用户名: 密码: 验证码:
广义模糊矩阵若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广义模糊矩阵是模糊数学的重要组成部分,它能广泛应用于不同的领域,如切换电路的设计、自动机理论、图论、信息系统、聚类分析、复杂系统的建模、动态编程及决策理论,故学者们视广义模糊矩阵是最为重要的研究课题之一。本学位论文研究了广义模糊矩阵中几个常见且重要的问题。全文总共有七章,主要研究工作分五个部分。
     第一部分讨论了一般广义模糊矩阵幂序列性质。首先对一般广义模糊矩阵的幂的收敛性进行了探讨,其中一些矩阵幂的收敛指数比以往研究的收敛指数要低,起到了降阶的作用。接着利用伴随矩阵研究了广义模糊矩阵幂序列性质,其中所得的一些成果是对以往相应成果的推广。最后引进特殊算子后,研究了广义模糊矩阵幂的组合性质,从而将以往相关的重要结论推广到了斜代数上。
     第二部分研究了广义模糊矩阵的传递性。传递矩阵是广义模糊矩阵中的一类重要的典型阵。传递矩阵代表了传递关系,而传递关系在聚类分析、信息检索、优化等领域都有很重要的应用。广义模糊矩阵的传递闭包也能广泛应用于交通网络、模糊控制、经济管理、模糊聚类分析、计算机科学技术及稳定性。故广义模糊矩阵的传递性引起了很多学者的重视。第二部分首先在分配格上,定义了几类特殊的传递阵,并研究了其性质,进而丰富了典型传递阵的研究内容。接着讨论了广义传递阵幂的收敛性,其中一些主要结论是对以往相关结论的完善和改进,并将有关成果推广到了斜代数及路代数上。然后在分配格及斜代数上完善了广义模糊矩阵的传递闭包的性质及传递闭包的算法,并将有关成果推广到了路代数上。最后将广义模糊传递阵的构造及规则形状问题中所得的一些重要结论推广到了斜代数及路代数上。
     第三部分研究了广义模糊矩阵的幂零性。幂零矩阵是广义模糊矩阵中的另一类重要的典型阵。幂零矩阵可用来表示非循环图,而非循环图能用来代表一致性,且更能表示优先关系,故对广义模糊矩阵中的幂零阵的研究是很有价值的。第三部分一方面在路代数上研究了矩阵的幂零性,并完善了对幂零指数的研究,其中所得的一些结论是对以往相应成果的推广。另外,通过对以往矩阵幂零性的归纳总结,定义了一类特殊幂零阵――圈可控阵,并研究了圈可控阵的性质,其中包括用图论的知识去研究圈可控阵的表达式,所取得的一些成果改进了关于幂零阵表达式的已有结论。
     第四部分研究了广义模糊矩阵的行列式及可逆性问题。首先将广义模糊矩阵行列式的相关重要成果推广到路代数上。最后完善了路代数上带有周期的矩阵的可逆性问题的研究。
     第五部分研究了广义模糊矩阵的特征问题。在完全完备分配格上,利用拟基刻画了特征值的特征向量子格,从而完善了特征问题在格上的研究。
Generalized fuzzy matrix is an important part in the theory of fuzzy mathematics anduseful in diverse areas such as design of switching circuits, automata theory, graph theory,information systems, clustering, complex system modeling, dynamical programming anddecision theory. Consequently, generalized fuzzy matrix is one of the most focused prob-lems in fuzzy mathematics. This doctoral dissertation studies several problems which areusually important in generalized fuzzy matrices. This paper consists of five parts withseven chapters:
     Part1is to discuss the properties of powers of commonly generalized fuzzy matrices.Firstly, the convergence for powers of commonly generalized fuzzy matrices is discussed.The convergent index of some studied matrices is smaller than previous considered index.Therefore these matrices here play the role of reducing order. Next some properties ofpowers of generalized fuzzy matrices are established through adjoint matrix, and someresults obtained generalize and develop the corresponding results in previous literatures.At last, by introducing special operator, some properties of compositions of generalizedfuzzy matrices are given, thus some corresponding important results are extended to in-clines.
