用户名: 密码: 验证码:
ZnO/TiO_2和SnO_2/TiO_2异质结构的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的性能不仅取决于其化学组成、晶相、尺寸、形貌,还与其组装形态有关,因此材料的可控制备和性能研究具有深远的意义,其中具有分级结构的半导体氧化物异质结材料由于其独特的物理、化学性质以及潜在的应用价值而成为当今基础与应用研究的热点之一。
     本文采用简单的静电纺丝和水热两步过程,实现了具有特殊、新颖的微结构的氧化物异质结材料的可控制备及生长。相对于目前异质结构的制备通常采用的化学气相沉积以及热蒸发等需要高温环境的方式,本论文采用的方法具有低温、环保、易控等优点,是一种条件温和、环境友好的绿色合成方法。取得的主要研究结果如下:
     1、通过静电纺丝和水热两步过程制备了具有分级结构的ZnO/TiO_2薄膜材料,研究了不同制备条件对外延生长的ZnO纳微米结构的影响,结果表明,醋酸锌与六次甲基四胺的浓度比为1:1,浓度范围在0.015mol/L~0.045mol/L时,在TiO_2电纺纤维表面可以形成均匀致密的棒状ZnO纳微米结构,且外延生长的棒状ZnO的直径随浓度增加而增大;通过在水热体系中加入不同浓度的结构改性剂柠檬酸钠,在TiO_2电纺纤维上得到了不同形貌的片状的ZnO纳微米结构;尝试讨论了外延生长的ZnO纳微米结构的生长机理。
     2、在成功合成ZnO/TiO_2异质结构的基础上,通过改变水热反应介质,制备了具有分级结构的SnO_2/TiO_2薄膜材料,研究了不同制备条件对外延生长的SnO_2纳米棒阵列的影响。结果表明,当氢氧化钠和四氯化锡的浓度比为20:1时,在TiO_2电纺纤维上可以形成均匀致密的SnO_2纳米结构;讨论了外延生长的SnO_2的纳米棒阵列的生长机理。
     3、对TiO_2电纺纤维、ZnO/TiO_2和SnO_2/TiO_2异质结构的表面浸润性进行测量。结果表明,TiO_2电纺纤维、ZnO/TiO_2在暗处长时间放置仍保持超亲水状态;SnO_2/TiO_2异质结构在暗处放置,表面逐渐达到达到超疏水状态;提出了SnO_2/TiO_2薄膜表面特殊浸润性的机理,外延生长的SnO_2纳米棒阵列形成的层状特殊结构是引起其特殊表面浸润性的本质原因。
Hierarchical meso- and nanostructures of functional materials such as metal oxides have attracted considerable interests due to their unique properties and potential applications in advanced devices and systems. The performance of materials depends not only on their chemical composition, phase, size and morphology, but their assemblies as well. The controlled growths and structural characterizations of materials are of considerable significant.
     At present, the research on the construction of heterostructures is mainly concentrated on chemical vapor deposition and thermal evaporation. Nevertheless, complicated experimental procedures and critical conditions, e.g. high temperature or high pressure, were usually required to obtain these fantastic hierarchical materials. Compared with other approaches, hydrothermal method is regarded as an attractive candidate for synthesis of homogeneous architectures due to the advantages of environmentally-friendly, simplicity, easy-controllability and low cost. In this thesis, an effective two-step route was reported to synthesize hierarchical structures by combination of electrospinning and hydrothermal method. The main contents of the research were listed as below:
     1. ZnO/TiO_2 hierarchical material with tunable structures were synthesized by combination of electrospinning and hydrothermal method, the influence of preparation conditions on the epitaxial ZnO structures have been investigated. With precursor concentration ranging from 0.015mol/L~0.045mol/L , ZnO/TiO_2 hierarchical structures can be obtained with high dendity ZnO nanorods growth on the TiO_2 electrospinning fibers. By adding trisodium citrate to the hydrothermal system, a layer of uniform ZnO nanoplates grown on TiO_2 fibers were generated and the formation mechanism of the secondary growth ZnO structures have been investigated.
