用户名: 密码: 验证码:
钢筋锈蚀对混凝土梁构件力学行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋锈蚀是影响混凝土梁构件耐久性的最重要因素之一。钢筋锈蚀不仅导致钢筋自身有效面积减少和力学性能下降,还将导致混凝土保护层开裂和钢筋与混凝土粘结性能退化,最终导致混凝土梁构件产生一系列的力学行为劣化,如:破坏模式转变、承载能力下降、延性降低等。为了保证混凝土结构服役阶段的安全性,开展钢筋锈蚀对混凝土梁构件力学行为影响的研究是十分必要的。
     本文的研究工作主要沿着以下两方面开展:
     1.通过21根锈蚀钢筋混凝土梁的试验研究,重点考查钢筋锈蚀对混凝土梁的破坏模式、承载能力等方面所产生的影响,揭示钢筋锈蚀程度的发展对混凝土梁力学行为劣化过程的影响机理;
     2.通过15根锈蚀空心板铰缝的试验研究,重点考查铰缝钢筋锈蚀造成的铰缝损伤对铰缝两侧连接的空心板的协同工作的影响。在此基础上,对铰缝结构状态劣化与空心板桥面结构协同工作性之间的关系进行研究。
     本文所完成的主要成果如下:
     1.基于混凝土梁结构基本理论,建立了纵筋粘结滑移和纵筋粘结未滑移两种情况下的锈蚀混凝土梁受弯、受剪承载力计算公式,对锈蚀混凝土梁随纵筋、箍筋锈蚀程度的发展可能产生的破坏模式进行了讨论和分析;
     2.设计了四组不同剪跨比、不同配箍率的混凝土试验梁。首先采用通电法对梁内纵筋、箍筋进行加速锈蚀,进而进行静载试验。试验结果发现:①钢筋未锈蚀时弯曲破坏的梁,随着纵筋、箍筋锈蚀程度的发展,依次出现了剪压、粘结-剪压破坏(锈蚀梁发生由于纵向受力钢筋锈蚀而导致的粘结撕裂破坏)。②钢筋未锈蚀时剪压破坏的梁,随着钢筋锈蚀程度的发展,出现粘结-剪压破坏;
     3.试验分析发现,钢筋锈蚀程度的发展将导致混凝土梁产生破坏模式的转变:①试件纵筋锈蚀程度不大时,随着箍筋锈蚀程度的增加,导致试件受剪抗力低于受弯抗力,混凝土梁由弯曲破坏转变为剪压破坏;②随着钢筋锈蚀程度的增加,特别是纵筋锈蚀较严重的情况下,由于受拉纵注:本研究得到国家自然科学基金面上项目(编号:50878211),交通部西部交通科技项目(编号:200631822302-04)资助。筋与混凝土的粘结性能遭到严重破坏,锈蚀纵筋与混凝土间的粘结强度成为导致构件破坏的控制原因,混凝土梁由剪压破坏转变为粘结-剪压破坏;
     4.研究结果表明:当粘结强度足以保证锈蚀钢筋与混凝土的共同工作时,构件发生材料强度破坏;当粘结强度由于锈蚀不能保证锈蚀钢筋与混凝土的共同工作时,构件发生粘结失效破坏;
     5.通过分析研究,得到随纵筋、箍筋锈蚀程度发展的锈蚀混凝土梁破坏模式转变条件,揭示了混凝土弯剪构件随钢筋锈蚀程度发展的破坏规律;
     6.研究结果表明,当混凝土结构纵筋直径越大或混凝土强度越低时,钢筋锈蚀对结构产生滑移失效越为敏感,基于研究结果提出锈胀裂缝宽度的建议限值;
     7.通过对试验梁的受力变形特点的分析,对锈蚀混凝土梁的跨中变形进行了分析计算。通过与试验实测数据的比较,进一步验证了本文所推断的试验梁破坏类型的正确性;
     8.基于本研究成果,对现行的JTG D62-2004和JTJ267-98中的有关钢筋配置条文进行了分析,提出了恶劣服役环境下混凝土梁最小配筋的取值建议:JTG D62-2004规范的最小钢筋量配置是基本合适的,而JTJ267-98规范给定的钢筋量配置应适当提高;
     9.分析了铰缝钢筋锈蚀造成的铰缝结构损伤,基于损伤力学基本原理,定义了反映铰缝两侧空心板肢挠度差异的空心板协同工作系数中。基于有关规范,对其取值的合理范围进行了讨论;
     10.基于因素分析法,建立了中的计算表达式,并根据试验结果回归确定了该表达式中的待定参数。广泛验证的结果表明,该表达式可以表征铰缝结构性能变化对空心板协同工作性的影响程度;
     11.引入铰缝钢筋锈蚀随时间的变化规律,建立了空心板铰缝协同工作性能随时间变化的评价模型。对常用的深、中、浅3种空心板铰缝形式的耐久性进行了评价。
Steel corrosion is one of the most crucial and influential factors on the durability of the concrete members, which not only decreases the effective area and mechanical property of steel bar itself, but also leads to the cracking of the concrete cover and the retrogression of bond capacity between steel bar and concrete, and finally results into a series of degrading behaviors, such as: the failure mode changing, carrying capacity declining, ductility reducing and so on. Therefore, it is very necessary to do some research on the mechanical behavior of concrete members due to reinforcement corrosion so as to guarantee the security of the concrete structure during services period.