     Part2is devoted to investigating the transitivity of generalized fuzzy matrices. Tran-sitive matrix is an important type of generalized matrices which represent transitive re-lation. Transitive relation plays an important role in clustering, information retrieval,preference, and so on. The transitive closure of a generalized matrix is also widely usedfor traffic network, fuzzy control, economic management, fuzzy clustering analysis, com-puter technology and reliability. Therefore, the transitivity problems of generalized matri-ces have been discussed by many authors. In part two, several special kinds of transitivematrices are firstly defined over distributive lattices, and some properties of these transi-tive matrices are obtained. These types of transitive matrices aim at enrich research ontransitivity of lattice matrices. Then, the convergence for powers of generalized transitivematrices is considered. Some results contained here perfect and improve the correspond-ing results in previous literatures. And, furthermore, these obtained results are generalizedto inclines and path algebras. Next, some properties and the algorithm of the transitive closure of generalized fuzzy matrices are perfected over distributive lattices and inclines.Also, some results established are extended to path algebras. Finally, some properties ofcompositions and the issue of the canonical form of generalized transitive matrices areextended to inclines and path algebras.
     Part3is to study the nilpotency for powers of generalized fuzzy matrices. Nilpotentmatrices are another important typical matrices of generalized matrices which representacyclic graphs. Acyclic graphs are used to represent consistent systems and are importantin the representation of precedence relations. Then, the nilpotent matrix of generalizedfuzzy matrices is valuable. In part3, the nilpotency for powers of matrices is concerned,and the nilpotent index is completed over path algebras. Some results established heregeneralize the corresponding results in the previous literatures. In addition, the authorpresent the definition of the cycle controllable matrix, which is an interesting inductionand generalization of studied nilpotent matrices. Furthermore, the paper gives some prop-erties for cycle controllable matrices, which include the expressions of cycle controllablematrices in terms of graph-theory. The results proposed here improve some known resultsabout the expressions of nilpotent matrices.
     Part4is about the studies of the determinant and invertibility of generalized fuzzymatrices. In this paper, the author firstly extend some important results on the determi-nant of generalized fuzzy matrices to the matrices over a path algebra. In the end, thisdissertation perfects the invertibility of a matrix with a period over a path algebra.
     Part5is to study the eigen problem of generalized fuzzy matrices. In completeand completely distributive lattices, the aim of the present paper is to characterize theeigenspace of each eigenvalue by using the simulated basis, so as to improve the correla-tive theory of eigen problem.
引文
[1] L.A. Zadeh. Fuzzy sets[J]. Information and Control,1965,8:338-353
    [2] M.G. Thomason. Convergence of powers of a fuzzy marix[J]. Journal of MathematicalAnalysis and Applications,1977,57:476-480
    [3] K. Cechl′arova′. On the powers of matries in bottleneck/fuzzy algebra[J]. Linear Algebraand its Applications,1996,246:97-111
