用户名: 密码: 验证码:
中国东海海平面变化时空分异、影响机理及风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海平面变化的研究主要集中在海平面变化趋势研究、空间分异研究、影响机理研究以及风险评估研究等方面,本文以中国东海作为主要研究区域,对中国东海海平面时空分异规律进行研究,讨论了东海黑潮主轴变异对东海海平面变化的影响,并以上海地区为例,分析中国东海极限海平面变化对沿海城市的淹没风险。
     基于卫星高度计、验潮站等海面高度数据,讨论中国东海海平面变化多尺度周期、空间分布规律、峰值变化规律等,并对未来变化趋势及未来峰值年进行预测。研究认为,东海海平面具有显著的季节和年际变化趋势,同时也具有30个月,134个月,230个月的周期,其中30个月的周期可能与大气准2年周期振荡(QBO)有关;134个月的周期与太阳黑子的周期相一致;230个月的周期,则与月球赤纬角周期(18.6年)变化相对应。
     对东海海平面进行空间分析后得出,中国东海长江口附近海域海平面长期处于高位,其增长速度为5.45mm/a,每年夏秋季节该处海平面达到全年高值,若叠加风暴潮和天文大潮的影响,可能对长江三角洲及毗邻地区的生态环境及生命财产安全带来威胁。
     提取中国东海海平面逐月峰值和平均值数据发现,中国东海海平面逐月峰值变化率均高于平均值变化率。东海峰值在逐年增加,主要表现为海平面的剧烈振荡,全球气候变暖导致的海水热膨胀是造成该振荡的主要原因。
     通过Winters指数平滑模型进行趋势预测可得,未来海平面变化将保持上升趋势,预计到2015年,海平面将比2006年上升40-50mm左右,到2030年,海平面将比2006年上升140-150mm。从中、大尺度考虑,海平面变化受到PDO、ENSO、太阳黑子等因素的影响,考虑到主周期及上述因素周期的叠加影响,可以推测中国东海海平面变化下一次峰值年为2025年左右。
     东海黑潮是中国东海海平面变化重要的影响因素,本文基于中国东海温、盐、流速资料等,划定东海黑潮边界,提取东海黑潮主轴,研究海平面变化对东海黑潮主轴变异的响应。研究显示,东海黑潮主轴随季节变化具有明显的摆动特征,其南、北部及中部主轴偏离方向有所不同。夏秋季节,长江冲淡水由于流量、流速的加大,对东海黑潮主轴中间部分的偏离有所贡献,影响深度为100m以浅。随主轴流速的增加,东海黑潮入口处,其左右侧海平面皆出现上升的趋势,而黑潮中部,主轴左侧海平面表现出下降的趋势,而右侧海平面抬升。由于高流速的黑潮水往北输运的过程中,不断与东海陆架水进行能量、质量等的交换,其流速到黑潮中部以后开始出现下降的趋势。随主轴流速下降,左右侧海平面皆出现缓慢下降或不变的特征。
     基于地面沉降数据、验潮站潮位数据和台风风暴潮相关数据,本文将2025年(峰值年)海平面预测上升值、地面沉降预测值、台风风暴潮最大增水值、天文大潮高潮值的累加作为中国东海海平面极限水位的值,基于前述海平面变化趋势相关预测结果,设置一般台风过境和强台风过境两种情景对上海地区进行淹没风险评估。结果显示,当一般台风过境时,海平面极限水位值未达到上海海堤的高度,如不发生溃堤,不会对上海地区造成较大的淹没风险。当强台风过境时,上海地区将出现漫堤的情况,几乎100%的地区将会被淹没。
Research on sea-level change focuses on the studies of the trend, spatialvariation, mechanism of impact and risk assessment of sea-level change, etc. Thepaper defines the East China Sea as a major research area to study the spatial andtemporal variation of sea level in the East China Sea, and discusses the impact ofsea-level change caused by spindle variability Kuroshio on the East China Sea. Then,taking Shanghai as an example, it analyzes the inundation risk of the coastal cityinfluenced by extreme sea-level change on the East China Sea.
     Based on the sea surface height data from satellite altimeter, tide gauge stations,the paper discusses the sea-level change multiscale cycle, the spatial distribution,and the peak variation in China Sea. It also predicts the future trends and future peakyears of the sea-level change. It is suggested that sea level change on the East ChinaSea has noticeablly seasonal and interannual trends. What’s more, it also has theperiod of30months,134months,230months, in which the30-month period maybe related to quasi two-year cycle atmospheric oscillation (QBO); the134-monthperiod is consistent with the period of sunspot; the230-month period iscorresponding to the declination angle change of the moon cycle (18.6years).
     After the spatial analysis of the sea level in the East China Sea, the sea level nearthe Yangtze River in the East China Sea waters has remained high for long, whosegrowth rate is5.45mm/a, reaching the maximum in summer and declining year afteryear. Coupled with the impact of superimpose storm surges and astronomical tide, itmay pose a threat to the safety of life and property and the ecological environmentin Yangtze River Delta and its adjacent areas.
     Based on the monthly and average sea level data of China Sea peak, the studyindicates that the rate of change in the monthly peak level is higher than the averagein the East China Sea. The sea level peak increases every year, which is mainlyembodied by the violent oscillations of sea level. Yet the main reason of theoscillation is thermal expansion of seawater caused by global warming.
     Based on Winters exponential smoothing model for trend forecasting available, future sea-level change will maintain a rising trend, and it is expected that comparedwith2006, by2015, the sea level will rise by about40to50mm, and by2030, thesea level will rise by140to150mm. From the angel of the medium and large scale,considering the sea-level change influenced by PDO, ENSO, sunspots and otherfactors, and the primary cycle and the impact of the above superimposed cycles, thesea-level change in the East China Sea can be predicted to have the next peak inaround2025.