     2. SnO_2/TiO_2 hierarchical structures were successfully synthesized by changing the hydrothermal growth conditions. The influence of preparation conditions on the epitaxial SnO_2 structures has been investigated. The result shows that, with concentration ratio of 20:1(NaOH to SnCl4), SnO_2/TiO_2 hierarchical structures with a layer of uniform SnO_2 nanorods grown on the suface of TiO_2 fibers can be obtained. The possible formation mechanism of the secondary growth of SnO_2 nanorods is also proposed.
     3. The wettability of as-prepared TiO_2 fibers, ZnO/TiO_2 and SnO_2/TiO_2 hierarchical structures were investigated in detail. The initial water contact angel was super-hydrophilic with a cntact angle of 0°. The TiO_2 fibers and ZnO/TiO_2 hetrojunctions could keep super-hydrophilicty even stored in the dark fou several months. However, the surface of SnO_2/TiO_2 heterostructures displayes hydrophilic, super-hydrophobic. The result shows that the formation of the dual switchable surface wettablity of SnO_2/TiO_2 was due to the unique surface structure of the films induced by the epitaxial growth of SnO_2 nanorods.
引文
[1] Bessergenev V. G., Khmelinshii I. V., Pereira R. J. F., et al., Preparation of TiO2 films by CVD method and its electrical, structural and optical properties, Vacuum, 2002 (64):75-279.
    [2] Mills A., Elliott N., Parkin I. P., et al., Novel TiO2 CVD films for senmiconductor photocatalysis, Journal of Photochemistry and Photobiology A: chemistry, 2002 (151):171-179.
    [3] Tran N. H., Hartmann A. J., Lamb R. N., Structural Order of Nanocrystalline ZnO Films, J. Phys. Chem. B, 1999(103): 4264-4268.
    [4] Zhang Y., Chen Y. G., Liu H., et al., Three-Dimensional Hierarchical Structure of Single Crystalline Tungsten Oxide Nanowires: Construction, Phase Transition, and Voltammetric Behavior, J. Phys. Chem. C, 2009 (113): 1746-1750.
    [5] Yan Y. G., Zhou L. X., d Zhang Y., Synthesis of MgO Hierarchical Nanostructures Controlled by the Supersaturation Ratio, J. Phys. Chem. C, 2008 (112):19831-19835.
    [6] Takeda S., Suzuki S., Odaka H., et al., Photocatalytic TiO2 thin film deposited onto glass by DC magnetron., Thin Solid Films, 2001(392):338-344.
    [7] Fu Z. W., Zhou M. F., Qin Q. Z., et al., I-V and C-V Properties of TiO2 thin film formed bu plus-laser reactive deposition., China Sci. Bull., 1998(43):1344-1349.
    [8]赵坤,朱凤,王莉芳等,反应溅射法制备TiO2薄膜[J],物理学报,2001(50):1390-1395.
    [9]孟宪权,王君,何磊, TiO2薄膜的制备及结构研究[J],半导体学报, 1999(20): 395-399.
    [10]何志,赵永年,邹光田等,薄膜沉积过程中TiO2的金红石相向锐钛矿转变[J],光散射学报,1999(11): 198-202.
    [11] Sander M., Tan L., Nanoparticle Arrays on Surfaces Fabricated Using AnodicAlumina Films as Templates, Adv. Funct. Mater., 2003(3): 393-397.
    [12] Lu X. L., Zhang T., Qu J. F., et al., Microstructure and Superconductivity of La1.85Sr0.15CuO4 Nanowire Arrays, Adv. Funct. Mater., 2006(16): 1754-1758.
    [13] Jiang J., Yu S. S., Yao W. T., et al., Morphogenesis and Crystallization of Bi2S3 Nanostructures by an Ionic Liquid-Assisted Templating Route: Synthesis, Formation Mechanism, and Properties, Chem. Mater., 2005(17): 6094-6100.
    [14] Yada M., Sakai S., Torikai T., et al., Cerium Compound Nanowires and Nanotings Templated by Mixed Organic Molecules, Adv. Mater., 2004(16) : 1222-1226.
