用户名: 密码: 验证码:
拉杆预紧结构的力学建模与八万吨压机横梁结构的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重型模锻液压机是指吨位在100MN以上,对工件进行整体变形压制的液压机。重型模锻压机的设计、制造能力,及其拥有这类压机的数量和等级,是一个国家的国防工业、机械制造工业的综合生产能力及技术水平的重要标志,具有明确的战略意义。无论是发达国家还是发展中国家,都十分重视重型模锻压机的发展。本文综合运用理论分析、数值模拟、优化和实验测试等多种手段对我国自主研制的八万吨重型模锻压机上板梁、活动横梁、固定下梁等组合承载结构的建模方法、整体性和应力分布等关键性问题进行了系统的研究。
     本文基于三维有限元弹性接触理论深入研究了拉杆组预紧组合承载结构的建模方法。探讨了仿真环境中拉杆预紧力的施加方法,并对比分析了不同拉杆预紧方法在预紧和承载两种工况下的效果。据此提出了不同工况下合适的拉杆预紧方法以及成组拉杆预紧力优化时的程序。
     本文主要对活动横梁的整体性进行了有限元分析,指出活动横梁的整体性主要体现为两片中梁间的开缝问题。系统地研究了拉杆数目、中梁形状、楔键位置等结构参数,以及拉杆预紧力、外载等力能参数对活动横梁整体性的影响。并在上述研究的基础上提出了对八万吨模锻压机活动横梁设计的改进方法,并对动梁最终设计方案进行了分析。结果表明最终方案明显优于原方案:最大开缝由0.36mm降到0.079mm,减幅达78%。
     本文考察了八万吨模锻压机横梁结构各部件的应力分布。系统地研究了固定下梁中梁项出孔内应力集中的成因,提出了修改应力集中因素形状法、表面削去法和增加工艺孔法等降低应力集中的方法。经详细分析提出了下梁中梁结构的优化设计方案。分析结果表明中梁新结构优于原结构:其顶出孔最大主应力由161.4MPa降到84.37MPa,应力集中系数由2.405降到1.33。
     本文用电测法对预紧状态和承载状态下八万吨模锻压机的1:11.1模型压机关键横梁的应力、变形进行了测试。实验结果表明三横梁各部件的应力、位移与计算结果吻合较好。
Heavy die forging hydraulic press is the one whose tonnage exceeds 100MN and which is used to forge overall workpiece. The design and production capacity of heavy die forging press, and the number and level of this type of press possessing, is one of important symbols of comprehensive productivity and technical level of defense industry and machinery manufacturing industry of a country, having specific strategic significance. Whichever developed countries or developing countries in the world pay attention to the development of heavy die forging press. The dissertation, by means of theoretic analysis, numerical simulation, optimization and tests, studies systemically on many key issues such as modeling approach, integrity and stress distribution, etc. of the composite bearing structure, such as up beam, moving beam and fixed press bed of 800MN heavy die forging press developed by China.
     The modeling approach of composite bearing structure preloaded with a group of tie-rods, based on the theory of 3-D FEM elastic contact, is studied. Some methods of prestressing tie-rod, in the simulated environment, are researched into, and the effects of different methods of prestressing tie-rod, under prestressing and loading, are contrastively analyzed. According to result, methods of prestressing tie-rod suitable to corresponding work-state and the program of optimizing preload of groups of tie-rod, are put forward.
     The integrity of moving beam is analyzed with FEM, and a viewpoint that its integrity is mainly incarnated by the gaping between two centre beams. Also the effects of the structure parameters of the number of tie-rod, the shape of center beam, the position of taper key, as well as of the force-energy parameters such as pre-tight force of tie-rod, load, on the integrity of moving beam are studied systemically. Based on above studies, some ways of improvement for perfecting the designing of moving beam of the 800MN heavy die forging press are put forward, and then the final designing scheme of moving beam is investigated. As it turned out, the final scheme is markedly superior to original scheme: the maximum of gape falls from 0.36mm to 0.097mm, the drop is 24.9 percent.