     The East China Sea Kuroshio is an important influencing contributor to sea levelchange in the East China Sea. The paper is based on temperature, salinity, velocitydata, etc., boundary delimitation Kuroshio, extract Kuroshio axis, and research onsea-level change in response to variability Kuroshio axis. The study has suggestedthat with different seasons, the Kuroshio axis wobble has obvious and differentcharacteristics of the southern, the northern and central spindle. In summer andautumn, as the flow velocity increases, the middle part of the East China SeaKuroshio axis deviation contributes to and affects the depth of100m. As the spindlevelocity increases, the Kuroshio entrance to both the left and right side of theupward tends to rise in sea level, while sea level at the left side of the Kuroshiocentral spindle is on a declining trend, and the right side of the sea level is on the rise.As the Kuroshio with high speed flows to the north, it continuously exchanges energyand mass with the shelf water in the East China Sea, thus causing a declining speed inthe middle of the Kuroshio. With the declining speed in the main axis, the sea levelsat both sides tend to decline slowly or remain unchanged.
     Based on the ground-subsidence data, tide gauge data and tidal storm surgedata, with the paper accumulates the predicted rise of the sea level value, the groundsubsidence predictive value, the maximum surge storm values and the astronomicalhigh tide in2025(peak year) as the value of the extreme sea level in the East Chinasea. According to the previous sea-level predictions on the sea level trends, the papersets two scenarios which are the general and the strong typhoons in order to doinundated risk assessment in the Shanghai region. The results show that if a generaltyphoon hits Shanghai and the extreme sea level doesn’t reach the seawall’s height in Shanghai, it will not cause greater inundation risk to Shanghai if it doesn’t dike. If astrong typhoon sweeps Shanghai and overflowing embankment emerges, almost100%of the area will be flooded.
引文
[1] Antonov J. I., S. Levitus, and T. P. Boyer. Thermosteric sea level rise,1955-2003[J]. GeophysicalResearch Letters,2005,(32): L12602.
    [2] Antonov J.L. Steric sea level variations during1957-1994: Importance of salinity[J]. Journal ofGeophsical Research,2002,107(C12):8013.
    [3] Arnold L. Gordon CFG. Pacific decadal oscillation and sea level in the Japan/East sea[J]. Deep-SeaResearch I,2004,51:653-663.
    [4] Bangkok SoE Report,2001[EB/OL].http://www.rrcap.unep.org/pub/soe/bangkoksoe01.cfm.2010.5.27.
    [5] Bijlsma L, Bhler C N, Klein R J T, et al.Coastal zones and small islands.IPCC WGⅡ, Climatechange1995-impacts, adaptations and mitigation of climate change: science-technical analysis[R].Cambridge: Cambridge University Press,1996,289-324.
    [6] Blackmon M., B.Boville, F.Bryan,et al.The Community Climate System Model(CCSM). Bulletin ofthe American Meteorological Society,2001,82(11):2357–2376.
    [7] Braithwaite RJ, Raper, S.C.B. Glacier and Their contribution to sea level change[J]. PhysicsandChemistry of the Earth,2002,27:1445-1454.
    [8] Cabanes C, Cazenave A, and C.LeProvost. Sea level rise during past40years determined fromsatellite and in situ observations[J]. Science,2001b,294:840–842.
    [9] Cabanes C, C.Le Provost. Sea level change from Topex-Poseidon altimetry for1993-1999andpossible warming of the southern oceans[J]. Geophys. Res. Lett,2001,28:9-12.
    [10] Cazenave A, et al. Global mean sea level changes observed by TOPEX/Poseidon and ERS-1[J].Phys. Chem. Earth,1998,23(9-10):1069-1075.
    [11] Cazenave A. Present-day sea-level change observations and causes[J]. Rev Geophys,2004,42:RG3001.
    [12] Cazenave A, W. Llovel. Contemporary Sea Level Rise[J]. Science,2010,2:145-173.
    [13] Chang, P.H., and A. Isobe. A numerical study on the Changjiang diluted water in the Yellow andEast China Seas[J] J. Geophys. Res,2003,108(C9),3299, doi:10.1029/2002JC001749.
    [14] Chen J L, Chambers D P, et al. Seasonal global water mass budget and mean sea levelvariations[J]. Geophysical Research Letters,1998,25(19):3555-3558.
    [15] Chen J L, Shum C K, Wilson C R, et al. Seasonal sea level change from Topex/Poseidon observation and thermal cont ribut ion[J] J. Geodesy,2000,73:638-647.
    [16] Cheng X. Trends of Sea Level Variations in the South China Sea from Merged Altimetry Data[J].Global and Planetary Change,2007,57:371-382.
    [17] Chilingarian G V, Donaldson E C, Yen T F. Subsidence due to fluid withdrawal. Developmentsin Petroleum Science[M]. Amsterdam:Elsevier Science,1995.
    [18] Church,J.A., N.J White, R.Coleman, et al. Estimates of the regional distribution of sea level riseover the1950-2000period [J]. Climate,2004,17:2609-2625.
    [19] Church, J. A., N. J. White, L. F. Konikow, C.M.Domingues, J. G. Cogley, E. Rignot, J. M.Gregory, M. R. van den Broeke, A. J.Monaghan, and I.Velicogna. Revisiting the Earth’s sea leveland energy budgets from1961to2008[J]. Geophys. Res. Lett,2011,38: L18601.