     There are two parts involved in this paper:
     1. Based on the experimental researches on the21concrete beams with corrosion steel, in order to reveal the impact mechanism to the degradation process of mechanical behavior of concrete beam with the development of steel corrosion,the influences of the steel corrosion on failure mode and carrying capacity of the concrete beams were the main focused research contents;
     2. Based on the experimental researches on15hollow hinge joints with corrosion steel, the influences of the damage caused by steel corrosion on cooperative working performances of hollow slabs was the main focused research content. According to the researches, the relationship of the hinge joint deterioration and hollow slabs cooperative working performances was studied in the paper.
     The main achievements as follows:
     1. Based on the basic theory of concrete beams, two computational formulas were established to respectively calculate the bending and the shearing capacity considering two different step situations:longitudinal steels bond slippage and longitudinal steels not, and the possible failure modes of concrete beams with the development of the stirrup and longitudinal steel corrosion were also discussed;
     2. Four groups of experimental concrete beams with two kinds of shear span ratio and stirrup ratio were designed in this paper. Before the static load test, the DC power method was used to accelerate the corrosion of and longitudinal stirrup steels. According to the static load test results, with the corrosion development of the longitudinal and stirrup steels, it was found that:①the bending failure beam will transform to compression-shearing failure and later bond-compression-shearing failure.②the compression-shearing failure beam will transform to bond-compression-shearing failure;
     3. From the experiment results, it was known that the development of steel corrosion would induce the concrete beams to different failure modes:①When the longitudinal steel corrosion was not serious, with the increasing of the stirrup corrosion, the beam's shearing capacity would be less than the bending capacity, so the concrete beam would transform from bending failure to compression-shearing failure;②With the development of the steel corrosion, especially when the longitudinal steel corrosion was serious, the bond performance between the corrosive longitudinal steels and the concrete would be the controlling factor for the failure mode, so the concrete beam would transform from compression-shearing failure to bond-compression-shearing failure;
     4. The results show that:when the bond strength between the steel bar and concrete was able to guarantee the collaborative work of the corrosive steels and the concrete, the concrete beam would occur material strength failure; otherwise, which would occur bond failure;
     5. Through analysis and researches, the conditions for the transformation of the failure mode and the failure regulation of the concrete beam due to longitudinal and stirrup steel corrosion were established;
     6. According to the research results, the bigger the diameter of the longitudinal steel is or the lower the concrete strength is, the more probably the cohesion failure would occur. According to this, the enabled limit for the cracking width of the concrete cover due to steel corrosion was suggestion;
     7. According to the analysis for the deformation feature of the experimental beams, the mid-span deflections were calculated. After comparison with the experimental data, the validity of the conclusion was better certified;
     8. There are also some advices for current JTG D62-2004and JTJ267-98standard:For the concrete beams service in severe conditions, the minimum steel quantity in JTG D62-2004is appropriately proper, while the steel quantity in JTJ267-98would need to increase;
     9. According to the hinge joint damage caused by steel corrosion, based on damage mechanics theory, cooperative working coefficient (?) was defined to reflect the deflection differences of the two hollow slabs on both sides of the hinge joint. Reference to the relevant code, reasonable range of (p was suggested;
     10. According to factor analysis approach, the formula of (?)p was established by regression method. After extensive validation, it was believed that the formula can reveal influential degree that the hinge joint performance changing on cooperative working performance of the hollow slabs;
     11. According to the time-varying regulation of the steel corrosion on hinged joint, the time-varying evaluation model of the cooperative working performance of the hollow slabs was established. Then the durability evaluation of the deep, medium and shallow hinged joints was carried out in this paper.
引文
[1]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [2]刘西拉,袁驷,宋二祥.关于我国工程建设技术发展的战略思考.土木工程学报,2005,38(12):1-7.
    [3]林志伸,惠云玲.我国工业厂房混凝土结构耐久性的宏观调研[J].工业建筑,1997,27(6):1-6.
    [4]Infrastructures 2003 Progress Report [R]. The American Society of Civil Engineers,2003.
