用户名: 密码: 验证码:
基因芯片扫描仪软件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因芯片图像的采集和芯片分析是芯片技术的关键环节,芯片图像获取的准确性和分析的可靠性直接影响芯片的应用。本文首先完成了图像采集系统的自动控制,并且针对采集过程的特点准确的恢复出扫描芯片的图像。然后从图像分析和数据分析两方面研究了影响芯片分析的因素,实现了对杂交荧光图像的信号提取和基本的生物信息分析。
     在图像采集系统中,首先完成了扫描仪工作的自动控制,扫描范围可选。为了解决图像扫描过程中出现的非线性畸变,首先运用仿射变换校正图像象素位置发生的非线性移位,然后采用线性插值算法进行图像恢复。
     针对杂交图像中污点、噪声形状、灰度变化比较大的特点,本文引入模糊形态学的方法成功抑制了污点、噪声等杂散信号的干扰。同时该方法对于荧光猝灭所造成的信号点中空现象具有较好的弥补作用。
     在网格定位中,本文针对信号点不规则的芯片图像提出了基于图像分割的自动定位方法——阈值分割,该方法简单快速,但对于光密度分布不均匀的信号点,可能会去掉部分微弱信号,降低了计算的准确性。对于信号点规则的芯片图像,本文采用人机交互的半自动定位方法,该方法运算速度快,并且效果比较理想。
     在信号强度计算中,本文研究了背景、计算方法、归一化三个问题,以及背景滤除、归一化的解决方案,并针对不同的定位方法使用不同的计算方法以确保信号点荧光强度提取的准确性。
     本文针对表达型芯片进行了数据分析,研究了表达型芯片数据结果的可视化分析,即通过阈值图、柱状图、散列图直观显示表达结果。
     最后本文实现了基因芯片共焦扫描仪控制系统ArrayScan 1.0和基因芯片分析系统AnaArray 1.0。
Gnenchip image acquisition and chip analysis are the key parts of techniques for genechip and play two important roles in the application of genechip. In this paper, first we accomplish how to control the image acquiring system, and recovery the chip image accurately, aiming for the feature of acquiring course. Then we study the methods of image analysis and data analysis in order to extract the hybridizing intensity and retrieve the biological information.
    In image acquiring system, we can control the scanner automatically, scanning range can be specified by user. In order to resolve the nonlinear distortion occurring in the course of image acquiring, first we apply affme transformation to adjust image, then recovery image by means of linear interleration algorithms.
    Some factors such as noise from irregular spots, dust on the slide, and nonspecific hybridization make it difficult to extract data accurately. We use fuzzy mathematical morphology to remove noise and dust which can lower noise successfully and also make up a loss of intensity caused by fluorescence blench.
    To acquire the target region, we purpose automatic gridding method based on image segmentation for image with irregular spots, it's segmentation through threshold. This method is presented simply and fast. However it's not suitable for spots with asymmetrical intensity. As for images with regular spots , a semi-automatic gridding method is used to improve processing speed, and it can achieve good effect.
    In the extraction of fluorescent intensity, we discuss background removing, the methods of computing and normalization. According to different gridding methods, diverse computing algorithms are adopted to ensure the accuracy of image analysis.
    We study the data analysis of expression genechip, put emphasis on the visualization of result.
    Finally we develop two software, one is ArrayScan 1.0, the other is AnaArray 1.0.