    [20] Di Lorenzo, E., N. Schneider, K. M. Cobb, et al. North pacific gyre oscillation links oceanclimate and ecosystem change[J]. Geophys. Res. Lett,2008,35: L08607.
    [21] Daniel J. Rowlands,David J. Frame, Duncan Ackerley, et al. Broad range of2050warming froman observationally constrained large climate model ensemble[J]. Nature Geoscience,2012,3(5):256-260.
    [22] Douglas, B.C. Global sea rise: a redetermination[J]. Surveys in Geophysics,2007,18:279-292.
    [23] D.P.Chambers, C.A.Mehlhaff, T.J.Urban,and D.Fujii. Low-frequency variations in global meansea level:1950–2000[J]. Journal of Geophysical Research,2002,107(C4):3026-3035.
    [24] Felix FAVORITE and W. James INGRAHAM J. Sunspot Activity and Oceanic Conditions in theNorthern North Pacific Ocean[J]. Oceanographical society of Japan,1976,32:107-115.
    [25] Fu Lee-Lueng, Richard D.,Smith. Global ocean circulation from satellite altimetry andhigh-resolution computer simulation[J]. Bulletin of the American Meteorological Society,1996,77(11):2625-2636.
    [26] G.van der Schrier, S.L. Weber, S.S. Drijfhout, J.A. Lowe. Low-frequency Atlantic sea levelvariability[J]. Global and Planetary change,2004,43:129-144.
    [27] Gornitz V. Global coastal hazards from future sea level rise[J]. Palaeogeography,Palaeoclimatology, Palaeoecology (Global and Planetary Change Section),1991,89:379-398.
    [28] Gornitz, V. Rosenzweig and D. Hillel. Is sea level rising or falling?[J]. Nature,1994,371:481.
    [29] Guoqi Han WH. Low-frequency sea-level variability in the South China Sea and its relationshipto ENSO[J]. Theor Appl Climatol,2009,97:41-52.
    [30] Guoqi Han. Low-frequency sea-level variability in the South China Sea and Its Relationship toENSO [J]. Theor Appl Climatol,2009,97:41-52.
    [31] Han G. and W. Huang. Pacific Decadal Osicillation and sea level variability in the Bohai, Yellowand ECSS [J]. Physical Oceanography,2008,38:2772-2783.
    [32] H.Sun D. Grandstaff R. Shagam.. Land subsidence due to groundwater withdrawal: potentialdamage of subsidence and sea level rise in southern New Jersey, USA[J]. Environmental Geology,1999,37(4).
    [33] Hasanuddin Z. ABIDIN, Heri ANDREAS, Irwan GUMILAR and Mohammad GAMAL,LandSubsidence and Urban Development in Jakarta(Indonesia)[C],7th FIG Regional Conference:Spatial Data Serving People: Land Governance and the Environment–Building the Capacity,Hanoi, Vietnam,2009,10:19-22.
    [34] Hoffert, M.I., A.J.Callegari and C.T.Hsieh. The role of deep sea heat storage in the secularresponse to climate forcing[J]. J Geophys. Res,1980,85:6667-6679.
    [35] Holgate, S.J., and P.L.Woodworth. Evidence for enhanced coastal sea level rise during1990s[J].Geophys. Res. Lett,2004,31: L07305.
    [36] IPCC.Climate Change2007: The Physical Science Basis.Contribution of Working Group I to theFourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge,United Kingdom and New York, NY, USA:Cambridge University Press,2007.
    [37] IPCC. Working Group I Contribution to the IPCC Fifth Assessment Report,Climate Change2013: The Physical Science Basis: Summary for Policymakers [R/OL].[2013.10.28].http://www.climatechange2013.org/images/uploads/WGIAR5-SPM_Approved27Sep2013.pdf.
    [2013.10.28].
    [38] IPCC. Working Group I Contribution to the IPCC Fifth Assessment Report (AR5). ClimateChange2013: The Physical Science Basis. Final Draft Underlying ScientificTechnicalAssessment [R/OL].[2013.10.30]. http://www.climate change2013.org/images/uploads/WGIAR5_WGI12Doc2b_FinalDraft_All.pdf.
    [39] Ishii M., M.Kimoto, K.Sakamoto, et al. Steric sea level changes estimated from historical oceansubsurface temperature and salinity analyses [J]. Oceanography,2006,62(2):155-170.
    [40] Ishii M., M.Kimoto, and M.Kachi. Historical ocean subsurface temperature analysis with errorestimates[J]. Monthly Weather Review,2003,131:51-73.
    [41] Isoguchi, O., Kawamura, H., Kono, T.A study on winddriven circulation in the subarctic NorthPacific using TOPEX/Poseidon altimeter data[J]. Journal of Geophysical Research,1997,102:12457-12468.
    [42] James P. M. Syvitski AJK, et al. Sinking deltas due to human activities [J]. Nature Geoscience,2009,2:681-686.
    [43] J. A. Lowe et al. UK Climate Projections Science Report: Marine and Coastal Projections (MetOffice Hadley Centre, Exeter, UK,2009).
    [44] J.F.Minster AC, Y.V.Serafini,F.Mercier,M.C.Gennero,P.Rogel. Annual cycle in mean sea levelfrom Topex-Poseidon and ERS-1:inference on the global hydrological cycle[J]. Global andPlanetary Change,1999,20:57-66.
    [45] James P. M. Syvitski AJK, Irina Overeem, Eric W. H. Hutton, Mark T. Hannon,G. RobertBrakenridge, John Day, Charles V r smarty, Yoshiki Saito, Liviu Giosan and,Nicholls RJ.Sinking deltas due to human activities[J]. Nature Geoscience,2009,2:681-686.