    [15] Ji R., Lee W., Scholz R., et al., Templated Fabrication of Nanowire and Nanoring Arrays Based on Interference Lithography and Electrochemical Deposition, Adv. Mater., 2006(18): 2593-2596.
    [16] Yin J. S., Wang Z. L., Template-assisted Self-assembly and Cobalt Doping of Ordered Mesoporous Titania Nanostructures, Adv. Mater., 1999(11): 469-472.
    [17] Natarajan C., Nogami G., Cathodic Electrodeposition of Nanocrytalline Titanium Dioxide Thin Films, J. Electrochem. Soc., 1996(143): 1547-1550.
    [18] Karuppuchamy S., Amalnerkar D. P., Yamaguchi K, et al., Cathodic Electrodeposition of TiO2 Thin Films , Chemical Letter, 2001(1):78-79.
    [19] Kavan L., O’Regan B., Kay A., et al., Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3, J. Electroanal. Chem., 1993(346):291-307.
    [20] Kavan L., Stoto T., Graetzel M., et al., Quantum Size Effects in Nanocrystalline Semiconducting Titania Layers Prepared by Anodic Oxidatice Hydrolysis Of Titanium Trichloride. J. Phys. Chem. B, 1993(97):9493-9498.
    [21] Hayward R. C., Saville A., Aksay A., Electrophoretic Assembly of Colloidal Crystals with Optically Tunable Micropatterns, Nature, 2000(404):56-59.
    [22]谭小春,黄倾羽,电泳法制备TiO2超微粒膜的研究,化学物理学报,1998(11):416-421.
    [23] Brian L., Bischof P. and Marc A., Chem. Mater., 1995(7):1772-1778.
    [24] Wen T., Gao J., Shen J., et al., J. Mater. Sci., 2001(36):5923-5926.
    [25] Yutaka Ohya, Hisao Saiki, Toshimasa Tanaka, et al., Microstructure of TiO2 and ZnO Films Fabricated by the Sol-gel method, J. Am.Ceram. Soc., 1996(79):825-830.
    [26] Srinivasan G., Kumar J., Optical and structural characterization of zinc oxide thin films prepared by sol-gel process, Cryst. Res. Technol., 2006(41):893-896.
    [27] Gianni A. D., Trabelsi S., Rizza G., et al., Hyperbranched Polymer/TiO2 Hybrid Nanopaticles Synthesized via an In Situ Sol-gel process, Macromol. Chem. Phys., 2007(208):76-86.
    [28] Méndez-Vivar J., Mendoza-Serna R., Sintering of SiO2-TiO2 Obtained by the Sol-gel Process from Chelated Ti Precursors, Scanning, 1998(20):347-351.
    [29] Paul G. K., Bandyopadhyay S. B., Sen S. K., Transport properties of As-prepared Al-doped Zinc Oxide Films Using Sol-gel Method, Phys. Stat. Sol., 2002(191):509-518.
    [30] Juengsuwattananon K., Jaroenworaluck A., Panyaathanmaporn T., et al., Effect of Water and Hydrolysis Catalyst on the Crystal Structure of Nanocrystalline TiO2 Powers Prepared by Sol-gel Method, Phys. Stat. Sol., 2007(204):1751-1756.
    [31] Musat V., Fortunato E., Petrescu S., ZnO/SiO2 nanocomposite thin films by sol-gel method, Phys. Stat. Sol., 2008(205):2075-2079.
    [32] Li D., Xia Y. N., Fabrication of Titania Nanofibers by Electrospining, Nano Letters, 2003(3):555-560.
    [33] Wang B. B., Li B., Xiong J., et al., Hierarchically Ordered Polymer Nanofibers via Eletrospining and Controlled Polymer Crystallization, Macromolecules, 2008(41):9516-9521.
    [34] Lee S. H., Tekmen C., Sigmund W. M., Three-point Bending of Eletrospun Nanofibers, Materials Science And Engineering A, 2005(398):77-81.