    [4] Z.T. Fan, D.F. Liu. On the oscillating powers sequence of a fuzzy matrix[J]. Fuzzy Sets andSystems,1998,93:75-85
    [5] J.X. Li. Periodicity of powers of fuzzy matrices (finite fuzzy relations)[J]. Fuzzy Sets andSystems,1992,48:365-369
    [6] J.X. Li. An upper bound on indices of finite relations[J]. Fuzzy Sets and Systems,1992,49:317-321
    [7] H. Hashimoto. Convergence of powers of a fuzzy transitive matrix[J]. Fuzzy Sets and Sys-tems,1983,9:153-160
    [8] R.Y. Zhu. Convergence of powers of a fuzzy symmetric matrix[J]. Fuzzy Mathematics,1984,3:45-49
    [9] W. Kolodziejczyk. Convergence of powers of s-transitive matrices[J]. Fuzzy Sets and Sys-tems,1988,26:127-130
    [10] J.X. Li. Some results on the nilpotent fuzzy matrices[J]. Fuzzy systems and Mathematics,1989,1:52-55
    [11] M. Gavalec. Periods of special fuzzy matrices[J]. Tatra mountains mathematical publlica-tions,1999,16:47-60
    [12] J.X. Li. Controllable fuzzy matrices[J]. Fuzzy Sets and Systems,1992,45:313-319
    [13] J.X. Li. Convergence of powers of controllable fuzzy matrices[J]. Fuzzy Sets and Systems,1994,62:83-88
    [14]范周田.模糊矩阵幂序列理论与FBAM的动态分析[D].北京:清华大学,1999,31-32
    [15] Z.T. Fan, D.F. Liu. Convergence of the power sequence of a nearly monotone increasingfuzzy matrix[J]. Fuzzy Sets and Systems,1997,88:363-372
    [16] Z.T. Fan, D.F. Liu. On the power sequence of a fuzzy matrix convergent power sequence[J].Journal of Applied Mathematics and Computing,1997,4:147-165
    [17] Z.T. Fan. On the convergence of a fuzzy matrix in the sence of triangular norms[J]. FuzzySets and Systems,2000,109:409-417
    [18] X. Jiang, Z.T. Fan. The graph-theoretical approach of powers sequence of lattice matrix[D].BeiJing: Beijing University Of Technology,2007,1-40
    [19] Y.J. Tan. On the powers of matrices over a distributive lattice[J]. Linear Algebra and itsApplications,2001,336:1-14
    [20] K. Cechla′rova′. Powers of matrices over distributive lattices―a review[J]. Fuzzy Sets andSystems,2003,138:627-641
    [21] J.T. Zhou. On the convergence of lattice matrices in the∨∧composition[J]. Journal ofMathematics,2005,25(4):379-382.
    [22] S.C. Han, H.X. Li. Indices and periods of incline matrices[J]. Linear Algebra and its Ap-plications,2004,387:143-165.
    [23] J.S. Duan. The transitive closure, convergence of powers and adjoint of generalized fuzzymatrices[J]. Fuzzy Sets and Systems,2004,145:301-311
    [24] Y.J. Tan. On generalized fuzzy matrices with periods[J]. Fuzzy Sets and Systems,2011,172:87-103
    [25] D. Dubois, H. Prade. Fuzzy Sets and Systems: Theory and Applications[M]. New York:Academic Press,1980,30
    [26] J. A. Goguen. L-fuzzy sets[J]. Journal of Mathematical Analysis and Applications,1967,18:145-174
    [27] A. Kaufmann. Introduction to the Theory of Fuzzy Subsets[M]. New York: AcademicPress,1975,50
    [28] S.V. Ovchinnikov. Structure of fuzzy binary relations[J]. Fuzzy Sets and Systems,1981,6:169-195
    [29] L.A. Zadeh. Similarity relations and fuzzy orderings[J]. Information Sciences,1971,3:177-200
    [30] V. Tahani. A fuzzy model of document retrieval systems[J]. Information Processing Man-agement,1976,12:177-187
    [31] S. Tamura, S. Higuchi, K. Tanaka. Pattern classification based on fuzzy relations[J]. IEEETransictions on Systems, Man, and Cybernetics,1971,1:61-66