    [46] K J Larson, H Basagaoglu, M A Marino. Predicition of optional safe ground water yield and landsubsidence in the Los Banos-Kettleman City area, California, using a calibrated numericalsimulation model[J]. Journal of Hydrology,2001,242(1-2):79-102.
    [47] K.L.Mcinnes,K.J.E.Walsh, G.D.Hubbert and T.Beer.Impact of Sea-level Rise and Storm Surgeson a Coastal Community[J]. Natural Hazards,2003,30:187–207.
    [48] L.fenoglio-Marc. Analysis and representation of regional sea-level variability from altimetry andatmospheric-oceanic data[J]. Geophys.J.Int,2001,145:1-18.
    [49] Levermann, A., A.Griesel, M.Hofmann, M.Montoya and S.Rahmstorf. Dynamic sea levelchanges following changes in the thermohaline circulation[J]. Clim. Dyn,2005,24:347-354.
    [50] Levitus S, Antonov J I, Boyer T P, et al. Warming of the world ocean [J]. Science,2000,287:2225-2229.
    [51] Levitus, S., et al. World ocean heat content and thermosteric sea level change (0-2000m),1955–2010[J], Geophys. Res. Lett,2012,39, L10603, doi:10.1029/2012GL051106.
    [52] LIU Delin LXLBZS, LI Xiguo. Multiple Time Scale Analysis of River Runoff UsingWaveletTransform for Oagujia River Basin,Yantai,China[J]. Chin.Geogra.Sci,2009,19(2):158-167.
    [53] Liu Xueyuan LY, Guo Lin, et al. Mean sea level change in East China Sea and its response toENSO[J]. Marine Science Bulletin,2009,28(5):34-42.
    [54] Lombard,A, A Cazenave, P.Y.Le Traon, et al.Contribution of thermal expansion to present-daysea-level change revisited [J]. Global and Planetary Change,2005a,47:1-16.
    [55] Lombard,A., A.Cazenave, K.DoMinh, C.Cabbanes,and R.S.Nerem. Thermosteric sea level risefor the past50year; comparison with tide gauges and inference on water mass contribute[J].Global Planetary Change,2005b,(48):303-312.
    [56] Leuliette E., R.S.Nerem, G.T.Mitchum. Calibration of Topex/Poseidon and Jason altimeter data toconstruct a continuous record of mean sea level change[J]. Mar. Geod,2004,27:79-94.
    [57] M. Ablain, A. Cazenave, S. Guinehut, et al. A new assessment of global mean sea level fromaltimeters highlights a reduction of global slope from2005to2008in agreement with in-situmeasurements [J]. Ocean Science Discussion,2009,6:31-56.
    [58] Mei Yan J-cZ, Ling Du, Lei Li, Pei-liang Li. Sea Level Variation/change and Steric Contributionsin the East China Sea[J]. Proceedings of the Sixteenth (2007) International Offshore and PolarEngineering Conference,2007,2377.
    [59] Miller, L., B.C. Douglas. Mass and volume contributions to20th century global sea level rise[J].Nature,2004,428:406-408.
    [60] Mitchum, G. T. An improved calibration of satellite altimetric heights using tide gauge sea levelswith adjustment for land motion[J]. Mar. Geod,2000(23):145-166.
    [61] Nerem, R.S. Measuring global mean sea level variations using TOPEX/POSEIDON altimeterdata [J]. Geophy.Res,1995,100(c12):25135-25151.
    [62] P. Chambers, C. A. Mehlhaff, T. J. Urban, et al. Low-frequency variations in global mean sealevel:1950–2000[J]. Journal of Geophysical Research,2002,107(C4):3026-3035.
    [63] Patrick F.Cummins,et al. Wind-driven interannual variability over the northeast Pacific Ocean[J].Deep-Sea Research I,2004,51:2105-2121.
    [64] Pattullo, J., W. Munk, R. Revelle, and E. Strong, The seasonal oscillation in sea level[J]. J Mar. Res,1995,14:88-156.
    [65] Poland J F, Davis G H. Land subsidence due to withdrawal of fluids.,1972.In: Man and hisphysical environment[A] Readings in environmental geology[G]. New York: Burgess Pub, l:77-90.
    [66] Quanlong Wei. Land subsidence and water management in Shanghai[D](Master thesis), Delft, theNetherlands,2006.
    [67] R.P.Kane DG. Periodicities in sea level changes at Stockholm[J]. Climatic Change,1992,21:77-85.
    [68] Rahmstorf. S. A new view of sea-level rise: Has the IPCC underestimated the risk of sea-levelrise [J]. Nature Reports Climate Change,2010,4(4):44-45.
    [69] Robert J., Nicholls, A.Cazenave. Sea level rise and its impact on coastal zones [J]. Science,2010,1517-1520.
    [70] Raper, S.C.B., and U.Cubasch. Emulation of the results from a coupled general circulation modelusing a simple climate model[J]. Geophysical Research Letters,1996,23:1107-1110.
    [71] Solomon S, Qin D, Manning M,Chen Z, MarquisMC, Averyt K, Tignor M, Miller HL(eds) IPCC(2007). Climate change2007: the physical science basis. Cambridge University Press, Cambridge,2007.
    [72] Senjyu, T. Spatiotemporal variability of interdecadal sea level oscillations in the North Pacific[J].J Geophys. Res,2006,111: C07022.
    [73] Shi Yafeng, Xie Zhiren, Ji Zixiu, et al. Prediction and prevention of the impacts of sea level riseon the Yangtze River Delta and its adjacent areas[J]. Science in China (series D),2000,43:412-422.