     Stress distribution of every part of three beams of the press is investigated in this dissertation. The cause of stress concentration in the poke-hole of center beam of fixed press bed is studied, and some methods, such as changing shape of region existing stress concentration, removing material and adding technological hole, to decrease the stress concentration factor, are proposed. Through detailed analysis, the optimized design proposal of centre beam structure of fixed press bed is put forward. Analysis shows that the new structure of centre beam gains ascendancy over the old one: the maximal principal stress of its ejection-hole falls from 161.4MPa to 84.37MPa and the stress concentration factor falls from 2.405 to 1.33.
     During the research, a metal model in the proportion of 1:11.1for the 800MN heavy die forging press is used. Measurements and tests about stress and deformation of key beams of this machine under prestressing and loading are conducted. The results indicate that the stress and displacement of parts of three beams obtained from experiments well coincide with that from calculation.
引文
[1]吕炎.锻造工艺学.北京:机械工业出版社,1995
    [2]吴生富.150MN锻造液压机本体组合结构研究:[博士学位论文].秦皇岛:燕山大学,2006年
    [3]林峰,颜永年.现代重型模锻液压机的关键技术.北京:机械工程学报,2006,3:9-14
    [4]林峰,颜永年.重型模锻液压机承载结构的发展.锻压装备与制造技术,2007,5:27-31
    [5]俞新陆.液压机的设计与应用.北京:机械工业出版社,2006,12
    [6]浅析我国锻压业的差距及发展.今日五金网,2007,4
    [7]有关业内专家指出--发展我国锻造装备迫在眉睫.中华机械网,2003,7
    [8]黄海全等.万吨模锻水压机下横梁断裂原因分析及焊接修复.维护与修理,1998,11:10-12
    [9]方刚,康达昌,郭洪海,刘圣明,邹立河.万吨水压机下横梁的修复和补强.重型机械,1998,6:48-50
    [10]刘玉珍,邹立河,金福然.万吨模锻水压机下横梁焊接修复.有色设备,2000,4:17-18
    [11]方刚,康达昌,朱信,金福然.万吨水压机下横梁强度的有限元分析.塑性工程学报:1999,6:78-81
    [12]喻寿益,刘剀,贺建军,桂卫华.1万吨多向模锻水压机计算机控制系统.计算技术与自动化:1997,9:34-37
    [13]贺建军,喻寿益,桂卫华.基于IPC-PLC的万吨多向模锻水压机电控系统的改造.计算技术与自动化:1999,9:4-6
    [14]赵立德,王珍华,张景忠.三万吨水压力机下横梁裂纹处理的研究与消除.一重技术:2004,1:68-71
    [15]李范坤,钟掘.300MN模锻水压机侧推力研究.中国有色金属学报:1995,9:134-137
    [16]钟掘,谭建平.大型模锻液压机同步系统特性仿真分析.中南工业大学学报,1995(增刊1):42-46
    [17]张立华.300MN水压机挚板组力学行为研究.机械强度:2000,6:113-116
    [18]周俊峰,谭建平.300MN模锻水压机活动横梁同步检测系统设计.机械与电子:2004,8:51-53
    [19]中南大学机电院.30000吨模锻水压机增压改造前期论证报,2004,3
    [20]段智勇.巨型模锻液压机整体结构功能评估与优化设计:[硕士学位论文].长沙:中南大学,2007
    [21]国外大型模锻水压机和航空大锻件概况,三机部三零一所,1974,6
    [22]郑英伦.二重集团公司基本建设和技术改造工程的总体设计.大型铸锻件:2005,1:46-50
    [23]张盛华.快锻液压机机架的有限元分析:[硕士学位论文].西安:西北工业大学,2004
    [24]林道盛,杨雨甡,曹桂荣,田越.锻压机械及其有限元计算.北京:北京工业大学出版社,1998,12
    [25]刘刚,陈体恒.浅谈现代设计方法中的优化设计.河南机专学报,1998,6