    [32] S.H. Zhang, M.Y. Chen, Y.X. Song, et al.. Fuzzy random analysis of the reliability of net-work[J]. Journal of Huazhong University of Science and Technology (in chinese),2000,28:83-84,87
    [33] F.A. Deng, S.Y. Liu. Application of fuzzy concept networks in fault diagnosis[J]. Controland Decision (in chinese),2001,16:834-835,839
    [34] L.H. Zhou, L.Z. Wang. Algorithms for mining interrelations between objects in largedatasets[J]. Computer Engineering and Applications (in chinese),2002,38(s):192-195,197
    [35] Z.L. Shen. Fuzzy cluster for econonic problem[J]. Pure and Applied Mathematics (in chi-nese),1996,12:123-128
    [36] K.H. Kim. Boolean Matrix Theory and Applications[M]. New York: Marcel Dekker,1982,53-54
    [37] H. Hashimoto. Canonical form of a transitive fuzzy matrix[J]. Fuzzy Sets and Systems,1983,11:157-162
    [38]王鸿绪.关于F-方阵的收敛性[J].北京工业大学学报,1984,22:81-84
    [39] W. Kolodziejczyk. Canonical form of a strongly transitive fuzzy matrix[J]. Fuzzy Sets andSystems,1987,22:297-302
    [40] W. Kolodzicjczyk. Convergence of powers of s-transitive fuzzy matrices[J]. Fuzzy Sets andSystems,1988,26:127-130
    [41] X. Xian. An algorithm for calculating fuzzy transitive closure[J]. Fuzzy Math,1985,5:71-73
    [42] S. Kirkland, N.J. Pullman. Boolean spectral theory[J]. Linear Algebra and its Applications,1992,175:177-190
    [43] M.P. Zhou, Y.J. Tan. An open problem on incline matrices[J]. Journal of Fuzhou University(in chinese),2006,34:313-315
    [44] Z.T. Fan, D.F. Liu. On the power sequence of a fuzzy matrix(111)[J]. Fuzzy Sets and Sys-tems,1998,99:197-203
    [45] Y.D. Gu, W.B. Liu, F.Z. Fan. On the k-transitive fuzzy matrix[J]. Journal of Ocean Univer-sity of Qingdao (in chinese),2000,30(4):718-722
    [46] Y.D. Gu, W.B. Liu, H.C. Sun. The k-general transitivity of controllable matrix[J]. FuzzySystems and Mathematics ((in chinese)),2001,15(1):85-88
    [47] W.B. Liu, Y.D. Gu, W.Y. Chen. K-strong transitive fuzzy matrices[J]. Fuzzy Systems andMathematics (in chinese),2002,16(1):36-39
    [48] Y.J. Tan. On compositions of lattice matrices[J]. Fuzzy Sets and Systems,2002,129:19-28
    [49] Y.J. Tan. On the transitive matrices over distributive lattices[J]. Linear Algebra and its Ap-plications,2005,400:169-191
    [50] C.G. Hao. Canonical form of strongly transitive matrices over lattices[J]. Fuzzy Sets andSystems,1992,45:219-222
    [51] H. Hashimoto. Transitivity of generalized fuzzy matrices[J]. Fuzzy Sets and Systems,1985,17:83-90
    [52] H. Hashimoto. Transitivity of fuzzy matrices under generalized connectedness[J]. FuzzySets and Systems,1989,29:229-234
    [53] X.T. Peng. A property of matrices over ordered sets[J]. Fuzzy Sets and Systems,1986,19:47-50,
    [54] F. Harary. On the consistency of precedence matrices[J]. Journal of the ACM,1960,7:255-259
    [55] W. Kolodziejczyk. Orlovsky‘s concept of decision-making with fuzzy preference relation-Further results[J]. Fuzzy Sets and Systems,1986,19:11-20
    [56] S.A. Orlovsky. Decision-making with a fuzzy preference relation[J]. Fuzzy Sets and Sys-tems,1978,1:155-167
    [57] H. Hashimoto. Reduction of a nilpotent fuzzy matrix[J]. Information Science,1982,27:223-243
    [58] C.C. Harner, R.C. Entringer. Arc colorings of digraphs[J]. Journal of Combinatorial Theory,1972, Ser.B13:219-225
    [59] Y.Y. Lur, C.T. Pang, S.M. Guu. On nilpotent fuzzy matrices[J]. Fuzzy sets and systems,2004,145:287-299