    [74] Stammer D. Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surfacetopography observations[J]. J Geophys Res,1997,102(C9):20987-2109.
    [75] Su J L, Guan B X, Jiang J Z.The Kuroshio, Part1, Physical Features[J]. Oceanogr Mar Biol AnnuRev,1990,28:11-71.
    [76] T Ngo-Duc, K Laval, J Polcher, A Lombard, A. Cazenave. Effects of land water storage onglobal mean sea level over the past half century[J]. Geophys. Res. Lett,2005,32: L09704.
    [77] T.M. Qba. interannual variability in the mid-and low-latitude Western North Pacific.[J]. J Phys.Oceanogr,1992,22:1062-1079.
    [78] Tabata, S., B. Thomas, and D. Ramsden. Annual and interannual variability of steric sea level along line P in the northeast Pacific Ocean[J]. J Phys. Oceanogr,1986,16:1378-1398.
    [79] Tang Renyou et al.Biochemical behaviour of nitrogen and phosphate in the Changjiang Riverestuary and its adjacent sea areas[J]. The Biogeochemical Research in the Changjiang RiverEstuary and its Adjacent Sea Areas,1992,322-334.
    [80] United Nation.Building the resilience of nations and communities to disasters:Hyogo framework for action2005-2015[J].Hyogo:World Conference on Disaster Reduction,2005,36(3):45-58.
    [81] Van Hasselt J P. Reservoir compaction and surface subsidence resulting from oil and gasproduction[J]. Geol. Mijnbouw,1992,71:107-118.
    [82] Vivier F, K. A. Kelly, and L.Thompson. Contributions of wind forcing, waves, and surfaceheating to sea surface observations in the Pacific Ocean[J]. J Geophys Res,1999,104(C9):20767-20788.
    [83] Vivier F, K.A.Kelly, M.Harisendy. Causes of large-scale sea level variations in the SouthernOcean: Analyses of sea level and a barotropic model[J]. Geophys Res,2005,110: C09014.
    [84] W.T.Pfeffer, J.T.Harper, S.O’Neel, Kinematic Constraints on Glacier Contributions to21st-Century Sea-Level Rise[J]. Science,2008,9(321):1340-1343.
    [85] Warrick, R. A., et al., Changes in sea level, in Climate Change1995: The Science of Climate Change, edited by J. T. Houghton et al., Cambridge Univ. Press, New York,1996,359-405.
    [86] White N J, Church J A, Gregory J M. Coastal and Global Averaged Sea Level Rise for1950to2000[J]. Geophys Res Lett,2005,32(1): L01601.
    [87] Wunsch C, Ponte R. M., Heimbach P. Decadal trends in sea level patterns:1993-2004[J]. Journalof Climate,2007,20(24):5889-5911.
    [88] Xue Yuqun, Wu Jichun, Zhang Yun, Shujun, Shi, et al. Simulation of regional land subsidence inthe southernYangtze Delta[J]. Science in China Series D: Earth Sciences,51(6):808-825.
    [89] Yan, C-X, J. Zhu, and J.-P. Xie, An ocean reanalysis system for the joining area of Asia andIndian-Pacific ocean[J]. Atmos. Oceanic Sci. Lett,2010,3:81-86.
    [90] Zuo Juncheng, Zhang Jianli, Du Ling, et al. Global sea level change and thermal contribution[J].Journal of Ocean University of China,2009,8(1):1-8.
    [91] Zuo Juncheng, Qian-qian HE, Chang-lin CHEN, Mei-xiang CHEN, Qing XU. Sea levelvariability in East China Sea and its response to ENSO[J]. Water Science and Engineering,2012,5(2):164-174.
    [92] Zhang Yong-Chui, Zhang Li-Feng, Wang Ye-Gui. Interannual sea level variability in the northpacific ocean and its mechanisms[J]. Chinese Journal of Geophysics,2010,53(1):54-63
    [93] Willian J P.自然灾害风险评价与减灾政策(向立云等译)[M].北京:地震出版社,1993,28-166.
    [94]曹越男,左军成,杜凌,等.南海海面高度季节变化规律及机制探讨[J].中国海洋大学学报,2007,37(sup2):31-38.
    [95]陈长霖,左军成,等. IPCC气候情景下全球海平面长期趋势变化[J].海洋学报,2012,34(1):29-38.
    [96]陈崇希.关于地下水开采引发地面沉降灾害的思考[J].水文地质工程地质,2000,27(1):45-48.
    [97]陈函馨.以系统动力学建立感潮河川水理与水质模式[D].台湾:台湾中山大学硕士论文,2002.
    [98]陈满荣,王少平.上海城市风暴潮灾害及其预测[J].灾害学,2000,15(3):26-29.
    [99]陈美香.北太平洋、东海黑潮及黑潮延伸体海域海平面变化机制研究[D].中国海洋大学,2009.
    [100]崔振东,唐益群.国内外地面沉降现状与研究.西北地震学报[J].2007,29(3):275-292.
    [101]杜凌.中国海典型海域潮波研究与全球海平面变化规律研究[D].中国海洋大学,2005.
    [102]冯利华,李凤全.基于最大熵原理的灾害损失分析[J].数学的实践与认识,2005,35(8):73-77.
    [103]冯利华,赵浩兴,瞿有甜.灾害等级的综合评价[J].灾害学,2002,17(4):16-20.
    [104]冯利华.灾害等级的灰色聚类分析[J].自然灾害学报,1997,6(1):14-18.
    [105]冯利华.灾害等级研究进展[J].灾害学,2000,15(3):72-76.
    [106]冯利华.灾害损失的定量计算[J].灾害学,1993,8(2):17-19.