    [5]金伟良等.混凝土结构耐久性设计方法与寿命预测研究进展.建筑结构学报,2007,28(1):7-13.
    [6]KUNISHLMA M, DKAMUKA H. Durability design for concrete structures [J]. International Association for Bridge and Structural Engineering Symposium, Lisbo, Sept,1989:6-8.
    [7]段树金.日本《混凝土结构耐久性设计准则(试行)》简介[J].华北水利水电学报,1991(1):56-60.
    [8]周燕,等译.CEB耐久混凝土结构设计指南(第二版,1989)[M].中国建筑科学研究院结构所,1991.
    [9]工程科技论坛.土建结构工程的安全与耐久性[R].北京:清华大学,2001.
    [10]罗福午.建筑结构缺陷事故的分析与防止[M].清华大学出版社,1996.
    [11]0'Conner J P, Cutts J M'et a 1. Evaluation of historic concrete structures [J]. Concrete International,1997,19(8):57-61.
    [12]ISECKE B. Failure analysis of the collapse of the Berlin Congress Hall[R]. Corrosion of Reinforcement in Concrete Construction,1985.
    [13]李家康,董攀.混凝土结构中钢筋腐蚀的分析[J].工业建筑,1998,28(1):3-5.
    [14]中华人民共和国国家标准.混凝土结构设计规范(BG500100-2002)[S].北京:中国建筑工业出版社,2002.
    [15]滕智明.钢筋混凝土结构耐久性地若干问题(见:中国建筑学会建筑结构委员会第二届第二次年会论文集).北京,1991年
    [16]中华人民共和国国家标准.混凝土结构耐久性设计规范(GB/T50476-2008)[S]北京:中国建筑工业出版社,2008.
    [17]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [18]Bazant Z P et al. Physical model for steel corrosion in concrete sea structures application [J]. ASCS Journal of Structural Division,1977, 105 (ST6):1155-1166.
    [19]Youping Liu, Weyers, R. E.. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structure [J]. ACI Materials Journal,1998,95(6):675-681.
    [20]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力的机理研究[J].水利学报,2001(7):57-62.
    [21]淡丹辉,王庆霖.钢筋混凝土结构锈胀裂缝的计算机模拟[J].西安交通大学学报,2000,35(5):484-487.
    [22]潘振华,牛狄涛,王庆霖.钢筋锈蚀开裂条件的试验研究[J].工业建筑,1999,29(5):46-49.
    [23]Morinaga S. Prediction of service life of reinforced concrete building based on the corrosion rate of reinforcing steel[C]. Durability of building Materials and components, Proceeding of the 5th international conference helded in Brighton, UK,1990.
    [24]Bazant Z P et al. Physical model for steel corrosion in concrete sea structures theory [J]. ASCS Journal of Structural Division,1977, 105(ST6):1137-1153.
    [25]Bazant Z P et al. Physical model for steel corrosion in concrete sea structures application [J]. ASCS Journal of Structural Division,1977, 105(ST6):1155-1166.
    [26]肖从真.混凝土中钢筋腐蚀的机理研究及数论模拟方法[J].清华大学博士学位论文,1995.
    [27]牛狄涛,王庆霖等.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型[J].工业建筑,1996,26(4).
    [28]牛狄涛,王庆霖等.锈蚀开裂后混凝土中钢筋锈蚀量的预测模型[J].工业建筑,1996,26(4).
    [29]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[博士学位论文].上海:同济大学,1999.
    [30]惠云玲.混凝土结构中的钢筋锈蚀程度和预测试验研究[J].工业建筑,1997,27(6):6-9.
    [31 ]邱小坛,周燕.旧建筑物的检测与加固维护[M].地震出版社,1992.
    [32]王深.钢筋混凝土结构锈胀裂缝的研究及耐久性评估[D].上海:同济大学,2000.
    [33]Alonso, C., Andrade, C., Rodriguez, J., Diez, J. M. Factors Controlling Cracking of Concrete Affected Reinforcement Corrosion. Materials and Structures,1998,31(211):435-441.
    [34]MEHTA P K. Concrete durability-fifty year's progress. Croc of the 2nd Inter[R]. Conf on Concrete Durability, ACI SP126-1,1991:1-31.
    [35]吴胜兴.钢筋混凝土结构锈裂损伤研究综述[J].工程力学,2002,(增刊):70-88.
    [36]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [37]宋晓冰.钢筋混凝土结构中的钢筋腐蚀.北京:清华大学,1999.
    [38]Almusallam A A, A l Gahtani A S, Aziz A R, et al. Effect of reinforcement corrosion on flexural behavior of concrete slab [J]. Journal of Materials in Civil Engineering,1996,8(3):123-127.