    [60] Y.Y. Lur, C.T. Pang, S.M. Guu. On simultaneously nilpotent fuzzy matrices[J]. Linear Al-gebra and its Application,2003,367:37-45
    [61] K.L. Zhang. On the nilpotent matrices over L01lattices[J]. Fuzzy Sets and systems,2001,117:403-406
    [62] Y.J. Tan. On nilpotent matrices over distributive lattices[J]. Fuzzy Sets and Systems,2005,151:421-433
    [63] S.C. Han, H.X. Li, J.Y. Wang. On nilpotent incline matrices[J]. Linear Algebra and itsApplications,2005,406:201-217
    [64] Y.J. Tan. On nilpotent matrices over antirings[J]. Linear Algebra and its Applications,2008,429:1243-1253
    [65] Y.J. Tan. On nilpotency of matrices over antirings[J]. Linear Algebra and its Applications,2010,433:1541-1554
    [66] Y.J. Tan. On nilpotency of generalized fuzzy matrices[J]. Fuzzy Sets and Systems,2010,161:2213-2226
    [67] Z.T. Fan. A note on the power sequence of a fuzzy matrix[J]. Fuzzy Sets and Systems,1999,102:281-286
    [68] Z.T. Fan. The convergence index of an implication matrix[J]. Fuzzy Sets and Systems,2001,123:265-269
    [69] D. Dolz an, P. Oblak. Invertible and nilpotent matrices over antirings[J]. Linear Algebra andits Applications,2009,430:271-278
    [70] J.H. Wang, P.Y. Wu. Sums of square-zero operators[J]. Studia Mathematica,1991,99:115-127
    [71] H. Hashimoto. Subinverses of fuzzy matrices[J]. Fuzzy Sets and Systems,1984,12:155-168
    [72] G.Y. Zhang. Invertible Matrices over Distributive Pseudo-lattices[J]. Chinese Journal ofEngineering Mathematics,2009,26:797-805
    [73] S.C. Han, H.X. Li. Invertible incline matrices and Cramer‘s rule over inclines[J]. LinearAlgebra and its Applications,2004,389:121-138
    [74] S.C. Han, H.X. Li. Some conditions for matrices over an incline to be invertible and generallinear group on an incline[J]. Acta Mathematica Sinica, English Series,2005,21:1093-1098
    [75] J.S. Duan. Invertible conditions for matrices over an incline[J]. Advances in Mathematics,2006,35:285-288
    [76] Y.J. Tan. On invertible matrices over antirings[J]. Linear Algebra and its Applications,2007,423:428-444
    [77] S. Zhao, X.P. Wang. Invertible matrices and semilinear spaces over commutative semir-ings[J]. Information Sciences,2010,180:5115-5124
    [78] R.B. Bapat, S.K. Jain, S. Pati. Weighted Moore-Penrose inverse of a boolean matrix[J].Linear Algebra and its Applications,1997,255:267-279
    [79] D.E. Rutherford. Inverses of boolean matrices[J]. Processing Glasgow Mathematics Asso-ciation,1963,6:49-53
    [80] P.S.S.N.V. Prasada Rao, K.P.S. Bhaskara Rao. On generalized inverses of boolean matri-ces[J]. Linear Algebra and its Applications,1975,11:135-153
    [81] K.H. Kim, F.W. Roush. Generalized fuzzy matrices[J]. Fuzzy Sets and Systems,1980,4:293-315
    [82] C.K. Zhao. Inverses of L-fuzzy Matrices[J]. Fuzzy Sets and Systems,1990,34:103-116
    [83] J.M. Cen. On generalized inverse of fuzzy matrices[J]. Fuzzy Systems and Mathematics,1991,5:66-75
    [84] M. Zwonek. On arc-coloring of diagraphs[J]. Opuscula Mathematics,2006,26:185-195
    [85] D.E. Rutherford. The Cayley-Hamiltonian theorem for semirings[J]. Proceedings of theRoyal Society of Edinburgh: Section A,1964,66:211-215
    [86] J.B. Kim, A. Baartmans, N.S. Sahadin. Determinant theory for fuzzy matrices[J]. FuzzySets and Systems,1989,29:349-356
    [87] M.Z. Ragab, E.G. Emam. The deterninant and adjoint of a square fuzzy matrix[J]. FuzzySets and Systems,1994,61:297-307