    [35] Lee S. W., Kim Y. U., Choi S. S., et al., Preparation of SiO2/TiO2 Composite Fibers by Sol-gel Reaction and Electrospinning, Materials Letters, 2007(61):889-893.
    [36] Yang X. H., Shao C. L., Guan H. Y., et al., Preparation and Characterization ofZnO Nanofibers by Using Electrospun PVA/zinc Acetate Composite Fibers as Precursor, Inorganic Chemistry Communications, 2004(7):176-178.
    [37] Cao M. H., Hu C.W., Wang E., et al., The First Fluoride One-Dimensional Nanostructures: Microemulsion-Mediated Hydrothermal Synthesis of BaF2 Whiskers, J. Am. Chem. Soc., 2003(125):11196-11197.
    [38] Menzel R., Peir? A. M., Durrant J. R., et al., Impact of Hydrothermal Processing Conditions on High Aspect Ratio Titanate Nanostructures, Chem. Mater., 2006(18):6059-6068.
    [39] Wu C. Z., Xie Y., Wang D., et al., Selected-Control Hydrothermal Synthesis ofγ-MnO2 3D Nanostructures, J. Phys. Chem. B, 2003(107):13583-13587.
    [40] Vasco E., Magrez A., Forr? L., et al., Growth Kinetics of One-Dimensional KNbO3 Nanostructures by Hydrothermal Processing Routes, J. Phys. Chem. B, 2005(109):14331-14334.
    [41] Pal U., Santiago P., Controlling the Morphology of ZnO Nanostructures in a Low-Temperature Hydrothermal Process, J. Phys. Chem. B, 2005(109):15317-15321.
    [42] Michailovski A., Patzke G. R., Hysrothermal Synthesis of Molybdenum Oxide Based Matreials: Strategy and Structural Chemistry, Chem. Eur. J., 2006(12):9122-9134.
    [43] Kim J. H., Kim E. M., Andeen D., et al., Growth of Heteroepitaxial ZnO Thin Films on GaN-Buffered Al2O3(0001) Substrates by Low-Temperature Hydrothermal Synthesis at 90℃, Adv. Funct. Mater., 2007(17):463-471.
    [44] Tomita K., Petrykin V., Kobayashi M., et al., a Water-Soluble Titanium Complex for the Selective Synthesis of Nanocrystalline Brookite, Rutile, and Anatase by a Hydrothermal Mathod, Angew. Chem. Int. Ed., 2006(45):2378-2381.
    [45] Zhang L. Z., Ai Z. H., Jia F. L., et al., Controlled Hydrothermal Synthesis and Growth Mechanism of Various Nanostructured Films of Copper and Silver Tellurides, Chem. Eur. J., 2006(12):4185-4190.
    [46] Yang L. X., Zhu Y. J., Li L., et al., a Facile Hydrothermal Route to Flower-LikeCobalt Hydroxide and Oxide, Eur. J. Inorg. Chem., 2006:4787-4792.
    [47] Wang W. W., Zhu Y. J., Yang L. X., ZnO-SnO2 Hollow Spheres and Hierarchical Nanosheetw: Hydrothermal Preparation, Formation Mechanism, and Photocatalytic properties, Adv. Funct. Mater., 2007(17): 59-64.
    [48] Sounart T. L., Liu J., Voigt J. A., et al., Secondary nucleation and growth of ZnO, J. Am. Chem. Soc., 2007(129) :15786-15793.
    [49] Wang Q. Q., Xu G., Han G. R., Synthesis and characterization og large-scale hierarchical dendrites of single-crystal CdS, Cryst. Growth Des., 2006(6):1776-1780.
    [50] Li H. X., Xia M. X., Dai G. Z., et al., Growth of orientied Zinc Oxide nanowire array into novel hierarchical structures in apueous solutions, J. Phys. Chem. C 2008(112):17546-17553.
    [51] Xu L. F., Chen Q. W., Xu D. S., Hierarchical ZnO nanostructures obtained by electrodepositon, J. Phys. Chem. C, 2007(111):11560-11565.