    [26]Koc,Muammer;Altan,Taylan.Application of two dimensional(2D) FEA for the tube hydroforming process.International Journal of Machine Tools and Manufacture v 42 n 11 September 2002.p 1285-1295
    [27]Ghofrani,M.Reza,White,Charles S.Modeling of a precision closed-die forging.American Society of Mechanical Engineers(Paper).1996,8p
    [28]Chenot,Tronel,Soyris.Finite element calculation of thermo-coupled large deformation in hot forging.Conduction,Radiation and Phase Change.1992,p493-511
    [29]朱西产,张金换,李一兵,黄世霖.客车车身试验模态分析及其在车身定型中的应用.汽车技术,No.6,1996,p23-26
    [30]汪鸣崎,金国栋.有限元法在汽车车身骨架刚度优化中的应用.汽车技术,No.5,1998,5-7
    [31]王慧,王卫卫.液压机本体柔性化设计相关技术的研究.锻压机械,2004,(1):44-46
    [32]郝滨海.螺旋压力机整机机身工作状态仿真及结构优化.锻压技术,2002,(3):50-53
    [33]NieShaomin,ZhaoXilu.Structure Optimization of the 3D-Frame of Hydraulic Press.Proceedings of the First National Conference on Research and Design of Metal Machines,1989
    [34]李季.液压机焊接机身的结构设计.锻压机械,1992,(2):5-8
    [35]郑辉,唐国宝.基于准静态方法的模块化液压机结构分析.机床与液压,2005,(11):100-102
    [36]宋雨芳,吴友坤,荣赵杰.基于有限元基础的单柱液压机机身的优化设计.锻 压装备与制造技术,2005,40(5):29-30
    [37]秦东展,祁建中,张明成.液压机横梁结构的优化设计.锻压技术,2004,29(2):49-52
    [38]郑辉,卢志永.基于KBE和CAE结合的液压机结构柔性模块创建.天津大学学报(自然科学与工程技术版),2003,36(2):179-182
    [39]聂绍珉,邵云芝,王纪红.遗传算法在复杂结构离散优化中的应用.燕山大学学报,1998,(22)2:95-99
    [40]聂绍珉,曹光祥,姚保森.液压机本体的计算机辅助设计.计算机在机械工业中的应用国际学术会议,1992:345-348
    [41]林秀安,聂绍珉.液压机组合板机架的整体工作性能分析.机械工程学报,1984,(20)2:58-68
    [42]聂绍珉,赵希禄.液压机机架结构优化设计与HYSOP程序系统.锻压机械,1993,(28)4:6-9
    [43]聂绍珉,王纪红.大型复杂结构离散优化新算法“SPG”及其在压机优化中的应用.塑性工程学报,1999,(63):79-86
    [44]赵希禄,聂绍珉.预紧组合式压力机机身的结构优化设计.锻压技术,1994,(1):48-52
    [45]聂绍珉.液压机框架的结构优化及“YKJU”程序系统.东北重型机械学院学报,1986,(10)1:1-8
    [46]聂绍珉,马克.空间板系结构优化方法及应用.东北重型机械学院学报,1989,(13)2:1-6
    [47]NieShaomin,JinMiao.Discrete Optimization Approach for 3-D Space Plate-system Structure.Chinese Journal of Machanical Engineering,1994,(7)2:97-102
    [48]杨秀萍,宗升发,曹晓邮.液压机结构设计的有限元法.重型机械,2003,(6):38-41
    [49]李德军,李培武.22MN液压机整体框架式机身的有限元分析.塑性工程学报,1995,(2)3:55-62
    [50]吴鹏,聂绍珉.压机组合框架结构的预紧参数优化.塑性工程学报,2005,(12)1:66-69
    [51]彭伟波.巨型模锻液压机典型组合结构的承载与变形特性分析:[硕士学位论文].长沙:中南大学,2007
    [52]凌道盛,徐兴.非线性有限元及程序.杭州:浙江大学出版社,2004
    [53]陈火红,杨剑,薛小香,王朋波.新编Marc有限元实例教程.北京:机械工 业出版社,2007,8
    [54]彼得·艾伯哈特,胡斌.现代接触动力学.南京:东南大学出版社,2003,2
    [55]李润芳,龚剑霞编著.接触问题数值方法及其在机械设计中的应用.重庆:重庆大学出版社,1991
    [56]丁皓江,何福保,谢贻权,徐兴.弹性和塑性力学中的有限单元法.北京:机械工业出版社,1989
    [57]王勖成.有限单元法.北京:清华大学出版社,2003
    [58]凌道盛.层合结构非线性有限元分析:[博士学位论文].杭州:浙江大学,1996
    [59]杨咸启,李晓玲.现代有限元理论技术与工程应用.北京:北京航空航天大学出版社,2007,8
    [60]彭俊斌,颜永年.重型机械领域中的预应力坎合连接原理及应用.机械工程学报,2008,6:107-113
    [61]梁清香,张根全.有限元与MARC实现[M].北京:机械工业出版社,2003.
