用户名: 密码: 验证码:
玉米主产区土壤养分与玉米产量的时空变异及其相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业生产受地理条件和气象因素的影响,具有动态性、不确定性、时间性、空间性等复杂的特点。传统的技术手段无法正确及时掌握农情,导致农业生产长期处于信息化落后被动的局面。计算机相关技术是实现农业信息化可持续发展的有效途径。随着社会的进步和信息技术的发展,传统的农业数据处理手段已经无法满足农业信息化、数字化的发展,3S技术、人工智能和数据挖掘等先进计算机相关技术的出现,拓宽了人类的视觉和触觉,为人类提供了新的观测事物手段。
     我国主要粮食种植作物之一是玉米,它也是东北地区的主要种植作物,玉米生产在整个粮食生产中地位十分重要。了解玉米种植情况及产量,对于玉米生产过程的产量预测,土壤养分评价和精准施肥都具有重要意义。运用信息技术手段,对农业知识进行处理决策,及时了解土壤养分含量、肥力等级和粮食预期产量等重要农情一直是研究的热点。本文以农业信息化为导向,针对玉米生产过程中耕地地力情况,以最为关心的玉米产量为研究对象,利用GPS和GIS技术,结合时序序列算法、空间聚类分析和时间与空间相结合的数据挖掘技术,在掌握一定信息的情况下,进行土壤养分含量与产量之间的相关性,土壤肥力等级的划分,玉米产量预测等研究工作,探索玉米产量预测的新方法。
     在本文的研究中,首先分析了作物产量构成的相关研究、国内外农业信息化研究进展、精准农业国内外发展的情况、土壤养分的时空变异以及作物产量时空相关性的国内外研究动态;然后表明了本文主要的研究内容、目的、意义和相关工作;介绍了时间序列、空间模糊聚类分析、相关性分析和神经网络等数据挖掘理论和方法。在吉林农业大学信息技术学院所承担的国家863高科技“玉米精准作业系统研究与应用”项目的支持下,以吉林省榆树市弓棚镇的农田为实验区域,进行了以下研究工作:
     (1)数据收集整理,收集整理玉米种植区的土壤养分数据、实验期间玉米产量数据,查阅吉林省年鉴数据库获取得从1990-2010年榆树市玉米产量数据,为建立土壤养分评价模型、土壤养分与玉米产量相关性分析和玉米产量预测模型等工作提供基础数据。
     (2)针对土壤养分数据空间性特点,分析了土壤养分空间变异性、土壤养分与产量的相关性,讨论了土壤养分空间变异对产量的影响。
     (3)根据土壤养分变异与玉米产量的相关性研究吉林省黑土区耕地地力评价。针对研究对象的区域空间特性,在解决玉米精准施肥的区域问题上,采用空间模糊聚类算法进行土壤养分评价。首先利用利用八连通法对研究区域进行空间性分析,并将分析结果应用于空间模糊聚类分析中,进行土壤养分分类模型的建立。这种方法应用于土壤养分评价,即考虑了土壤养分数据的属性问题,又顾全了土壤养分数据具有区域空间性的特点,适用于精准农业中的土壤养分评价。借助GIS分析的结果可以直观地了解整个区域的耕地地力情况,可为农作物的施肥和管理提供理论依据。
     (4)玉米产量预测是精准农业实施过程的重要环节,传统的统计方法没有考虑玉米产量的时间相关性,本文从时间方面预测了玉米产量。以连续20年玉米产量为处理对象,根据时间序列算法的研究过程,构建了玉米产量的时间序列模型,从时间角度上分析了玉米产量的变化趋势,以及进行相关预测。实验结果表明应用ARIMA模型预测的玉米产量与实际值拟合效果很好,说明用时序算法可以对玉米产量的未来趋势进行较好地预测。这为摸清玉米产量的短期趋势提供了新的思路和方法。
     (5)在土壤养分空间变异和玉米产量时间预测的基础上,探索将时间和空间进行拟合,从时空角度进行玉米产量的预测。本文提出了一个基于数据挖掘的玉米产量时空相关性研究方法,利用时间序列方法构建玉米产量的时间子预测;借助于BP神经网络算法的学习特性,学习出种植区域相邻地块土壤养分对玉米产量的影响,进而构建出玉米产量的空间子预测;结合线性回归融合时间子预测和空间子预测生成最终的预测模型。
     本文是基于数据挖掘的土壤养分与玉米产量的时空相关性的研究,根据土壤养分和玉米产量都存在着一定的空间变异与时间变异特性,将数据挖掘方法与土壤养分评价、时空变异以及其玉米产量的相关性进行有效的集成。该研究方法的提出可以为土壤养分评价、精准施肥和产量预测等工作,提供理论依据。
The vastness of our national territory, large population and topography determine the nature of people living condition is more complex. Each area exists phenomena including of limited agricultural production materials, unbalanced distribution of agricultural production resources, un-abundance of per capita agricultural resources, and so on. These phenomena show that the agriculture is one of the main factors which determine the rapid development of the national economy.