    [52] Li G. R., Lu X. H., Qu D. L., Electrochemical growth and conrtol of ZnO dendritic structures, J. Phys. Chem. C, 2007(111):6678-6683.
    [53] Gao P. X., Wang Z. L., Self-assembled nanowire-nanoribbon junction arrays of ZnO, J. Phys. Chem. B, 2002(103):12653-12658.
    [54] Liu J., Chen X. L., Wang W. J., et al., Secondary facet-selective nucleation and growth: highly oriented straight SnO2 nanowire arrays on primary microrods, Cryst. Growth Des., 2009(9): 1757-1761.
    [55] Sun S. H., Meng G. W., Zhang G. X., Controlled Growth of SnO2 hierarchical nanostructures by a multistep thermal vapor deposition process, Chem. Eur. J., 2003(13):9087-9092.
    [56] Mazeina L., Picard Y. N., Prokes S. M., Controlled growth of parallel oriented ZnO nanostructural arrays on Ga2O3 nanowires, Cryst. Growth Des., 2009(9):1164-1169.
    [57] Wang Z. Q., Liu X. D., Gong J. F., et al., Epitaxial growth of ZnO nanowires on ZnS nanobelts by metal organic chemical vopor deposition, Cryst. Growth Des., 2008(8):3911-3913.
    [58] Sun S. H., Meng G. W., Zhang G. X., Controlled growth and optical properties of one-dimensional ZnO nanostructures on SnO nanobelts, Cryst. Growth Des., 2007(7):1988-1991.
    [59] Fujishima A., Honda K., Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972(238):37-40.
    [60]唐培松,王民权,王智宇,洪樟连,材料导报,2003(17) :33-36.
    [61] Wold A., Photocatalytic Properties of TiO2, Chem. Mater., 1993(5):280-283.
    [62] Linsebigler A. L., Lu G., Yates J., Photocatalysis on TiO2 Surfaces : Principles, Mechanisms, and Selected Results, Chem. Rev., 1995(95) :735-758.
    [63] Dupuy C. M., Gulllard C., Courbon Henri, et al., Kinetics and Products of the TiO2 Photocatalytic Degradation of Pyridine in Water, Environ. Sci. Techol., 1994(28) :2176-2183.
    [64] Pichat P., Disdier J., Van H. C., et al., Purification/deodorization of Indoor Air and Gaseous Effluents by TiO2 Photocatalysis, Catalysis Today, 2000(63) :363-368.
    [65] Yang J. K., Lee S. M., Removal of Cr(VI) and Humic Acid by Using TiO2 Photocatalysis, Chemosphere, 2006(63) :1677-1684.
    [66] Pekakis P. A., Xehouhoulotakis N. P., Mantzavinos D., Treatment of Textile Dyehouse Wastewater by TiO2 photocatalysis, Water Research, 2006(40):1276-1286.
    [67] Paleologou A., Marakas H., Xekoukoulotakis N. P., et al., Disinfection of Water and Wastewater by TiO2 Photocatalysis, Sonolysis and UV-C Irradiation, Catalysis Today, 2007(129):136-142.
    [68] Wang J. C., Liu P., Wang S. M., Nanocrystalline Zinc Oxide in Perfluorinated ionomer membranes: Preparation, characterization, and photocatalytic properties, Journal of Molecular Catalysis A: Chemical, 2007(273):21-25.
    [69] Pauporte T., Rathousky J., Growth mechanism and photocatalytic properties for dye degradation of hydrophobic mesoporous ZnO/SDS films prepared by electrodeposition, Microporous and Mesoporous Materials, 2009(117):380-385.
    [70] Ren. X. L., Han D., Chen D., et al., Large-scale synthesis of hexagonalcone-shaped ZnO nanoparticles with a simple route and their application to photocatalytic degradation, Materials Research Bulletin, 2007(42):807-813.
    [71] Ye C. H., Bando Y., Shen G. Z., et al., Thickness- Dependent Photocatalytic Performance of ZnO Nanoplatelets, J. Phys. Chem. B, 2006(110):15146-15151.