引文
1. Yoganand Balaguruanathan, Edward R. Dougherty, Simulation of cDNA microarrays via a parameterized random signal model, Journal of Biomedical Optics, July 2002,7(3), 507-523
    2. Young J Z, Roberts F, A flying-spot microscope, Nature, 1951, 167:231-232
    3. Streibl N, Depth transfer by an imaging system, OPTICA ACTA, Vol.31 No.11,1984: 1223-1241
    4. Stipp D, Gene Chip Breakthrough, Fortune, 1997, March 31: 44-53
    5. Ramsay R, Nature Biotechnology, 1998, V1, N6: 40-44
    6. Xiaoli zhang, Jianming Xie, Xiao Sun, Hong Wang, Zuhong Lu, Data management and analysis for gene chip, IEEE-EMBS Asia-Pacific Conference on Biomedical Engineering, 2000.9
    7. Xiaoli zhang, Zuhong lu, Image processing of gene chip using mathematical morphological operations based on fuzzy set, IEEE-EMBS Asia-Pacific Conference on Biomedical Engineering, 2000.9
    8. Mendelsohn M, Mayall B, Prewitt J, Digital transformation and Computer Analysis of Microscope Images, Advances in Optical and Electron Microscopy, 1968
    9. Lee J S, Digital image smoothing and the sigma filter, CGIP, Vol.24, 1984: 255-269
    10. Zhang D Z, Li C C, An image filtering algorithm based on selective averaging by hypothsis testing, Proce, 7th, IJCPR, Montreal, Canada: 159-162
    11. Nevatia R Locating object boundaries in textured environments, IEEE Trans, Comp,C-25, 1976: 1170-1180
    12. M. Laster J, Williams H A, Two Graph searching techniques for boundary finding in white blood cell image, Computer in Biology and Medicine, 8, 1978: 293-308
    13. Zucker S, Region growing: childhood and adolescence, Computer Graphics and Image Processing, 5, 1976:382-399
    14. Marr D, Hildreth E, Theory of the edge detection, Proc, R, Soc, London, Ser, B, 207, 1980: 187-217
    15. Rosenfield A, Connectivity in digital picture, Jouranl of the ACM, 17, 1979: 146-160
    16. Nielson G M, Scattered data modeling, IEEE Computer Graphics & Application, 1993, 1:60-70
    
    
    17. Porter T, Compositing digital images, Computer Graphics, 18(3)1984: 253-259
    18. J.Koplowitz, S Plante, Coner detection for chain coded curves, Pattern recognition, Vol. 28, No. 6, 1995: 843-852
    19. P.F. Zhu, P.M chirlian, On Critical Point Detection of Digital Shapes, IEEE Trans, Pattern Analysis and Machine Intelligence, Vol. 17, No.8, 1995: 737-748
    20. J.M Hu, H Yan, Polygonal Approximation of Digital Curves Based on The Principles of Perceptual Organization, Pattern Recognition, Vol.30, No.5, 1997:845-851
    21. Kitchen L, A Rosenfield, Gray level Comer detection, Pattern Recognition, Lett, 1, 1982: 95-102
    22. Heikki kalbiainen, Petri Hirvonen, An Extension to the Randomized Hough Transform Exploitiong Connectivity, Pattern Recognition Letters, Vol. 19, No. 1, 1997: 77-85
    23. W.Eric Grimson, Daniel P, Huttenlcher, On the sensiticity of hough tranform for object recognition, IEEE Trans-PAMI, Vol. 12, No.3, 1990:255-257
    24. Ohya J, Shio A, Akamatsu S, Recognition characters in scene images, IEEE Trans-PAMI, Vol. 16, No.2, 1994:214-220
    25. Blattner F R, Rlunkett G, Bloch C A, The complete genmone sequence of Escherichia coli K-12, Science 1997, V277: 1453
    26. Fodor S, Read L, Pirrung M, Light-directed, spatially addressable parallel chemical synthesis, Science, 1991, 251: 767-773
    27. Fodor S, Maddively parallel genomics, Science, 1997, V277: 393-394
    28. Schena M, Shalon D, Davis R W, Brown P O, Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science, 1995, V270: 467-470
    29. De Risi J, Penland L, Brown P O, Bittner M L, Use of a cDNA microarray to analyse gene expression patterns in human cancer, Nature Genetics, 1996, V14: 457-460
    30. Wallraff J, Labadie, DNA Sequencing on a chip, Chemtech, February, 1997
    31. Joseph G, Hoheisel, Oligomer-Chip Technology, 1997, Novermber, Tibtech, V15
    32. http://www.affmetrix.com
    33. http://www.healthtech.com
    34. http://www.biodiscovery.com
    35. Chee M, Yang R, Hubbel, Accessing genetic information with high-density DNA arrays, Science, 1996, 274: 610-613
    36. Pennis E, Chipping away at the human genome, Science, 1996, V272:1737
    37. Nuwaysir EF, Bittner M, Trent J, Microarrays and toxicology: the advent of
    
    toxicogenomics, Mol Carcinog, 1999, V24:153-159
    38. Olda Ermolaeva, Mohit Rastogi, Data managament and analysis for gene expression arrays, Nature genetics, 1998, V20: 19-23
    39. David J, Michael Bittner, Yidong Chen, Expression profiling using cDNA microarrays, Nature genetics supplement, 1999, V21:10-14
    40. Pease A N, Solas D, Sullivan E J, Light generated oligonucleotide arrays for rapid DNA sequence analysis, Proc Natl Acad Sci, 1994, V91:5022-5026
    41. Haralick R M, Sternberg S R, Zhuang X, Image analysis using mathematical morphology, IEEE Trans on PAMI, 1987, V9(4): 532-550
    42. Canny J, Finding Edges and Lines in images, MIT June 1983
    43. Canny J, A Computational Approach to Edge Detection, IEEE Trans on PAMI, 1986,V8(6): 678-698
    44. Reddis S S, Rudin S F, An optimal multiple threshold scheme for image segmentation, IEEE Trans SMC, 1984, V14(4):661-665
    45. Data management analysis for genechip, NHGRI
    46. Trevor Hastie, Uwe Scherf, Gene Shaving-a new class of clustering Method of expression analysis
    47.陈廷标,夏良正,“数字图像处理”,人民邮电出版社,1990
    48.徐建华,“图像处理与分析”,科学出版社,1992
    49.何斌,马天予,“Visual C++数字图像处理”,人民邮电出版社,2001
    50.夏德深,傅德胜,“现代数字图像处理技术与应用”,东南大学出版社,1997
    51.章敏晋,“图像处理和分析”,清华大学出版社,1999
    52.吴健康,“图像处理和分析”,人民邮电出版社,1990
    53.王新成,“高级图形处理技术”,中国科学技术出版社,2000
    54.李楠,“激光扫描共聚焦显微术”,人民军医出版社,1997
    55.崔屹,“数字图像处理技术与应用”,电子工业出版社,1997
    56.孙啸,生物信息学与基因芯片,东南大学吴健雄实验室,2000
    57.马立人,蒋中华,生物芯片,化学工业出版社,2000
    58.陆祖宏,高密度基因芯片技术及其发展趋势,中国医疗器械信息,2000,V6,N3:14-16
    59.王磊等,基于Canny理论的边缘提取改善方法,中国图像图形学报,1996,V1(3):190-193
    60.马然,陈颖,图像处理中数学形态学方法的基本研究,上海轻工业高等专科学校学报,2000,Vol.21,No.1
    
    
    61.邢汝冰等,DNA芯片技术及国内外发展概况,光机电信息,2000,Vol.17,No.8
    62.王浩军等,原位分子杂交图像中银粒的分割方法研究,中国图像图形学报,1999,V4(6):454-457
    63.孙啸等,基因芯片设计及数据分析软件系统,东南大学学报,2000,V30(5):1-6
    64.胡茂海,陶纯堪,基因芯片荧光图像采集和分析,光子学报,2002,Vol.31.No.5
    65.刘冬,赵荣椿,保存边界的图像平滑方法,西北工业大学学报,2000,Vol.18,No.1
    66.周丽娟,柳池等,图像边界自动跟踪的边缘提取算法,哈尔滨理工大学学报,1997,Vol.2,No.5
    67.王建军,苑玮琦等,一种基于相对熵的图像分割算法,信息与控制,1997,Vol.26,No.1
    68.于晓含等,基因区域增长及边缘检测的一种图像分割方法,北方交通大学学报,1997,Vol.21,No.1
    69.赵生才,DNA芯片的现状与未来——香山科学会议第80次学术讨论会综述
    70.吕秀齐,基因芯片:新世纪医学的“宠儿”,青年科学向导,2000,1
    71.刘炎,基因芯片技术进展与应用,南通医学院学报,2000:20(4)
    72.陆祖宏等,基因芯片的原理和应用,世界医疗器械,2000,Vol.6,No.7
    73.何东健等,中值滤波快速算法的探讨与实验,微型电脑应用,1998,No.3
    74.刘彦华等,生物芯片技术及其应用前景,中华检验医学杂志,2000,Vol.23,No.3
    75.孙啸等,生物信息学在基因芯片中的应用,生物物理学报,2001,Vol.17,No.1
    76.冯永强等,基因芯片技术,国外医学分子生物学分册,2000,Vol.22,No.1
    77.David J.Graves,基因芯片——基因分析的高效工具,国外分析仪器,2000,2
    78.高万荣,新型光学显微成像技术的研究,博士后研究报告,南京理工大学,1998
    79.黄琳,激光共焦扫描光学显微镜软件系统的研究与实现,硕士学位论文,南京理工大学,2000
    80.胡茂海,激光共聚焦扫描显微镜成像系统及其信息分析的研究,硕士学位论文,南京理工大学,2002
    81.刘峰,现代光学显微成像和图像处理技术,硕士学位论文,南京理工大学,1997
    82.马兆勉,光学模式识别图像预处理算法研究,博士学位论文,南京理工大学,2000
    83.郝禄国,显微图像处理和三维图像重构的研究,硕士学位论文,南京理工大学,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700