     Under the influence of geographical conditions and meteorological factors,the agricultural production has some complex characteristics including of dynamics, uncertainty, time, space, and so on. The traditional technical means can not grasp the rural condition correctly and timely which leads to the passive situation of the agricultural production is in the behind of the informationization chronically. Computer-related technologies are effective ways to achieve the sustainable development of agricultural informationization. Along with the society's progress and the development of information technology, traditional means of agricultural data processing have been unable to meet the development of agricultural informationization and digitization. The emergence of advanced and computer-related technology, such as3S technology, artificial intelligence and data mining broadens the vision and touch of humanity and provides new means of observing things.
     Corn is one of main grain crops in China and it is the main crops in the northeast. The maize production is very important in the whole grain production. Understanding of corn planting and production has great significance for yield prediction, soil nutrient analysis and precision fertilization. It has beening the hot spot that taking use of information technology to deal with agricultural knowledge decision and understand timely important rural conditions including of soil nutrient content, fertility level and expected output of grain. Taking agricultural informationization as the guidance and aiming at force situation of arable land in the corn production process, this paper takes the corn yield cared mostly as the research object, uses GPS and GIS technology, combines with temporal sequence algorithm, spatial clustering analysis and data mining technology combined with time and space, researches the correlation between the soil nutrient content and the yield, explores the method of dividing the level of soil fertility, predicts the maize yield and explores new methods for maize yield prediction.
     The research of this paper analyzes firstly the correlated research of the composition of grain yield, the progress of agricultural informationization, the development situation of precision agricultural, the spatial and temporal variation of the soil nutrient and the spatial and temporal correlation of crop production both at home and abroad. Then this paper indicates the main research content, purpose, significance and related work and introduces data mining theories and methods such as the time series, spatial fuzzy clustering analysis, correlation analysis and the neural network. Supported by the national863high-tech project of “Research and Application of Corn Precision Operating System” undertaken by the information technology institute of the Jilin Agricultural University, the paper takes the farmland in GongPeng town YuShu City JiLin province as the experimental area and conducts the following research work:
     (1) Collect and reorganize data. By collecting data of soil nutrient in corn-growing areas and maize yield during the experiment and obtaining maize yield data in YuShu City from1990to2010by consulting the yearbook database of JiLin Province, it provides the basis data for building soil nutrient evaluation model, the correlation analysis model between soil nutrient and maize yield and maize yield prediction model.
     (2) Analyse the spatial variability of soil nutrient and the relevance between soil nutrient and yield and discuss the effects of spatial variability of soil nutrient on the yield aiming at the spatial characteristics of soil nutrient data.
     (3) Research the comprehensive evaluation of cultivated land in black soil region of Jilin province according to the study on the correlation between maize yield and soil nutrient variation. Aiming at the area space attribute of the research object, this paper uses spatial fuzzy c-means clustering algorithm to evaluate soil nutrients in solving the region of the maize precise fertilization issues. At first, it uses the eight-connected method to have a spatial analysis on research area and applies the analysis result in the spatial fuzzy clustering analysis to build the soil nutrient classification model. Applying this method to soil nutrient evaluation, it considers both the attribute problem of the soil nutrient data and the regional characteristics of the soil nutrient data so it is suitable for the evaluation of soil nutrients in the precision agriculture. Through GIS analysis results we can understand visually the farmland throughout the region and provide the theoretical basis for crop fertilization and management.
     (4)The prediction of maize yield is an important part in the implementation process of precision agriculture. Traditional statistical methods do not take into account time correlation of maize yield. This paper predicts the corn yield from time perspective. Taking20consecutive years maize production as objects and basing on the research algorithm of the time series algorithm, it builds a corn yield time-series model and analyses trends of the corn yield from the time point and takes related forecasts. Experimental results show that the effect of applying ARIMA (Autoregressive Integrated Moving Average Model, denoted ARIMA) model to predict maize yield and the actual values is very well and state that using the time series algorithm can predict future trends of maize yield well. It provides new ideas and methods for maize yield prediction analysis.
     (5) Based on spatial variability of soil nutrients and the time prediction of maize yield, explore the method of fitting time and space and predict maize yield from the perspective of time and space. This paper proposes a research method on maize yield with the space-time correlation based on data mining which uses the method of time series to build time child prediction of maize yield. By means of the learn feature of BP neural network algorithm, study the planting area of adjacent plots soil nutrient effect on maize yield and then build the space child prediction of the maize yield. Combined with the linear regression fusion time child prediction and space child prediction, produce the final prediction model.