    [72] Jing D. W., Guo L. J., A Novel Method for the Preparation of a Highly Stable and Active CdS Photocatalyst with a Special Surface Nanostructure, J. Phys. Chem. B, 2006(110):11139-11145.
    [73] Yin H. B., Wada Y. J., Kitamura T. et al., Photoreductive Dehalogenation of Halogenatd Benzene Derivatives Using ZnS or CdS Nanocrystaliiites as Photocatalysts, Enviro. Sci. Technol., 2003(35):227-231.
    [74] Heterojunction semiconductor SnO2/SrNb2O6 with an enhanced photocatalytic activity: The significance of chemically bonded interface, Acta Materialia, 2008(56):2699-2705.
    [75] Bandara J., Ranasinghe R. A., The effect of MgO coating on photocatalytic activity of SnO2 for the degradation of chlorophenol and textile colorants; the correlation between the negative shift of flatband potential of SnO2, Applied Catalysis A: General, 2007(319):58-63.
    [76] Xia H. L., Zhuang H. S., Zhang T., et al., Visible-light-activated Nanocomposite Photocatalyst of Fe2O3/SnO2, Materials Letters, 2008(62):1126-1128.
    [77] Li D., Haneda H., Photocatalysis of sprayed nitrogen-containing Fe2O3–ZnO and WO3–ZnO composite powders in gas-phase acetaldehyde decomposition, Journal of Photochemistry and Photobiology A: chemistry, 2003 (160):203-212.
    [78] Zou L., Luo Y., Hooper M., Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst, Chemical Engineering and Processing, 2006(45):959-964.
    [79] Juliana C. Trist?o, Fabiano Magalh?es, Paola Corio, et al., Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite, Journal of Photochemistry and Photobiology A: chemistry, 2006(181):152-157.
    [80] Hong R. Y., Zhang S. Z., Di G. Q., er al., Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Materials Research Bulletin, 2008(43):2457-2468.
    [81] Kansal S.K., Singh M., Sud D., Studies on TiO2/ZnO photocatalysed degradation of lignin, Journal of Hazardous Materials, 2008(153):412-417.
    [82] Seftel E.M., Popovici E., Mertens M., et al., SnIV–containng layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts, Applied Catalysis B : Environmental, 2008(84) :699-705.
    [83] Lu F., Cai W. P., Zhang Y. G., ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance, Adv. Funct. Mater., 2008(18):1047-1056.
    [84] Lívia Naszályi, Florence Bosc, Abdeslam El Mansouri, et al., Sol-gel-derived mesoporous SiO2/ZnO active coating and development of multifunction ceramic membranes, Separation and Purification Technology, 2008(59) :304-309.
    [85] Nayak J., Sahu S. N., Kasuya J., et al., CdS-ZnO composite nanorods: synthesis,chatacterization and application fu photocatalytic degradation of 3,4-dihydroxy benzoic acid, Applied Surface Science, 2008(254) :7215-7218.
    [86] Enrique Sánchez Mora, Estela G?mez Barojas, Esmeralda Rojas Rojas, et al., Morphological, optical and photocatalytic properties of TiO2-Fe2O3 multilayers, Solar Energy & Solar Cells, 2007(91):1412-1415.
    [87] Zhang Q. R., Fan W. G., Gao L., Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficent and easily recyclable photocatalyst, Apllied Catalysis B : Enviromental , 2007(76) :168-173.
    [88] Miyashits K., Kuroda S., Ubukata T., et al., Enhanced effect of vacuum-deposited SiO2 overlayer on photo-induced hydrophilicity of TiO2 film, J. Mater. Sci., 2001(36):3877-3884.
    [89] Zhang F. X., Low H. Y., Anisotropic wettability on imprinted hierarchical structures, Langmuir, 2007(23):7793-7798.
    [90] Li Y., Huang X. J., Heo S. H., et al., Superhydrophobic bionic surfaces withhierarchical microsphere/SWCNT composite arrays, Langmuir, 2007(23):2169-2174.
    [91] Papadopoulou E. L., