulletin of the Seismological Society of America.1974,64(6):1685-1696.
    [105]陈云敏,吴世明.成层地基的Rayleigh波特征方程的解.浙江大学学报.1991,25(1):40-52.
    [106]欧阳联华,王家林.一种高频面波频散函数的快速算法-改进的Abo-Zena法.物探化探计算技术.2002,24(3):204-214.
    [107]李幼铭,束沛镒.层状介质中地震面波频散函数和体波广义反射系数的计算.地球物理 学报.1982,25(2):130-139.
    [108]张碧星,喻明,熊伟,等.层状介质中的声波场及面波研究,声学学报.1997,22(3):230-241.
    [109]凡友华,刘家琦.层状介质中瑞雷面波的频散研究.哈尔滨工业大学学报.2001,33(5):577-581.
    [110]McMechan G A, Yedlin M J. Analysis of dispersive waves by wave field transformation. Geophysics.1981,27(4):292-295.
    [111]宋先海,肖柏勋,张学强等.用改进的τ-p变换算法提取瞬态瑞雷波频散曲线.物探和化探.2003,27(4):292-295.
    [112]刘江平,侯卫生,许顺芳.相邻道瑞雷波法及在防渗墙强度检测中的应用.人民长江.2003,34(2):34-36.
    [113]Gabriels, P., Snieder, R., Nolet, G.,1987. In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh-waves. Geophysical Prospecting.35,187-196.
    [114]刘云祯,王振东.瞬态面波法的数据采集处理系统及其应用实例.物探与化探.1996,20(1):15-18.
    [115]Park C B, Miller R D, Xia J, et al. Multichannel analysis of surface waves(MASW)-active and passive methods. The leading Edge.2007,26:60-64.
    [116]Song X, Gu H. Utilization of multimode surface wave dispersion for characterizing roadbed structure. Journal of Applied Geophysics.2007,63(2):59-67.
    [117]Stokoe Ⅱ K H, Nazarian S. Effectiveness of ground improvement from spectral analysis of surface waves[A]. Proceedings of the Eighth European Conference on Soil Mechanics and Foundation Engineering. CambridgerCambridge University Press.1983,91-95.
    [118]Nazarian S, Stokoe Ⅱ K H. Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems[A]. In:National Research Council.Transport Research Record No.930[C].Washington D C:Falmer Press.1983,38-45.
    [119]Stokoe Ⅱ K H, Wright S G, Roesset J M. Characterization of geo-technical sites by SASW method[A]. In:Woods R D. Geophysical characterization of sites[C]. New Delhi:Oxford & IBH publidshers.1994,15-25.
    [120]Miller R D, Xia J, Park C B, et al. Using MASW to map bedrock in Olathe, Kansas. Expanded Abstracts of 69th Annual International SEG Meeting.1999,433-436.
    [121]Li Q, Chen J, Wu P, et al. High Resolution Radon Transformation and Wave field separation[A]. In:ICEEG Geophysical Solutions for Environment and Engineering. USA: Science Press USA.2006.190-195.
    [122]曹小林,洪学海,曹俊兴.面波波形反演中的模拟退火法.成都理工学院学报.2000,27(3):296-301.
    [123]Pei D, Louie J N, Pullammanappallil S K. Application of simulated annealing inversion on high-frequency fundamental-mode Rayleigh wave dispersion curves. Geophysics, 2007,72(5),77-85.
    [124]肖柏勋.高模式瑞雷面波及其正反演研究:[学位论文].长沙:中南大学,2000.
    [125]张碧星,肖柏勋,杨文杰,等.瑞雷波勘探中“之”字型频散曲线的形成机理及反演研究.地球物理学报.2000,43(4):557-567.
    [126]张碧星,鲁来玉,鲍光淑.瑞雷波勘探中“之”字型频散曲线研究.地球物理学报.2002,45(2):263-273.
    [127]杨天春.瑞利波“之”字形频散与道路结构频散曲线的正演研究:[学位论文].长沙:中南大学,2004.
    [128]陈样,孙进忠,刘景儒.瑞雷波“之”字型速度—深度曲线的成因.地球物理学进展,2004,19(4):860-863.
    [129]Marquering H, Snieder R. Shear-wave Velocity Structure Beneath Europe,the Northeastern Atlantic and Western Asia from Waveform Inversions Including Surface-wave Mode Coupling[J].Geophysical Journal International.1996,127(2):283-304.
    [130]凡友华.考虑高阶模的Rayleigh波勘探应用研究:[学位论文].北京:北京大学,2003
    [131]Vrettos C. Dispersive SH-surface waves in soil deposits of variable shear modulus[J]. Soil Dynamics and Earthquake Engineering.1990,9 (5):255-264.
    [132]李玉堂.稳态瑞雷波法数据处理与解释技术研究:[学位论文].北京:中国地质大学(北京),2006.
    [133]Dean E A, Keller G R. Interactive processing to obtain interstation surface wave disperasion. Bulletin of the Seismological Society of America.1991,81(3):931-947.
    [134]Pollitz F F, Hennet C G. Analysis of Rayleigh wave refraction from three-compenent seismic spectra. Geophysical Journal International.1993,113(3):629-650.
    [135]Chael E P. An automated Rayleigh wave detection algorithm. Bulletin of the Seismological Society of America,1997,87(1):157-163.
    [136]胡家富,段永康,胡毅力,等.利用Rayleigh波反演浅上层的剪切波速度结构.地球物理学报.1999,42(3):393-400.
    [137]胡家富.Rayleigh波在工程勘察中的解释方法探讨.岩土工程学报.1999,21(5):599-602.
    [138]包军强,张学强,刘江平等.浅层多波的分离识别与提取.物探与化探.1998,22(5):336-376.
    [139]李锦飞.TRES-1型多分量瑞雷波勘探仪的研究及应用.物探与化探.1998,22(2):129-133.
    [140]Zhao D A. Tomogrphic study of seismic velocity structure in the Japan Islands:[学位论文].Sendai:Tohoku University,1991.
    [141]张智.川滇地区地壳及上地幔结构面波层析成像:[学位论文].长春:吉林大学,2007.
    [142]赵晓艾.欧亚大陆及西太平洋面波层析成像数据库:[学位论文].成都:成都理工大学,2006.
    [143]宣瑞卿.中国及邻区地壳上地幔面波频散层析成像:[学位论文].成都:成都理工大学,2005.
    [144]何正勤,丁志峰,贾辉,等,用微动中的面波信息探测地壳浅部的速度结构.地球物理学报. 2007,50(2):492-498.
    [145]樊广利.常时微动、面波、检层法在场地土测试中的综合应用.水电站设计.2006,22(4):64-72.
    [146]Al-Hunaidi M O. Difficulties with phase spectrum unwrapping in spectral analysis of surface wave nondestructive testing of pavements.Canadian Geotechnical Journal.1992,29(3): 506-511.
    [147]吴成元,邹桂高.瑞利波法在挤密土桩复合地基检测中的应用.军工勘探,1995(2):31-35.
    [148]杨成林.应用瑞利波等方法对公路质量进行无损检测.物探与化探.1996,20(2):104-115.
    [149]张学强.瑞利波法在地基工程质量检测中若干问题的研究.物探与化探.2000,24(5):346-351.
    [150]Kim D S, Shin M K, Park H C. Evaluation of density in layer compaction using SASW method. Soil Dynamics and Earthquake Engineering.2001,21(1):29-46.
    [151]曾校丰,钱荣毅,邓新生等.油气反射波地震勘探记录中面波信息的提取.物探与化探.2001,25(6):443-446.
    [152]李媛媛,李庆春,丁梁波等.二维小波变换迭代法去除地震面波.见:中国地球物理学会编.中国地球物理.西安:西安地图出版社,2004.51-52.
    [153]王东才.综合利用地质雷达和瞬态瑞利波法进行地表静校正.物探装备.2001,11(2):84-88.
    [154]Lee V W, Karl J. Diffraction of SV waves by underground,circular,cylinderical cvities[J]. Journal of Soil Dynamics and Earthquake Engineering.1993,11(8):445-456.
    [155]Liang J, Zhang H, Lee V W. A series solution for surface motion ampli-fication due to underground twin tunnels SV waves. Earthquake Engineering and Engineering Vibration. 2003,2(2):289-298.
    [156]Fehler M, Roberts P. A temporal change in coda wave attenuation observed during an eruption of Mount St.Helens. Journal of Geophysical Research.1998,93(10):4367-4373.
    [157]Robinson R. Temporal variations in coda duration of local earthquakes in the Wellington region, New Zealand. Pure and Applied Geophysics.1987,125(4):125-130.
    [158]Snieder R,Vrijlandt M. Constraining the source separation with coda wave interferometry:Theory and application to earthquake doublets in the Hayward fault, California. Journal of Geophysical Research.2005,110(B4):B04301.
    [159]Snieder R. The theory of coda wave interferometry. Pure and Applied Geophysics.2006, 163(2-3):455-473.
    [160]陈丙午.不规则地形对地震动及震害得影响.地震工程与工程振动.1982,2(1):12-20.
    [161]Zeng C, Xia J, Miller R D, et al. Application of the multiaxial perfectly matched layer to near-surface seismic modeling with Rayleigh waves. Geophysics.2011,76(3):T43-T52.
    [162]Luo Y, Schuster G Parsimonious staggered grid finite differencing of the wave equation. Geophysical Research Letter.1990,17:155-158.
    [163]Olsen K, Schuster G T. Seismic hazard analysis in Salt Lake Valley by finite-difference simulation of three dimensional elastic wave propagation, in Scientific Excellence in High Performance Computing:The 1990 IBM Price Papers, Vol.1, Sec.6, Baldwin Press, Athens, Georgia,1992,135-165.
    [164]Yomogida K, Etgen J T.3-D wave propagation in the Los Angeles Basin for the Whittier-Narrows earthquake. Bulletin of the Seismological Society of America.1993,83: 1325-1344.
    [165]Ohminato T, Chouet B A. A free-surface boundary condition for including 3D topography in the finite-difference method. Bulletin of the Seismological Society of America.1997,87: 494-515.
    [166]Hestholm S, Ruud B.3-D finite-difference elastic wave modeling including surface topography. Geophysics.1998,63(2):613-622.
    [167]Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics.1985,50:705-708.
    [168]B6renger J. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics.1994,114(2):185-200.
    [169]Chew W, Liu Q. Perfectly matched layers for elastodynamics:a new absorbing boundary condition. Journal of Computational Acoustics.1996,4:341-359.
    [170]Collino F, Tsogka C. Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics.2001,66:294-307.
    [171]Marcinkovich C, Olsen K. On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme. Journal of geophysical research.2003,108(B5):2276.
    [172]Carcione J M, Herman G C, A P E ten Kroode. Seismic modeling. Geophysics.2002,67: 1304-1325.
    [173]Festa G, Nielsen S. PML absorbing boundaries. Bulletin of Seismological Society of America.2003,93:891-903;
    [174]Meza-Fajardo K C, Papageorgiou A S. A nonconvalutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media:Stability analysis. Bulletin of Seismological Society of America.2008,98:1811-1836.
    [175]王雪秋,孙建国.复杂地表地质条件下地震波数值模拟综述.吉林大学学报(地球科学版).2005,35(3):315-322.
    [176]Crase E. High-order (space and time) finite-difference modeling of elastic wave equation. Expanded Abstracts of 60th Annual International SEG Meeting.1990,987-991.
    [177]Jih R S, McLaughlin K L, Zoltan A. Free-boundary conditions of arbitrary polygonal topography in a two dimensional explicit elastic finite-difference scheme. Geophysics.1988, 53(8):1045-1055.
    [178]Wang L, Luo Y, Xu Y. Numerical investigation of Rayleigh-wave propagation on topography surface. Journal of Applied Geophysics.2012,86:88-97.
    [179]Gutowski P R, Hron F, Wagner D E, et al. S*. Bulletin of Seismological Society of America. 1984,74:61-78.
    [180]Berg P, Nielsen If F, Skovgaaard, O P. Analytical reference solutions. In:Helbig, K. (Ed.), Modeling the earth for oil exploration. Pergamon Press.1994,421-427.
    [181]张煜.部分饱和多相介质中Rayleigh面波传播特性研究:[学位论文].武汉:中国地质大学(武汉),2012.
    [182]Dorman J, and Ewing M. Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the New York-Pennsylvania area. J. Geophys. Res.1962, 67:5227-5241.
    [183]Turner M A. Near-surface velocity reconstruction using surface wave inversion [M.S. thesis] University of Utah.1990.
    [184]Meier R W, Rix G J. Initial study of surface wave inversion using artificial neural networks. Geotechnical Testing Journal.1993,16(4):425-431.
    [185]Yamanaka H, Ishida H. Application of genetic algorithms to an inversion of surface wave dispersion data. Bulletin of Seismological Society of America.1996,86(2):436-444.
    [186]宋先海,李端有,顾汉明等.瑞雷波勘探理论及其应用.中国水利水电出版社.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700