     This paper is based on the research of the spatio-temporal correlation on corn yield and soil nutrient of data mining and takes the data mining methods and soil nutrient evaluation, spatio-temporal variability of soil nutrients and maize yield relevance into an effective integration according to certain spatial variability and time variability both in soil nutrients and maize yield. The proposition of the research method can provide the theory basis to evaluate soil nutrient, implement precise fertilization and predict yield.
引文
[1]林毅夫,沈明高,周皓著.中国农业科研优先序[M].北京:中国农业出版社,1996,23~26
    [2]胡瑞法,Meng Brika CN,张世煌,石晓华.采用参与式方法评估中国玉米研究的优先序[J].中国农业科学,2004,37(6):781~787
    [3]中华人民共和国国土资源部.农用地分等规程(TD/T1004-2003)[M].北京:中国标准出版社,2003:23~75
    [4]佟屏亚编著:中国玉米科技史[M].中国农业科技出版社,2000,96~111
    [5]黄季焜.中国粮食供需平衡的分析和对策-也谈中国是否会使世界饥饿[J].改革,1996(2):17~22
    [6]张军,高学曾,刘宗培.美国玉米高产纪录[J].国外农学-玉米,1989(4):57~58
    [7]孙世贤.中国农作物品种与推广[M].北京:中国农业科学技术出版社,2003:34~98
    [8]江舟.9个不同遗传背景玉米人工合成群体的遗传潜势分析[D].四川农业大学硕士论文,2009
    [9]柳家友.漯河市玉米产业经济的发展与探讨[D].:河南农业大学硕士论文,2007
    [10]于雷邱菊赵丽影刘淑华等.氮素对玉米生长及生理特性的影响[J].吉林农业科学,2011,04(16):34~36
    [11]德华,美、德农业信息化[J].农家致富,2011,02:12~34
    [12]张建光.信息化对农民行为的影响研究[D].西北农林科技大学硕士论文,2008.
    [13]张仰洪,杨星卫等精准农业管理决策支持系统的设计与实现[J],遥感技术与应用,2003,18(1):10~13
    [14]苗孝可,夏克俭,王秀精准农业变量施肥智能决策支持系统的研究[J],计算机应用,2004,24(11):153~155
    [15]王新忠,王熙等精准农业变量施肥GIS系统研究[J],黑龙江八一农垦大学学报,2006,(3):49~51
    [16]吴雨华,诸叶平.“玉米生产管理智能决策系统”推广模式研究[J].中国农学通报.2009,25(12):274~277
    [17]陈宏金.精确农业智能决策系统的技术集成[J].农机化研究.2004,(2):242~243
    [18]席磊,马新明,余华等.农业智能决策系统开发平台的研究[J].河南农业大学学报.2002,36(3):288~292
    [19]郭银巧,李存东,赵春江,郭新宇.玉米栽培理论及智能决策系统的研究进展[J].玉米科学.2005,13(1):95~98,102
    [20]刘光启.农业速查速算手册(上)--农业常用技术资料、土壤和肥料、农业设施卷[M].化学工业出版社.2008:55~98
    [21] Joseph Giarratano,Gary Riley著,印鉴,刘星成,汤庸译.专家系统原理与编程[M].北京:机械工业出版社.2000:23~178
    [22]陈立平,赵春江,刘学馨等.精确农业智能决策支持平台的设计与实现[J].农业工程学报.2002,18(2):145~148
    [23]卢丽娜.国外农业信息化发展现状及特点[J].中国农村小康科技,-2007,04(12)34~336
    [24]李世娟,诸叶平,孙开梦,鄂越.应用小麦玉米连作智能决策系统模拟大田生产—以河北省吴桥县小麦—玉米连作实验为例[J].农业现代化研究.2003,24(4):271~274
    [25]李旭,曹卫星等.小麦管理智能决策系统的设计与实现[J].南京农业大学学报.1999,22(3):9~12.
    [26]于合龙陈桂芬焦鸿斌.精准农业智能决策技术体系探讨[J].安徽农业科学,2010,01(10):12~14
    [27]赵泽英,彭志良.贵州进行精准农业应用研究的探讨[J],贵州农业科学.2005,12:55~57
    [28]刘金铜,陈谋询,蔡虹等.我国精准农业的概念、内涵及理论体系的初步构建[J].农业系统科学与综合研究.2001,08:55~57
    [29]赵春江,薛绪掌,王秀.精准农业技术体系的研究进展与展望[J].农业工程学报,2003,19(4):7~12.
    [30]高亮之.数字农业与我国农业发展[J],计算机与农业,2001,10:35~37.
    [31]罗锡文,张泰岭,洪添胜.精细农业”技术体系及其应用[J].2001,32(2):103~106.
    [32]曹宏鑫,张春雷,金之庆等.数字化栽培的框架与技术体系探讨[J].耕作与栽培,2005,(3):4~7,40.