    [107]高建国.一元灾度表的建立及其依据.见:灰害与社会[M].北京:地震出版社,1990,141-147.
    [108]高军省,张代青.基于小波分析的区域水资源总量变化的周期特性研究[J].水资源与水工程学报,2009,12,20(6):5-8.
    [109]郭炳火.中国近海及邻近海域海洋环境[M].北京:海洋出版社,2004,79.
    [110]龚士良.上海城市建设对地面沉降的影响[J].中国地质灾害与防治学报,1998,(2):108-111.
    [111]龚士良.上海地下水流场变化及其对地面沉降发展的影响[J].水资源与水工程学报,2009,20(3):1-6.
    [112]顾小丽,李培良.太平洋海平面变化特征及影响因素分析[J].海洋学报,2009,31(1):28-36.
    [113]顾玉荷.长江冲淡水转向原因的探讨[J].海洋与湖沼,1985,16(5):354-363.
    [114]管秉贤.黑潮—一支世界著名的大洋强流[J].海洋科学,1978,(2):1-6.
    [115]国家海洋局.中国海平面公报[R].2009-2012.
    [116]何朗,周薇,张应碧,赵韫.未来海平面上升的预测及影响.数学杂志[J],2008,28(5):555-558.
    [117]胡琛,王彬.基于最大熵原理的分布模型[J].山东理工大学学报,自然科学版,2007,21(6):87-90.
    [118]胡德宝,龚茂珣,孔亚珍.强风暴对上海地区影响研究[J].华东师范大学学报,自然科学版,2005,(5-6):177-182.
    [119]胡珀,侯一筠,乐肯堂.东海黑潮及琉球群岛以东海流研究进展[J].海洋科学集刊,2007,(5):28-34;
    [120]胡瑞金,刘秦玉.热带太平洋海平面高度年变化与季节内变化特征[J].海洋与湖沼,2002,33(3):303-313.
    [121]黄崇福.自然灾害风险分析的信息矩阵方法[J].自然灾害学报,2006,15(1):1-10.
    [122]黄慧,温家洪,司瑞杰,等.自然灾害风险评估国际计划述评Ⅰ-指标体系[J].灾害学,2008,23(2):112-116.
    [123]黄慧,温家洪,司瑞杰,等.自然灾害风险评估国际计划述评Ⅱ-评估方法[J].灾害学,2008,23(3):96-101.
    [124]黄立人.海面变化趋势的动态预测[J].海洋通报,1992,10(1):1-6.
    [125]黄立文,吴国雄,宇如聪,等.海洋风暴形成的一种动力学机制[J].气象学报,2001,59(6):674-684.
    [126]琚彤军,石辉,胡庆.延安市近50年来降水特征及趋势变化的小波分析研究[J].干旱地区农业研究,2008,26(4):416-418.
    [127]康建成,王国栋,朱炯等.东海黑潮区温度的月际变化特征[J].海洋与湖沼,2012,5(43):877-883.
    [128]乐肯堂.我国风暴潮灾害及防灾减灾战略[J].海洋预报,2002,19(1):9-15.
    [129]乐肯堂.关于长江冲淡水路径的若干问题[J].海洋科学集刊,1986,27:221-228.
    [130]李克让.中国近海及西北太平洋气候[M].北京:海洋出版社,1993,1-640.
    [131]李坤平,房宪英.海平面变化对黑潮变异的响应[J].黄渤海海洋,1993,11(4):30-37.
    [132]李立,许金电,蔡榕硕.20世纪90年代南海海平面的上升趋势:卫星高度计观测结果[J].科学通报,2002,47(1):59-62.
    [133]李杰.海平面变化及其对东中国海风暴潮的影响[D].中国海洋大学硕士论文,2011.
    [134]李永平,秦曾灏,端义宏.上海地区海平面上升趋势的预测和研究[J].地理学报,1998,53(5):393-403.
    [135]李祚泳,邓新民.自然灾害的物元分析灾情评估模型初探[J].自然灾害学报,1994,3(2):28-33.
    [136]林葵,汤毓祥,郭炳火.吐噶喇海峡黑潮流速结构和流量的研究[J].海洋与湖沼,1995,26(3):247-253;
    [137]林丽茹,胡建宇.太平洋东南海域海面高度的季节及年际变化特征[J].海洋科学,2005,29(2):37-42.
    [138]刘罗曼.时间序列分析中指数平滑法的应用[J].沈阳师范大学学报(自然科学版)[J].2009,27(4):230-235.
    [139]刘雪源,刘玉光,郭琳,等.30°N两侧东海海平面的低频变化及其与ENSO的关系[J].大地测量与地球动力学,2009,29(4):55-63.
    [140]刘雪源,刘玉光,郭琳,等.渤黄海海平面的变化及其与ENSO的关系[J].海洋通报,2009,28(5):34-42.
    [141]刘燕华,李距章,赵跃龙.中国近期自然灾害程度的区域特征[J].地理研究,1995,14(3):14-25.
    [142]刘勇刚,袁耀初.1992年东海黑潮的变异[J].海洋学报,1998,20(6):1-11.
    [143]陆人骥.中国历代灾害性海潮史料[M].北京:海洋出版社,1984,295.
    [144]卢永金.上海风暴潮防御的形势与对策[J].上海水务,2008,2233(4):6~10.
    [145]马宗晋.自然灾害与减灾[M].北京:地震出版社,1990.
    [146]孟菲,康建成,李卫江,等.50年来上海市台风灾害分析及预评估[J].灾害学,2007,22(4):70-76.