    [39]Mangat P S, Elgarf M S. Flexural strength of concrete beam with corroding reinforcement [J]. ACI Structural Journal,1999,96(1):149-158.
    [40]Beeby A W. Corrosion of reinforcing steel in concrete and its relation to cracking [J]. ACI Structural Journal,1987,56A (3):77-81.
    [41]EI Maaddawy T A, Soudki K A. Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete[J]. Journal of Materials in Civil Engineering,2003,15(1):41-47.
    [42]牛荻涛,翟彬,王林科等.锈蚀钢筋混凝土梁的承载力分析[J].建筑结构,1999,29(8):23-25.
    [43]贺栓海,吕颖钊.考虑材料耐久性的在役混凝土结构可靠度研究[J].建筑科学与工程学报,2005,22(1):71-75.
    [44]中国工程建设标准化协会标准.混凝土结构耐久性评定标准(CECS 200:2007)[S].北京:中国建筑工业出版社,2007.
    [45]Maslehuddin M, Ibrahim IM, Al-Sulaimani GJ, Al-Mana AI, Effect of rusting of reinforcing steel on its mechanical properties and bond with concrete[J]. ACI Material Journal,1990,87(6):496-502
    [46]Almusallam, A. A., Al-Gahtani, A.S., Rasheeduzzafar. Effect of reinforcement corrosion on bond strength [J]. Construction and Building Materials,1996,10(2):123-129
    [47]Zhang W P, Dai H C, Gu X L, et al. Stochastic model of stress-strain relationship for corroded reinforcing steel bars[C]. Proceedings of the East Asia-Pacific Conference on Structural Engineering & Construction. Bankok:Asian Institute of Technology,2006:457-462.
    [48]张伟平,商登峰,顾祥林.锈蚀钢筋应力-应变关系研究[J].同济大学学报(自然科学版),2006,34(5):586-592
    [49]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑,1995(9)
    [50]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):6-13.
    [51]邱小坛,周燕.大气环境下钢筋锈蚀规律的研究[C].第四届全国混凝土耐久性学术交流会论文集,1996
    [52]中国工程建设标准化协会标准.混凝土结构耐久性评定标准(CECS 200:2007)[S].北京:中国建筑工业出版社,2007.
    [53]周彬彬,顾祥林,张伟平等.海洋大气环境下钢筋混凝土梁受弯时变可靠度分析[J].土木工程学报,2010,15-21
    [54]代红超.锈蚀钢筋力学性能退化机理及随机本构关系[博士学位论文].上海:同济大学,2008
    [55]黄明志.金属力学性能[M].西安:西安交通大学出版社,1998
    [56]惠云岭,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):10-13,33
    [57]王传志,滕智明.钢筋混凝土结构理论[M].中国建筑工业出版社,1985.
    [58]G. J. Al-Sulaimani, M. Kaleemullah, I. A. Basunbul et al. Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members[J]. ACI Structural Journal,1990,87(2):220-231
    [59]J.G.Cabrera. Deterioration of concrete due to reinforcement steel corrosion[J]. Cement and Concrete Composites,1996,18(1):47-59
    [60]Kyle Stanish, R. D. Hooton, J. Pantazopoulou. Corrosion effects on bond strength in reinforced concrete [J]. ACI Structural Journal,1999,96(6): 915-921
    [61]Lee Han-Seung, Takafumi Noguchi, Fuminori Tomosawa. Evaluation of the bond properties between concrete and reinforcement as a function of the degree of the reinforcement corrosion [J]. Cement and Concrete Research, 2002,32(8):1313-1318
    [62]Y. Auyueng, P. Balaguru, L. Chung. Bond behavior of corroded reinforcement bars [J]. ACI Materials Journal,2000,97(2):214-220
    [63]王林科,陶峰,王庆霖等.锈后钢筋混凝土粘结锚固的试验研究[J].工业建 筑,1996,26(4):14-16.
    [64]袁迎曙,余索,贾福萍.锈蚀钢筋混凝土的粘结性能退化试验研究[J].工业建筑,1999,(11):47-50.
    [65]潘振华,牛狄涛,王庆霖.钢筋锈蚀开裂条件的试验研究[J].工业建筑,1995,(5):46-49.
    [66]范颖芳,黄振国等.受腐蚀钢筋混凝土构件中钢筋与混凝土粘结性能研究[J].工业建筑,1999,(8):49-51.
    [67]张国学,宋建夏等.钢筋锈蚀对钢筋混凝土构件粘结力的影响[J].工业建筑,2000,(2):37-39.
    [68]何世钦.氯离子环境下钢筋混凝土构件耐久性能试验研究:[博士学位论文].大连:大连理工大学,2004.