    [33]苗玉彬.精准农业智能测产系统的研究与应用[D].上海交通大学,2003
    [34]栾家辉.车载GPS测产系统入校正装置[D].东北农业大学,2003
    [35]郑良永,曹启民,夏炜林,胡剑非.精准农业发展趋势及其在我国的应用[J].华南热带农业大学学报,2005,01:55~57
    [36]刘冬寒.改进的高维空间数据聚类算法及其在农业信息化中的应用[D].长春:吉林大学,2005.
    [37]李雪.黑龙江省农村信息化发展模式研究[D].中国农业科学院,2008.
    [38]陈桂芬曹丽英马丽.数据挖掘在精准农业中的应用现状及发展趋.吉林农业大学学报,2008,08::45~47
    [39]]刘冬寒.改进的高维空间聚类算法及其在农业信息化中的应用[D].长春:吉林大学,2005.
    [40]张书慧.基于GPS、G IS的精确农业自动变量施肥理论与技术研究[D].长春:吉林大学.2003:1~3
    [41]苗孝可,夏克俭,王秀.精准农业变量施肥智能决策支持系统的研究[J].计算机应用,2002,2(24):153~155
    [42]扈立家,唐雪漫.辽宁省构建精准农业技术体系问题研究[J],辽宁行政学院学报,2006,3:34~37
    [43]苗玉彬.精准农业智能测产系统的研究与应用[D].上海:上海交通大学,2003.
    [44]段项锁,薛正平,杨星卫,等.精准农业土壤养分与水稻产量关系模型研究[J].中国生态农业学报.2003,11(1):62~65.
    [45]陈传永,赵明,董志强等.多雨年寒地覆膜对玉米干物质积累与分配及产量的影响.玉米科学,2007,15(l):85~91
    [46]王崇桃李少昆韩伯棠玉米产量潜力实现的限制因素的参与式评估.中国软科学.2006,07:23~25
    [47]王波,郭夜白,高来斌,仲崇文等,最优加权预测在吉林省粮食产量预测中的应用[J],吉林农业大学学报,2008,30(5):760~763.
    [48]高祥照,胡克林,郭炎,等.土壤养分与作物产量的空间变异特征与精确施肥[J].中国农业科学.2002:35(6):660~666.
    [49]张书慧,马成林,等.变量施肥对玉米产量及土壤养分影响的实验[J].农业工程学报.2006,22(8):64~67.
    [50]梁颖,李加钠,唐章林.油菜光合生理指标与产量的关联分析[J].西南农业大学学报,1999,21(3):244~247.
    [51]麻珺杨方廷胡敦利,粮食产量短期预测系统的建立[J].自动化技术与应用,2006,06(25):34~36
    [52] Beaubouef Theresa, Petry Frederick E. A rough set foundation for spatial datamining involving vague regions. IEEE International Conference on PlasmaScience,2002,1:767~772.
    [53] Beaubouef Theresa, Ladner Roy, Petry Frederick. Rough Set Spatial DataModeling for Data Mining. International Journal of Intelligent Systems,Granular Computing and Data Mining,2004,19(7):567~584.
    [54] Zeitouni K.,2002. A survey of spatial data mining methods databases andstatistics point of views. In: Data Warehousing and Web Engineering, edited byBecker S. London: IRM Press,229~242
    [55]王天真.智能融合数据挖掘算法及其应用[D].上海:上海海事大学,2006.
    [56]冯红伟.数据挖掘技术的研究与应用[D].西安:西北工业大学,2002.
    [57]周海燕.空间数据挖掘的研究[D].北京:中国人民解放军信息工程大学,2003.4
    [58]龙腾芳.数据挖掘技术在农业领域中的应用研究[J],微计算机信息,2005,35(13):4053~4082.
    [59]刘春玲崔凌云贾冬青等.数据挖掘技术在农业领域的应用[J].农机化研究,2010,07:55~57
    [60]曾红月,姚敏.时序数据挖掘方法研究[J].计算机工程与设计,2004,11:23~27
    [61]李增祥.数据挖掘技术在农业生产中的应用[J]..微计算机信息,2010,06:44~49
    [62]李德仁,王树良,李德毅等著,空间数据挖掘理论与应用[M].北京:科学出版社,2006.
    [63]陈桂芬.精准农业的空间数据挖掘技术研究与应[D].长春:吉林大学,2009.
    [64]金海华.数据挖掘在税务系统中的应用研究[D].贵州:贵州大学,2009.
    [65]胡彩平.基于空间自相关的空间数据挖掘若干关键技术的研究[D].南京:南京航空航天大学,2007.
    [66]欧阳为民,蔡庆生.数据库中的时态数据挖掘研究.计算机科学.1998,25(4):60~63.
    [67]韩家炜.数据挖掘:概念与技术[M].北京:机械工业出版社,2007.