    [147]苗育田,俞善庆,乔荣珍. E断面黑潮流速结构变异特征的初步分析[J].1984,6(4):423-432.
    [148]欧素英,杨清书.人工神经网络模型在航道、港口潮水位预报中的应用[J].水利水运工程学报,2008,6(2):67-70.
    [149]乔新,陈戈.基于11年高度计数据的中国海海平面变化初步研究[J].海洋科学,2008,32(1):60-64.
    [150]秦曾灏,李永平.上海海平面变化规律及其长期预测方法的初探[J].海洋学报,1997,19(1):1-7.
    [151]任鲁川.灾害损失定量评估的模糊综合评判方法[J].灾害学,1996,11(4):5-10.
    [152]容增瑞,刘玉光,陈满春,等.全球和南海海平面变化及其与厄尔尼诺的关系[J].海洋通报,2008,27(1):128.
    [153]上海地质矿产志[EB/OL]. http://www.shtong.gov.cn/node2/node2245/node4502/index.html,2010.5.20.
    [154]上海市房屋土地资源管理局.上海市2007年度地质勘查成果工作报告[R].2008,1.
    [155]上海市水务局防汛预警[EB/OL]. http://www.shanghaiwater.gov.cn,2010.5.20.
    [156]上海市水资源公报[EB/OL]. http://swj.sh.gov.cn/web/sw/2007_2_1.jsp,2010.5.25.
    [157]上海市统计年鉴(2009)[EB/OL]. http://www.stats-sh.gov.cn/2004shtj/tjnj/tjnj,2009.htm,2010.5.20.
    [158]沈孝宇,孙悻文,周国云,等.宁波城市地面沉降物理数学模型及沉降预测[J].地球科学-中国地质大学学报,1989,14(2):135-144.
    [159]施雅风,黄鼎成,陈泮勤.中国自然灾害灾情分析与减灾对策[M].武汉:湖北科学技术出版社,1992,259-285.
    [160]施雅风,朱季文,谢志仁,等.长江三角洲及毗连地区海平面上升影响预测与防治对策[D].中国科学(D辑),2000,30(3):225-232.
    [161]首份风暴潮风险评估图问世[N].中国海洋报,2008-12-9.第1版,第1751期.
    [162]孙峥,庄丽,冯启民.风暴潮灾情等级识别的模糊聚类分析方法研究[J].自然灾害学报,2007,16(4):49-54.
    [163]孙湘平,金子郁雄.1989~1991年黑潮的变异[M].黑潮调查研究论文选(五).北京:海洋出版社,1993,52-68.
    [164]孙湘平.1986-1988年黑潮的变异[J].海洋与湖沼,1991,22(6):524-527.
    [165]孙湘平.东海黑超表层流路(途径)的初步分析[C].黑潮调查研究论文集,北京:海洋出版社,1987,1-14.
    [166]孙湘平.中国近海区域海洋[M].北京:海洋出版社.2008,157-158.
    [167]孙湘平,金子雄郁.黑潮大弯曲与厄尔尼诺[J].海洋通报,1992,11(1):7-11.
    [168]孙振凯,毛国敏,邹其嘉.自然灾害灾情划分指标研究[J].灾害学,1994,9(2):84-87.
    [169]孙峥,庄丽,冯启民.风暴潮灾情等级识别的模糊聚类分析方法研究[J].自然灾害学报,2007,16(4):49-54.
    [170]汤毓祥.东海黑潮区域性变异的分析[J].海洋学报,1995,17(4):22-29;
    [171]王博,崔春光,彭涛,等.暴雨灾害风险评估与区划的研究现状与进展[J].暴雨灾害,2007,26(3):281-286.
    [172]王保栋.长江冲淡水的扩展及其营养盐的输运[J].黄渤海海洋,1998,16(2):41-47.
    [173]王国栋,康建成, Han Guoqi,等.中国东海海平面变化多尺度周期分析与预测[J].地球科学进展,2011,26(6):104-110.
    [174]王海瑛,许厚泽,王广运.中国近海1992~1998海平面变化监测与分析[J].测绘学报,2000,29:32-37.
    [175]王惠群,袁耀初.东海环流的三维诊断、半诊断及预报计算[J].海洋学报,1997,19(4):15-25.
    [176]王天顺.日本海海平面年际变化及其对ENSO的响应[D].中国海洋大学博士学位论文,2009.
    [177]王喜年. SLOSH模式的进一步应用—西南佛罗里达风暴潮图集[J].海洋预报,1987,s1期.
    [178]王欣睿,孙波涛,陈强,等.0606号台风“派比安”风暴潮特征分析与总结[J].海洋预报,2008,25(2):99-105.
    [179]王正涛,李建成,晁定波,等.利用卫星测高数据研究海面高月异常变化与厄尔尼诺现象的相关性[J].武汉大学学报·信息科学版,2004,29(8):700-703.
    [180]王智济.地面沉降的工程地质研究[J].地球科学-中国地质大学学报.1986,11(2):199-206.
    [181]王珍珍,钱程程,陈戈.高度计观测的全球海平面时空变化特征[J].地理空间信息,2011,9(5):72-77.
    [182]魏子新,王寒梅,吴建中,等.上海地面沉降及其对城市安全影响[J].上海地质,2009,(1):34-39.
    [183]伍伯瑜.黑潮和中国近海环流[J].台湾海峡,1991,10(10):25-31.
    [184]吴志彦.20世纪50年代以来东海黑潮水文要素分布特征及其与我国气候的关系[D].南京:南京信息工程大学硕士论文,2008.
    [185]吴慧,陈德明,吴胜安,等.灰色关联分析在热带气旋灾害等级评估中的应用[J].热带作物学报,2009,30(2):244-248.