    [69]Zhao Guofan, ShiBo. Advance in Researches on Bond Behavior for Steel-Corroded Corroded Concrete Members[J]. Journal of Southwest Jiaotong University,2006,14(2):157-164.
    [70]P. M. Ferguson and J. N. Thempson. Development Length for Large High Strength Reinforcing Bars [J]. Journal ACI, Vol.62, No.1 January 1965, pp.71-93.
    [71]MOHAMED H, HARAJ LI, BILAL S, et al. Effect of confinement of bond strength between steel bars and concrete [J]. ACI Structural Journal, September-October 2004:595-603.
    [72]陶峰,王林科,王庆霖等.服役钢筋混凝土构件承载力的试验研究[J].工业建筑,1996,26(4):17-20
    [73]全明研.老化和损伤的钢筋混凝土构件的性能[J].工业建筑,1990,20(2)15-19
    [74]惠云玲,李荣,林志伸等.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997,27(6):14-18
    [75]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001,31(5):9-11
    [76]陶峰,王林科,王庆霖.服役钢筋混凝土构件承载力的试验研究[J].工业建筑,1996,26(4):17-20
    [77]张伟平.混凝土结构的钢筋锈蚀率损伤预测及其耐久性评估:[博士学位论文].上海:同济大学,1999
    [78]Rodriguez J, Ortega L M, Casal J. Load carrying capacity of concrete structure with corroded reinforcement [J]. Construction and Building Materials,1997,11(4):239-248.
    [79]范颖芳,周晶,黄振国.受氯化物腐蚀钢筋混凝土构件承载力研究[J].工业建筑,2001,31(5):3-5.
    [80]KIUOSHI Okada, KAZUO Kobayashi, TOYOAKI Miyagawa. Influence of Longitudinal cracking due to reinforcement corrosion on characteristic of reinforced concrete members [J]. ACI Struct J.1998,85(2):134-140.
    [81]ZHANG S, RAOOF M. Prediction of the behavior of RC beams with exposed reinforcement [J]. Mag Conc Res,1995,47(173):335-344.
    [82]RODRIGUEZ J, ORTEGA L M, CASAL J. Load carrying capacity of concrete structures with corroded reinforcement [J]. Construction and Building Mater,1997,11(4):239-248.
    [83]MANGAT P S, ELGARF M S. Flexural strength of concrete beams with corroding reinforcement [J]. ACI Struct J,1999,96(1):149-158.
    [84]Torres-Acosta A A, Martinez Madrid M. Residual life of corroding reinforced concrete structures in marine environment[J]. Journal of Materials in Civil Engineering,2003,15(4):344-353.
    [85]EYRE J R, NOKHASTEH M A. Strength assessment of corrosion damaged reinforced concrete slabs and beams [J]. Proc Inst Civil Eng Struct & Bldgs,1992,94:197-203.
    [86]CARINS J, ZHAO Z. Behavior of concrete beams with exposed reinforcement [J]. Proc Inst Civil Eng Struct & Bldgs,1993,99:141-145.
    [87]LIN Z, WOOD L A. The determination of the strength of damaged reinforced concrete beams [A]. Proceedings of the 8th International Conference Structural Faults+Repair [C]. Edinburgh:Engineering Technics Press, 1999.
    [88]CASTELLANI A, CORONELLI D. Beams with corroded reinforcement evaluation of the effects of cross-section losses and bond deterioration by finite element analysis [A]. Proceedings of the 8th International Conference Structural Faults+Repair [C]. Edinburgh:Engineering Technics Press,1999.
    [89]Coronelli D, Gambarova P. Structural assessment of corroded reinforced concrete beam:Modeling Guidelines [J]. Journal of Structural Engineering,2004,130(8):1214-1224.
    [90]范颖芳,周晶.基于分形研究的受腐蚀钢筋混凝土构件承载力预测模型[J].大连理工大学学报,2005,45(1):108-112.
    [91]韩洪胜.海水腐蚀钢筋混凝土结构构件承载力的试验研究及人工神经网络理 论的应用[硕士学位论文].天津:天津大学,2001.
    [92]Capozucca, R., Nilde. Identification of Damage in Reinforced Concrete Beams Subjected to Corrosion [J]. ACI Structural Journal,2009,97(6) 902-909
    [93]吴瑾,吴胜兴.锈蚀钢筋混凝土受弯构件承载力计算模型[C].工程科技论坛土建结构工程的安全性与耐久性”论文集,北京,2001.
    [94]惠云玲,李荣,林志伸,全明研.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997(6):14-18.
    [95]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001(5):9-11.