    [68]杨风召,高维数据挖掘中若干关键问题的研究[D].复旦大学,2003。
    [69] Wang Xiao Hui, Xie Jiancang, Li Jianxun, et al. Implementation of GISspatial data mining based on cloud theory. Proceedings2006InternationalConference on Hybrid Information Technology, ICHIT2006,2006,1:530~534.
    [70] L K Sharma, O P Vyas, U S Tiwary, et al. A Novel Approach of MultilevelPositive and Negative Association Rule Mining for Spatial Databases. MachineLearning and Data Mining in Pattern Recognition. Springer Berlin/Heidelberg,2005,3587:620~629.
    [71]王勇.时序数据挖掘技术及其在水质预测中的应用研究[D]..广东工业大学.2005
    [72]韩家炜,Kamber M著.数据挖掘概念与技术[M].北京:机械工业出版社,2001.
    [73] Georg Rub,Rudolf Kruse1,Martin Schneider,e tc. Data Mining with NeuralNetworks for Wheat Yield Prediction[J]. Advances in Data Mining. MedicalApplications-Commerce, Marketing, and Theoretical Aspects. SpringerBerlin/Heidelberg.2008.47~56.
    [74]欧阳为民,蔡庆生.数据库中的时态数据挖掘研究.计算机科学,1998,25(4):60~63
    [75]欧阳为民蔡庆生.发现序贯模式的增量式更新技术.小型微型计算机系统,1998,19(11):12~17
    [76]张保稳时间序列数据挖掘研究:[硕士学位论文].西安:西北工业大学,2002
    [77]王娜.时间序列建模预报的原理与应用[D].长春:长春工业大学,2010.
    [78]王晓晔,时间序列数据挖掘中相似性和趋势预测的研究[D].天津大学,2003.
    [79]余昕.基于数据挖掘的时间序列预测的研究与应用[D].北京:中国地质大学,2011.
    [80]李苏旺.时间序列数据建模及其在瓦斯预测中的应用研究[D].太原理工大学.2007
    [81]郑煜,孟军等.时间序列模型对黑龙江省水稻比较优势的预测.东北林业大学学报,2008,36(10):65~66.
    [82]杨建萍,基于ARIMA模型的用电量时间序列建模和预报,工程数学学报,2008,25(04):611~615.
    [83]梁鑫,庞丽,彭冬梅,桂林市汽车销售量的时间序列预测模型,广西科学,2008,15(4):386~388.
    [84] G. Peter Zhang: A neural network ensemble method with jittered training datafor time series forecasting [J]. Inf. Sci.177(23):5329~5346(2007).
    [85] Eamonn Keogh. Shruti Kasetty.“On the Need for Time Series Data MiningBenchmarks: A Survey and Empirical Demonstration” in Data mining andKnowledge Discovery October200310(7):123~125.
    [86] R.J.Povinelli and X.Feng. Data Mining of Multiple Nonstationary Time Series,Proc.of Artifieial Neural Networks in Engineering,St.Louis,Missouri,1999.511~516
    [87] Yoon J P,Lee J,Kim S. Trend Similarity and prediction in time-seriesdatabases [A]. Proc of SPIE on Data Mining and Knowledge Discovery: TheoryTools,and Technology II[J]. Washington: PIE,2000.201~212
    [88] G.Peter Zhang. Time series forecasting using a hybrid ARIMA and neuralnetwork model, Neurocomputing.2003(50):159~175
    [89]李新磊.基于RS和TSDM的玉米测产研究[D].吉林农业大学硕士论文,2011
    [90] Ng R T, Han J. Efficient and Effective Clustering Methods for Spatial DataMining. In: The20th Very Large Databases Conference,Santiago,Chile,1994
    [91] Agrawal,Rakesh,Johannes Gehrke,Dimitrios Gunopulos and PrahhakarRaghavan.Automatic Subspace Clustering of High Dimensional Data for DataMining Applications[J].Proceedings of the1998ACM-SIGMOD InternationalConference on Management of Data,Seattle,Washington,June1998.
    [92] EsterMartinHnasPeter,KriegelJorg,SanderXiaowei Xu.A DensityBasedAlgorithm for Discovering Clusters in Lagre Spatial Daatbases withNoise[J].Proceedings of the2nd Intenrational Conferernce Knowledge Discoveyand Data Mining(KDD96),Portland OregonAugust1996.
    [93]曹丽英张文丹毕红杰等.基于GIS和模糊聚类分析的土壤养分评价[J].安徽农业科学,2010,06:43~46
    [94]刘小芳,曾黄麟,吕炳朝.点密度函数加权模糊C,均值算法的聚类分析[J].计算机工程与应用,2004,08:23~26
    [95]陈桂芬曹丽英赵月玲.Fuzzy聚类分析在土壤养分分类中的应用[J].玉米科学,2008,04:42~47
    [96]陈继久余茂德李俊.模糊聚类分析在桑园土壤养分分级施肥方案中的应用[J].四川蚕业,2006,12:55~57
    [97]陈桂芬曹丽英王国伟.加权空间模糊动态聚类算法在土壤肥力评价中的应用[J].中国农业科学,2009,10:69~72
    [98]刘小芳,吕炳朝.基于最大树法和模糊C,均值算法的聚类分析[J]..四川轻化工学院学报,2003,12:86~89
    [99]罗兰星模糊聚类分析中传递闭包法及其应用[J].四川省卫生管理干部学院学报第24卷第2期2005,6:89~92.