    [186]吴涛,康建成.全球海平面变化研究新进展[J].地球科学进展,2006,21(7):730-737.
    [187]肖志刚,王亮,田丽芳.小波分析在空间数据处理中的应用研究[J].测绘科学,2005,30(1):57-59.
    [188]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.
    [189]徐珊珊,左军成,陈美香.1993-2006年北太平洋海平面变化特征及影响因素[J].中国海洋大学学报.2010,40(9):24-32.
    [190]许飞琼.灾级及其释义[J].灾害学,1997,12(1):16-18.
    [191]许世远,王军,石纯,等.沿海地区自然灾害风险研究[J].地理学报,2006,6611(2):127~138.
    [192]薛禹群,张云,叶淑君,等.2003.中国地面沉降需要解决的几个问题[J].第四纪研究,23(6):585-593.
    [193]严学新,龚士良.2002.海城区建筑密度与地面沉降关系分析[J].水文地质工程地质,29(6):21-25.
    [194]颜梅.全球海平面变化的热力学机制研究[D].中国海洋大学博士毕业论文,2008.
    [195]杨春辉,郎咸瑞,许春艳,等.海平面季节变化及比容贡献[J].海洋测绘,2011,31(1):47-50.
    [196]杨桂山.中国沿海风暴潮灾害的历史变化及未来趋向[J].自然灾害学报,2000,9(3):23-30.
    [197]杨华庭,田素珍.中国海洋灾害四十年资料汇编(1949-1990)[M].北京:海洋出版社,1993.
    [198]杨仕升.自然灾害等级划分及灾情比较模型探讨[J].自然灾害学报,1997,6(1):8-13.
    [199]杨新安,程军,王红霞.2000.上海地面沉降及其防治研究[J].上海铁道大学学报,21(8):71-75.
    [200]殷杰.中国沿海台风风暴潮灾害风险评估研究[D].上海:华东师范大学博士论文,2011.
    [201]殷杰,尹占娥,于大鹏,等.基于情景的上海台风风暴潮淹没模拟研究[J].地理科学,2013,33(1):110-115.
    [202]殷杰,尹占娥,许世远.上海市灾害综合风险定量评价研究[J].地理科学,2009,2299(3):450-454.
    [203]叶雯,刘美南,陈晓宏.基于模式识别的台风风暴灾情等级评估模型研究[J].海洋通报,2007,23(4):65-70.
    [204]游景炎.渤海湾风暴潮的时空分布[J].河北气象,1995,14(4):1-6.
    [205]于非,藏家业,郭炳火,等.黑潮水入侵东海陆架及陆架环流的若干现象[J].海洋科学进展,2002,20(3):21-28.
    [206]俞肇元,袁林旺,谢志仁,等.基于SSA和AR模型的海面变化预测试验[J].海洋湖沼通报,2007(4):14-20.
    [207]袁耀初,苏纪兰.1995年以来我国对黑潮及琉球海流的研究[J].科学通报,2000,45(22):2353-2356.
    [208]袁耀初,潘子勤,金子郁雄,等.东海黑潮的变异与琉球群岛以东海流.黑潮调查研究论文选(五)[M].北京:海洋出版社,1993,279-297.
    [209]詹金刚,王勇,柳林涛.中国近海海平面季节尺度变化的时频分析[J].地球物理学报,2003,46(1):36-41.
    [210]詹金刚,王勇,许厚泽,等.我国近海1992~2006年海平面变化的小波分析[J].测绘学报,2008,37(4):438-443.
    [211]张波,虞朝晖,孙强,等.系统动力学简介及其相关软件综述[J].环境与可持续发展,2010(2):1-4.
    [212]张阿根,魏子新.中国地面沉降[M].上海:上海科学技术出版社,2005.
    [213]张承旺,侯淑梅,孙忠欣.“070304”渤海特大风暴潮的成因分析[J].山东气象,2007,(2):25-27.
    [214]张俊香,李平日,黄光庆.新奥尔良飓风灾难与华南沿海台风暴潮[J].热带地理,2006,26(3):218-222.
    [215]张俊香,李平日,黄光庆,等.基于信息扩散理论的中国沿海特大台风暴潮灾害风险分析[J].热带地理,2007,27(1):11-14.
    [216]张立凤,吕庆平,张永垂.北太平洋涡旋振荡研究进展[J].地球科学进展,2011,26(11):1143-1149.
    [217]张文婷,张行南,刘永志,等.风暴潮洪水风险图制作研究[J].灾害学,2009,24(4):35-39.
    [218]张绪东,吴德星,罗义勇敢.流核位置和流量变化对东海黑潮锋面弯曲影响的研究[J].海洋预报,2004,21(1):9-19.
    [219]张蕴斐,张占海,吴辉碇,等.黑潮环流的数值模拟[J].海洋学报,2003,25(3):120-128.
    [220]赵阿兴,马宗晋.自然灾害损失评估指标体系的研究[J].自然灾害学报,1993,2(3):1-6.
    [221]赵保仁.长江冲淡水的转向机制问题[J].海洋学报,1991,13(5):600-609.
    [222]赵庆良,许世远,王军,等.沿海城市风暴潮灾害风险评估研究进展[J].地理科学进展,2007,26(5):32-40.
    [223]中国国家海洋局.中国海洋灾害公报[EB/OL],2009-2010.
    [224]钟永光,贾晓菁,李旭,等.系统动力学[M].北京:科学出版社(第一版),2009.
    [225]朱建荣,沈焕庭,秦曾灏.海洋对热带气旋响应的一种改进模式[J].热带海洋,1995,14(3):44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700