    [96]全明研.老化和损伤的钢筋混凝土构件的性能[J].工业建筑,1992(2)
    [97]任宝双,钱稼茹,聂建国.在用钢筋混凝土简支桥面梁受弯承载力估算[J].工业建筑,2000(11):29-33.
    [98]王庆霖,池永亮,牛狄涛.锈后无粘结钢筋混凝土梁的模拟实验与分析[J].建筑结构,2001(4):51-53.
    [99]邓冰,竺存宏,丁乃庆,刘富强.天津港高桩码头锈损面板残余承载力试验及估算方法的研究[J].港工技术,1998(1):25-31
    [100]Shuenn-Chern Ting, Andrzej S. Nowak. Effect of Reinforcing Steel Area Loss on Flexural behavior of Reinforced Concrete Beams [J]. ACI Structural Journal,1991,88(3):309-314.
    [101]惠卓,王庆霖.受损构件承载力的计算机模拟[J].西安建筑科技大学学报,1997,29(4):431-434.
    [102]赵新.锈蚀钢筋混凝土梁工作性能的试验研究[博士学位论文].长沙:湖南大学,2006.
    [103]牛狄涛,卢梅,王庆霖.锈蚀钢筋混凝土梁正截面受弯承载力计算方法研究[J].建筑结构,2002,32(10):14-17.
    [104]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001,31(5):9-11.
    [105]范颖芳,周晶,黄振国.受氯化物腐蚀钢筋混凝土构件承载力研究[J].工业建筑,2001,31(5):3-5.
    [106]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001,31(5):9-11.
    [107]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑,2000,30(1):43-46.
    [108]惠云玲,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑,1997, 27(6):11-14.
    [109]Comite Euro-International du Beton. Bulletin D'information No. 213/214 CEB-FIP Model Code 1990 (Concrete Structures). Lausanne, May 1993
    [110]F. J. vecchio and M. P. Collins. Analytical model for shear critical reinforced-concrete members [J]. Journal of Structural Engineer, September,1996,122:1123-1124.
    [111]Ang Beng Ghee, M. J. N. Priestiey. T. Pauly. Seismic shear strength of reinforced concrete[J]. ACI Structual Journal,1989, January-February:45-59
    [112]T. Pauly, M. J. N. Priestiey.钢筋混凝土和砌体结构的抗震设计.见:戴瑞同,陈世鸣,林宗凡等译.钢筋混凝土框架柱抗震性能的试验研究.北京:中国建筑工业出版社,1999.6,24-28.
    [113]Mark Aschheim and Jack P. Moehle. Seismic shear strength of reinforced concrete columns [J]. Journal of structural engineer, April,1996, 122:461-463.
    [114]T. Ichinose. A shear design equation for ductility R/C members[J]. Earthquake Engineering and structural Dynamics,1992,21:197-213
    [115]Kim W, White R N. Initiation of shear cracking in reinforced concrete beams with no web reinforcement [J]. ACI Structural Journal,1991, 88(3):301-308.
    [116]Kim D, Kim W, White R N. Arch action in reinforced concrete beams-A rational prediction of shear strength [J]. ACI Structural Journal,1999, 96(4):586-593.
    [117]瓦西耶夫(苏联).钢筋混凝土构件抗剪承载力.北京:人民交通出版社,1992,10-35
    [118]徐有邻,周氐.混凝土结构设计规范理解与应用[M].中国建筑工业出版社,2002.
    [119]H. P. J. Taylor. Investigation of the Dowel Shear Force Carried by the Tensile Steel in Reinforced Concrete Beams [J]. Cement and Concrete Association, London, TRA 431,1969,24pp.
    [120]F. Leonhardt. Reducing the shear Reinforcement in Reinforced Concrete Beams and Shears[J]. Magazine of Concrete Research, Vol.17, No.53, December 1965, pp.187-198.
    [121]ACI Committee 326. Shear and Diagonal Tension. ACI Journal Proceedings,1962a,59(1):1-30
    [122]ACI Committee 326. Shear and Diagonal Tension. ACI Journal Proceedings, 1962b,59(1):277-344
    [123]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003
    [124]赵国藩等.高等钢筋混泥土结构学[M].北京:中国电力出版社,1999.
    [125]施岚青,徐有邻.钢筋混凝土受弯构件的剪切强度控制区及其下包线[J].建筑结构学报,1983,4(1):23-24
    [126]Board B, Pone S, Cairns J. Strength in shear of concrete beams with exposed reinforcement[C]. Proceedings of the Institution of Civic Engineers Structures and Buildings. London:Thonas Telford Ltd,1995.
    [127]Yan X K, Wang T C, Zhang Y M. Shear strength of reinforced concrete beams under sea water [J]. Transactions of Tianjin Univesity,2004, 10(2):138-141.