    [100]牛琨.聚类分析中若干关键技术及其在电信领域的应用[D].北京邮电大学,2007.
    [101]陈黎飞.高维数据的聚类方法研究与应用[D].夏门大学,2008.
    [102] Li yan,Shui Zhou,Li Feng, Li Hong-Yi.Delineation of site-specificmanagement zones using fuzzy clustering analysis in acoastal salineland[J].Computers and electronics in agriculture,2007(56):174~186.
    [103] Ambroise C, Govaert G. Convergence of an EMtype algorithm for spatialclustering. Pattern Recognition Letters,1998,19(10):919~927
    [104] WANG Shengsheng LIU Dayou CAO Bin LIU Jie,A subspace clusteringalgorithm for high dimensional spatial data, Computer Applications,2005.11.:2615~2617.
    [105] Ester Martin Hnas Peter,KriegelJorg,SanderXiaowei Xu.A DensityBasedAlgorithm for Discovering Clusters in Lagre Spatial Daatbases with NoiseProceedings of the2nd Intenrational Conferernce Knowledge Discovey and DataMining(KDD96)Portland OregonAugust1996.255~259
    [106] Zhang,Tian,Raghu Ramakrishnan,Miron Livny.BIRCH:An Efficient DataClustering Method for Very Large Databases[J].Proceedings of the1996ACMSIGMOD International Conference on Management of Data,M ontreal,C anada,1996.pp.103~114.
    [107] Guha,Sudipto,Rajeev Rastogi and Kyuseok Shim.CURE:An EfficientClustering Algorithm for Large Databases[J].Proceedings of ACM SIGMODInternational Conference on Management of Data.New York,NY1998.pp73~84.
    [108] Kaufman, Leonard and Peter J.Rousseeuw.Finding Groups in Data: AnIntroduction to Cluster Analysis. John Wiley&Sons,Inc.1990:125~129
    [109]李云梅,倪绍祥,王秀珍.线性回归模型估算水稻叶片叶绿素含量的适宜性分析[J].遥感学报,2003,(5):364~371.
    [110]周鸿飞,陈志斌,关欣.评价回归模型拟合效果的数量化方法[J].沈阳农业大学学报,2001,(6):455~458.
    [111]周鸿飞.回归模型拟合效果的定性与定量分析[J].辽宁农业科学,2002,(3):21~22.
    [112]向速林,刘占孟,尤本胜.地下水流量预测的多元线性回归分析模型研究
    [J].水文,2006,26(6):36~37.
    [113]刘严.多元线性回归数学模型[J].沈阳工程大学学报(自然科学版),2005,(2):128-129.
    [114]周文斌,车倩.多元线性回归法在水文预报中的应用[J].山西建筑,2009,35(1):359~360.
    [115]李彦,陈祖森,张保,等.参考作物蒸发蒸腾量的多元线性回归模型研[J].新疆农业大学学报,2005,28(1):70~72.
    [116]石淑芹.基于多元数据的吉林省玉米生产力区划研究[D].北京:中国农业科学研究院,2009:1~123.
    [117]奇凤.基于稳健回归算法的作物-水模型建模与灌溉制度优化[D].内蒙古呼和浩特:内蒙古农业大学,2008:1~70.
    [118]王芳.基于植被指数和气温因子的棉花估产研究[D].新疆乌鲁木齐:新疆大学,2008:1~77.
    [119] Slafer G A, Araus J L. Keynote addess:Improving wheat responses to abioticstresses [R]. In: E.SA, ed. Procedings of the9t h international wheat geneticssymposium vol.1(Section7Abiotic stesses-Keynote stess),1998,Sasktchewan.201~213.
    [120] Araus J L. Integrative physiological criteria associated with yieldpotential.Increasing Yield Potential in Wheat:Breaking theBarriers.1996:CIMMYT.150~167.
    [121] FARQUHAR G D,RICHARDS R A.1sotopic composition of plant carboncorrelates with water-use-efficiency of wheat genotypes[J],A ust.P lant Physio1,1984,11:539~552.
    [122] HUB1CKK, FARQUHAR G D.Carbon isotope discrimination and the ratio ofcarbon gained to water lost in barley cultivars[J].Plant cell Environ,12:795~804.