    [62]陈火红,祁鹏.MSC.Patran╱Marc培训教程和实例[M].北京:科学出版社,2004
    [63]Msc.Software.MSC.Marc2007(Volume A):Theory and User Information.[M]MSC.Software,2007
    [64]李会勋,胡迎春,张建中.利用ANSYS模拟螺栓预紧力的研究[J].山东科技大学学报(自然科学版),2006,25(1):57-59
    [65]张红兵,杜建红.有限元模型中螺栓载荷施加方法的研究[J].机械设计与制造,1999,6:32-33
    [66]刘鸿文.材料力学[M].北京:高等教育出版社,1992.
    [67]西北工业大学机械原理及机械零件教研室编,濮良贵,纪名刚主编.机械设计第七版[M].北京:高等教育出版社,2001
    [68]成大先主编.机械设计手册[M].北京:化学工业出版社,2002
    [69]吴生富,金淼,聂绍珉.液压机全预紧组合机架的整体性分析[J].锻压技术,2006,3
    [70]杨建民.120MN锻造液压机本体整体性研究:[硕士学位论文].秦皇岛:燕山大学,2007
    [71]Msc.Software.MSC.Marc2007(Volume B):Theory and User Information.[M]MSC.Software,2007
    [72]Msc.Software.MSC.Marc2007(Volume C):Theory and User Information.[M]MSC.Software,2007
    [73]Msc.Software.MSC.Marc2007(Volume D):Theory and User Information.[M] MSC.Software,2007
    [74]Msc.Software.MSC.Marc2007(Volume E):Theory and User Information.[M]MSC.Software,2007
    [75]航空工业部科学技术委员会.应力集中系数手册.北京:高等教育出版社,1990
    [76]R.E.Peterson.Stress Concentration Factors.[M]A Wily-Interscience Publication,1974
    [77]M.Hetenyi.The application of hardening resins in three-dimension photoelastic studies.[J]J.Appl.Phys.,Vol.10,p.295,1939
    [78]M.M.Leven.Stresses in keyways by photoelastic methods and comparison with numerical solution.[J]Proc.SESA,Vol.7,No.2,p.141,1949
    [79]H.Yoshitake.Photoelastic stress analysis of the spline shaft.[J]Bull.Japan Soc.Mech.Eng.,Vol.5,p.195,1962
    [80]A.H.Candee.Geometrical determination of tooth factor.[J]American Gear Manufacturers Assn.,Pittsburgh,Pa.1941
    [81]J.Arai.The bending stress concentration factor of a solid crankshaft.[J]Bull.Japan Soc.Mechan.Eng.,Vol.8,p.22,1965
    [82]J.H.Huth.Torsional stress concentration in angle and square tube fillets.[J]Trans.ASME,Vol.72 Applied Mechanics Section,p.388,1950
    [83]K.E.Barnhart,A.L.Hale and J.L.Meriam,Stresses in rotating disks due to non-central holes.[J]Proc.SESA,Vol.9,No.1,p.35,1951
    [84]S.Timoshenko.On the distribution of stresses in a circular ring compressed by two forces along a diameter.[J]Phil.Mag.,Vol.44,p.1014,1922
    [85]H.Fessler and P.Stanley.Stresses in torispherical drumheads:a photoelastic investigation.[J]J.Strain Anal.,Vol.1,p.69,1965
    [86]李伟,王启智.含中心圆孔有限板动应力集中问题的有限元分析[J].机械强度,2005,27(5):651-655
    [87]Qu Shuying,Zhang Guodong,Zhang baofeng and Wang xinjian.Parametric equation of stress concentration factor for circular X-joints under axial loads.[J]China Ocean Engineering,21(1),p51-64,2007
    [88]M.F.Ghanameh,F.Thevenet,A.Zeghloul.Evaluation of stress concentration for planar tubular joints.[J]Transactions of Nonferrous Metals Society of China,s1-s10,2006
    [89]F.H.萨文,B.H.杜尔契.应力集中手册,1976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700