    [128]Higgins C, Farrow I W. Tests of reinforced concrete beams with corrosion-damaged stirrups[J]. ACI Structural Journal,2006,103(1):131-141.
    [129]Kani G N J. Riddle of shear failure and its solution[J]. ACI Journal Proceedings,1964,16(4):441-467.
    [130]Russo G, Puleri G. Stirrup Effectiveness in Reinforced Concrete Beams under Flexure and Shear[J]. ACI Structural Journal,1997,94(3): 227-238.
    [131]Cainrs, J., Strength in shear of concrete beams with exposed reinforcement[J]. Proceedings of the Institution of Civil Engineers, Structures and Buildings 110 2 May 1995 p:176-185.
    [132]Rodriguez J.; Ortega L. M.; Casal J. Load carrying capacity of concrete structures with corroded reinforcement[J]. Construction and Building Materials,1997,11(4):239-248
    [133]Nowhasteh MA, Eyre JR, Mclelsh A. The effect of reinforcement corrosion on the structure of reinforced concrete members[R]. Structural Integrity assessment. Elsevier Applied Science, London, UK,199
    [134]Jeppsson J, Thelandersson S. Behavior of reinforced concrete beams with loss of bond at longitudinal reinforcement[J]. Journal of Structural Engineering,2003,129(10):1376-1383.
    [135]王小惠.锈蚀钢筋混凝土梁的承载能力[博士学位论文].上海:上海交通大学土木工程系,2004.
    [136]霍艳华.锈蚀钢筋混凝土简支梁受剪承载力研究[J].工业建筑,2006,36(supp):910-912.
    [137]吴晓帆,等.锈蚀钢筋混凝土受弯构件受剪承载力计算[J].华中科技大学学报(城市科学版),2007,24(4):14-16.
    [138]赵羽习,金伟良.锈蚀箍筋混凝土梁的抗剪承载力分析[J].浙江大学学报(工学版),2008,42(1):19-24.
    [139]张永放.高速公路板式桥梁中铰缝构造的病害与处治[J].技术论坛,2008,43(7):122-124.
    [140]徐辉.桥梁板结构优化试验研究[硕士学位论文].天津:天津大学,2005.
    [141]王砚桐.高等级公路中“单板受力”想象及原因分析[J].公路交通技术,2004,(4):29-32.
    [142]乔学礼.空心板铰缝破坏机理及防治措施研究[硕士学位论文].西安:长安大学,2008.
    [143]Dicleli M, Bruneau M. Seismic performance of single-span simply supported and continuous slab-on-girder steel highway bridges[J]. Journal of Structural Engineering,1995,212 (10):1497-1506.
    [144]黄民水,等.空心板梁桥“单板受力”病害机理及其加固处治研究[J].华中科技大学学报,2008,36(2):118-121.
    [145]王敏强,等.铰接板梁桥载荷横向分布影响线计算方法[J].武汉大学学报,2004,37(4):68-72.
    [146]柴广,等.新型铰缝在重载交通道路桥梁设计中的应用[J].内蒙古公路与运输,2005,90(4):20-22.
    [147]魏洋,等.环氧树脂在简支梁桥铰缝加固中的应用研究[J].特种结构,2006,23(4):78-81.
    [148]刘云刚,李亮.锚喷混凝土加固小铰缝混凝土板桥方法综述[J].山西建筑,2008,34(15):147-148.
    [149]中华人民共和国国家标准.混凝土结构设计规范(BG500100-2002)[S].北京:中国建筑工业出版社,2002.
    [150]Tachibana Y., Maeda K. L, Kajikawa Y. et al. Mechanical behavior of RC beams damaged by corrosion of reinforcement [C]. Third International Symposium on "Corrosion of Reinforcement in Concrete Construction" Wishaw, UK,1990,178-187
    [151]王小惠.锈蚀钢筋混凝土梁的承载能力[博士学位论文].上海:上海交通大学土木工程系,2004.
    [152]吴庆.基于钢筋锈蚀的混凝土构件性能退化预计模型[博士学位论文].徐州:中国矿业大学,2007.
    [153]"ASTM C234-91a" American Society for Testing and Materials. Standard test method for comparing concretes on the basis of the bond developed with reinforcing steel.
    [154]DS 2082-1980. Pullout test.
    [155]"ACI 408.2R-92" American concrete Institute. Committee 408. State of the Art report on bond under cyclic Loads. Michigan:Farmington Hills, 1992
    [156]RILEM-FIB-CEB. Tentative recommendation-bond test for reinforcing steel. Materials and Structures,32,1973
    [157]Abdullah A. Almusallam, Ahmad S. Al-Gahtani, Abdur Rauf Aziz and Rasheesuzzafart. Effect of Reinforcement Corrosion on Bond Strength [J]. Construction and Building Materials,1996,10(2):123-129.