    [123] EHDAIE B,HALL A E,FARQUHAR G D, et al. Water-use efficiency andcarbon isotope discrimination in wheat[J].CropSci.,1991,31:1282~1288.
    [124] CONDON A G, RICHARDS R A, FARQUHAR G D. Carbon isotopediscrimination is positively correlated with grain yield and dry matter productionin field-grown wheat[J].Crop Science,1987,27:996~1001.
    [125] MORGAN F A, Le CAIN D R, McCAIG T N, et al.Gas exchange,c arbonisotope discrimination and productivity in winter wheat[J].Crop Sci.,1993,33:178~1
    [126] Yang,C.C.,Prasher,et al.Development of an imag processing system and afuzzy algorithm for site-specific herbicide applications.precisionagriculture[J].Precision Agriculture,2003,4(1):5~18.
    [127]张璐,刘淑英,王平.基于模糊数学的农用地质量综合评价模型[J].广东农业科学,2010,2:207~209,215.
    [128]王春平,张改生,张伟,等.应用模糊综合评判和灰色关联度分析评估小麦新品种[J].西北农林科技大学学报(自然科学版),2005,33(8):126~130
    [129]王占全.基于地理信息系统空间数据挖掘若干关键技术的研究[D].浙江:浙江大学,2005
    [130]施惠娟.可视化数据挖掘技术的研究与实现[D].上海:华东师范大学,2009
    [131]刘念祖.时态数据挖掘的探讨.上海第二工业大学学报.2001(2):27~31.
    [132]张保稳.时间序列数据挖掘研究[D].西北工业大学.2002.
    [133]符晓蓉.空间数据挖掘不确定性的研究[D].武汉理工大学.2007.
    [134]胡彩平,秦小麟.空间数据挖掘研究综述[J].计算机科学技术,2007,34(5):14~19.
    [135]刘大有,王生生,虞强源等.基于定性空间推理的多层空间关联规则挖掘算法[J].计算机研究与发展,2004,41(4):565~570.
    [136] Shashi S,Chawla S.空间数据库[M].谢昆青,马修军,杨冬青,等译.北京:机械工业出版社,2004
    [137]樊明辉.空间数据挖掘及其可视化系统若干关键技术研究[D].中国科学院,2006.
    [138]李德仁,王树良,李德毅等著,空间数据挖掘理论与应用[M].北京:科学出版社,2006.
    [139]曾红月,姚敏.时序数据挖掘方法研究.计算机工程与设计.2004,25(11):1999~2001.
    [140]徐薇,黄厚宽,秦勇等.基于时空数据挖掘的铁路客流预测方法[J].北京交通大学学报,2004,28(5):16~19.
    [141]张雪伍苏奋振石忆邵等.空间关联规则挖掘研究进展[J].地理科学进展,2007,11:11~15
    [142]王果.基于时序逻辑的关联规则挖掘方法的研究[D].昆明:云南师范大学,2007.
    [143]史文中,王树良.GIS中属性不确定性的处理方法及其发展[J].遥感学报,2002.5:44~46
    [144]涂建东,陈崇成,樊明辉等.基于Java3D的空间关联规则可视化原理与实现.高技术通讯,2004(6):98~99.
    [145] Yanbo Huang, Yubin Lan, Steven J. Thomson. Development of softcomputing and applications in agricultural and biological engineering[J].Computers and Electronics in Agriculture.2010(71):107~127.
    [146] Dragoljub Pokrajac,Zoran Obradovic.A neural network-based method forsite-specific fertilization recommendation[A]. California USA:ASAE AnnualInternational Meeting, Sacramento,2001.
    [147] Li D R,C heng T. KDG2Knowledge Discovery f rom GIS. In:Proceedings of the Canadian Conference on GIS,Ot tawa,1994
    [148] Ankerst M. et al.,1999,3D shape histograms for similarity search andclassification in spatial database. Lecture Notes in Computer Science,1651207~225
    [149] Dempster A P, Laird N M,Rubin D B. Maximum likelihood fromincomplete data via t he EM algorit hm. Journal of Royal Statistical Society,1977, B(39):1~38
    [150] Zadeh L.A.,1965. Fuzzy Sets. Information and Control,8(3):338~353
    [151] Seo EunKyoung, Biggerstaff, Michael I. Impact of cloud modelmicrophysics on passive microwave retrievals of cloud properties. Part II:Uncertainty in rain, hydrometeor structure, and latent heating retrievals.Journal ofApplied Meteorology and Climatology,2006,45(7):955~972.
    [152] Robert Bembenik, Henryk Rybi#ski. Mining Spatial Association Rules withNo Distance Parameter. Intelligent Information Processing and Web Mining.Springer Berlin/Heidelberg,2006,35:499~508.
    [153] Yang Bin, Zhu, ZhongYing. Mining multilevel spatial association rules withcloud models. Journal of Harbin Institute of Technology (New Series),2005,12(3):314~318.