    [88] R. Hemmasinha, N.R. Pal, J.C. Bezdek. The determinant of a fuzzy matrix with respect tot and co-t norms[J]. Fuzzy Sets and Systems,1997,87:297-306
    [89] K.L. Zhang. Determinant theory for D01-lattice matrices[J]. Fuzzy Sets and Systems,1994,62:347-353
    [90] A. Bjo¨rklund, T. Husfeldt, P. Kaski, et al.. Evaluation of permanents in rings and semir-ings[J]. Information Processing Letters,2010,110:867-870
    [91] D.E. Rutherford. The eigenvalue problem for Boolean marices[J]. Proceedings of the RoyalSociety of Edinburgh: Section A,1965,67:25-38
    [92] T.s. Blyth. On eigenvectors of Boolean matrices[J]. Proceedings of the Royal Society ofEdinburgh: Section A,1966,67:196-204
    [93] Z.T. Fan, Q.S. Cheng. Eigenvectors of fuzzy matrices[J]. Systems Engineering-theory&Practice (in chinese),2001,1:45-52
    [94] K. Cechla′rova′. Eigenvectors in Bottleneck Algebra[J]. Linear Algebra and its Applications,1992,175:63-73
    [95] K. Cechla′rova′. On the Powers of Matrices in Bottleneck/Fuzzy Algebra[J]. Linear Algebraand its Applications,1996,246:97-111
    [96] S. Kirkl, N.J. Pullman. Boolean spectral theory[J]. Linear Algebra and its Applications,1992,175:177-190
    [97] M. Gavalec. Monotone eigenspace structure in max-min algebra[J]. Linear Algebra and itsApplications,2002,345:149-167
    [98] Y.J. Tan. Eigenvalues And eigenvectors for matrices over distributive lattices[J]. LinearAlgebra and its Applications,1998,283:257-272
    [99] Y.J. Tan. On the eigenproblem of matrices over distributive lattices[J]. Linear Algebra andits Applications,2003,374:87-106
    [100] S.C. Han, H.X. Li, Y.D. Gu. Standard eigenvectors of incline matrices[J]. Linear Algebraand its Applications,2004,389:235-248
    [101] M.Z. Ragab, E.G. Emam. On the min-max composition of fuzzy matrices[J]. Fuzzy Setsand Systems,1995,75:83-92
    [102] G. Gierz, K.H. Hofmann, K. Keimel, et al. Continuous lattice and domains[M]. London:Cambridge Univ. Press,2003,32-36
    [103] B.A. Davey, H.A. Priestley. Introduction to lattice and order[M]. London: Cambridge Univ.Press,2000,40-45
    [104]郑崇友,樊磊,崔宏斌. FRAME与连续格[M].北京:首都师范大学出版社,2000,33-37
    [105] G. Birkhoff. Lattice theory[M]. America: American Mathematical Society ColloquiumPublications,1967,32-35
    [106]范周田,模糊矩阵理论与应用[M].北京:科学出版社,2006,100-113
    [107] J.S. Golan. Semirings and their applications[M]. Dordrecht: Kluwer Academic Publishers,1999,50-53
    [108] E.M. Vechtomov. Two general structure theorems on submodules[J]. Abelian Groups andModules (in Russian), Tomsk State University, Tomsk,2000,15:17-23
    [109] B. Carre`. Groups and networks[M]. Oxford: Clarendon Press,1979,60-62
    [110] Z.Q. Cao, K.H. Kim, F.W. Roush. Incline Algebra and Applications[M]. New York: JohnWiley,1984,101
    [111] L.Z. Yi, W.J. Liu. Permanents of L-fuzzy matrices[J]. Journal of Sichuan Normal University(Natural Science)(in chinese),1987,10(1):118-125
    [112] J. Tang, Z.T Fan. Eigenvectors for matrices over distributive[J]. Journal of Mathematics inPractice and Theory (in chinese),2007,22:160-164
    [113] Y. Give‘on. Lattice matrices[J]. Information and Control,1964,7:477-484
    [114] J.M. Howie. An introduction to semigroup theory[M]. London: Academic Press,1976,2
    [115] M. Hara, J. Watanabe. The determinants of certain matrices arising from the Boolean lat-tice[J]. Discrete Mathematics,2008,308:5815-5822

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700