    [158]潘振华,牛狄涛,王庆霖.锈蚀率与极限粘结强度关系的试验研究[J].工业建筑,2000(5):10-12.
    [159]李斌,何鲜峰等.锈蚀对钢筋混凝土粘结力的影响[J].工业建筑,2001(5):12-13.
    [160]徐有邻.钢筋混凝土粘滑移本构关系的简化模型[J].工程力学(supp),1997:34-38.
    [161]徐港.锈蚀钢筋混凝土粘结锚固性能研究:[博士学位论文].武汉:华中科技大学,2007.
    [162]Dario Coronelli. Corrosion cracking and bonding strength modeling for corroded bars in reinforced concrete [J]. ACI Structure Journal,2002, 99(3):267-276.
    [163]Khaled Soudki and Ted Sherwood. Bond Behavior of Corroded Steel Reinforcement in Concrete Wrapped with Carbon Fiber Reinforced Polymer Sheets [J]. Journal of Materials in Civil Engineering,2003, 15(4):358-370.
    [164]Yubun Auyeung. Bond Properties of corroded Reinforcement with and without Confinement [D]. PHD Dissertation.2001, May
    [165]ZARARIS P D, PAPADAKIS G C. Diagonal shear failure and size effect in RC beams without web reinforcement [J]. Journal of Structural Engineering,2001,27(7):733-742.
    [166]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [167]周锡武.关于混凝土结构耐久性设计的若干问题研究:[博士学位论文].武汉:华中科技大学,2008.
    [168]罗听.损伤演变对混凝土强度的影响[博士学位论文].武汉:华中科技大学,2006.
    [169]公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)[S].北京:人民交通出版社.
    [170]沈蒲生,梁兴文.混凝土结构设计原理(第二版)[M],北京:高等教育出版社,2004,16-20.
    [171]中华人民共和国国家标准.混凝土结构设计规范(BG500100-2002)[S].北京:中国建筑工业出版社,2002.
    [172]沈蒲生,梁兴文.混凝土结构设计原理(第二版)[M],北京:高等教育出版社,2004,16-20.
    [173]混凝土结构试验方法标准(GB 50152-92)[S].北京:中国建筑工业出版社.
    [174]普通混凝土长期性能和耐久性能试验方法标准(GB/T 50082-2009)[S].北京:中国建筑工业出版社.
    [175]Tachibana Y., Maeda K. L., Kajikawa Y. et al. Mechanical behavior of RC beams damaged by corrosion of reinforcement [C]. Third International Symposium on "Corrosion of Reinforcement in Concrete Construction" Wishaw, UK,1990,178-187
    [176]王小惠.锈蚀钢筋混凝土梁的承载能力[博士学位论文].上海:上海交通大学土木工程系,2004.
    [177]张艇.HRB500级钢筋混凝土构件受力性能的试验研究[硕士学位论文].郑州:郑州大学土木工程学院,2004,36-42
    [178]李美云.HRB400级钢筋混凝土构件受力性能的试验研究[硕士学位论文].郑州:郑州大学土木工程学院,2003,32-38
    [179]谭品峰.集中荷载作用下高强钢筋混凝土梁抗剪性能研究[硕士学位论文].天津:天津大学土木工程学院,2003,26-43
    [180]吕艳梅.高强箍筋高强混凝土梁抗剪性能试验研究与理论分析[博士学位论文].湖南:湖南大学土木工程学院,2007
    [181]F.J. Vecchio, W. Shim. Experimental and Analytical Reexamination of Classic Concrete Beam Tests [C]. Journal of Structural Engineering, the American Society of Civil Engineers,2004,130(3):460-469
    [182]Belen Gonzalez-Fonteboa, Fernando Martinez-Abella. Shear strength of recycled concrete beams [J]. ScienceDirect Construction and Building Materials 2007:887-893
    [183]李学田,殷惠光.锈蚀钢筋混凝土梁抗剪能力退化机理和预计模型[J].徐州工程学院学报(自然科学版),2010,25(4):58-63
    [184]简明建筑结构设计手册[M],北京:中国建筑工业出版社,1988.
    [185]李文才.除冰盐环境对混凝土空心板铰缝的侵蚀及其损伤演变[硕士学位论文].长沙:中南大学,2010.
    [186]公路桥涵标准图:装配式预应力混凝土空心板(JT/GQB 001-1973)[S].北京:人民交通出版社.
    [187]Baweja D, Roper H, Sirivivatnanon V. Improved electrochemical determinations of chloride-induced steel corrosion in concrete [J]. ACI Materials Journal,2003,100(3):228-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700