    [154] LAN Rongqing,LIU Zengliang,YANG Xiaomei. Methods of Mining FuzzySpatial Association Rules. Journal of Institute of Surveying and Mapping,2005,22(1):36~39.
    [155]王勇.时序数据挖掘技术及其在水质预测中的应用研究[D].广东:广东工业大学,2005.
    [156] Dragoljub Pokrajac,Zoran Obradovic.A neural network-based method forsite-specific fertilization recommendation[A]. California USA:ASAE AnnualInternational Meeting, Sacramento,2001.
    [157] Zhi-Hua Zhou, Jianxin Wu, Wei Tang. Ensembling neural networks: Manycould be better than all[J]. Artif. Intell.137(1-2):239~263(2002).
    [158]]J. Cheng, R. Greiner, J. Kelly, D. Bell, W. R. Liu. Learning Bayesiannetworks from data: An information-theory based approach[J]. ArtificialIntelligence,2002(137):43~90.
    [159] R.Khosla,D.Inman,D.G.Westfall,R.M.Reich,M.Frasier,M.Mzuku,B.Koch,A.Hornung.A synthesis of multi-disciplinary research in precisionagriculture:site-specific management zones in the semi-arid western Great Plainsof the USA[J].Precision agriculture.2008(9):85~100.
    [160] Sheng-sheng WANG, Da-you LIU,Spatio-temporal Database withMulti-granularities[C].Advances In Web-Age Information Management (WAIM2004):PROCEEDINGS LECTURE NOTES IN COMPUTER SCIENCE3129(LNCS):137~1462004.
    [161]刘大有,王生生,虞强源等,基于定性空间推理的多层空间关联规则挖掘算法[J],计算机研究与发展,2004,41(4):565~571
    [162]赵彬彬李光强邓敏.时空数据挖掘综述[J].测绘科学,2010,03:23~25
    [163]于洪涛,朱仲英.基于GIS的时空数据仓库技术的若干应用研究[J].微型电脑应用,2003,12:76~79
    [164]尹章才,邓运员.时空数据仓库初探[J]..测绘科学,2002,09:109~110
    [165]梅志雄徐颂军王佳璆.基于DRNN和ARIMA模型的森林火灾面积时空综合预测方法[J]..林业科学,2009,08:90~94
    [166]张雪伍,苏奋振,石忆邵,张丹丹.空间关联规则挖掘研究进展[J].地理科学进展,2007,11:122~125
    [167]何勇,张淑娟,方慧.基于人工神经网络的田间信息插值方法研究[J].农业工程学报,2004,20(3):120~123.
    [168]腾青芳,秦春林,党建武,等.利用神经网络建立土壤施肥模型的应用研究[J].兰州铁道学院学报(自然科学版)[J].2002,21(4):54~57.
    [169]马成林,吴才聪,张书慧.基于数据包络分析和人工神经网络的变量施肥决策方法研究[J].农业工程学报,2004,20(2):152~155.
    [170]付强,王志良,梁川.自组织竞争人工神经网络在土壤分类中的应用[J].水土保持通报,2002,22(1):39~43.
    [171]吴建鑫,周志华,沈学华,等.一种选择性神经网络集成构造方法[J].计算机研究与发展.2000,37(9):1039~1044
    [172]尹念东. BP神经网络的应用设.信息技术,2003,06:89~93
    [173]卢金秋.数据挖掘中的人工神经网络算法及应用研究[D].杭州:浙江工业大学,2011.
    [174]张瑞菊,陶华学,基于模糊神经网络的空间数据挖掘方法研究[J],山东科技.大学学报(自然科学版),2003,22(4):24~27
    [175] Annalisa Appice,P aolo Buono.Analyzing Multi-level Spatial Association RulesThrough a Graph-Based Visualization[J]. In Proc. Innovations in AppliedArtificial Intelligence. Springer Berlin/Heidelberg,2005,3533:448~457.
    [176] F.Takens. Detecting strange attractors in turbulence,Proc.of DynamicalSystems and Turbulence,Waruick,1980.366~381
    [177] Z. Tang, B.A.Engel,J.Choi,etc,A WEB BASED DSS FOR EROSIONCONTROL STRUCTURE P LANNING[J], Applied Engineering inAgriculture,Vol.20(5):707~714
    [178] Nan, Xing Zi, Design of ship monitoring system based on WebGIS [J],Information Sciences and Interaction Sciences (ICIS),20103rd InternationalConference on, June2010:23~25
    [179] Wei, Zu-kuan, Research of Flex-based WebGIS application[J], NetworkedComputing and Advanced Information Management (NCM),2010SixthInternational Conference on,16-18Aug.2010:145~151
    [180] XJ Chen, XY Li, YS Zhan, Design of WebGIS Application Based onAjax[J],Advanced Materials Research,2012,(Volumes542-543):1282~1285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700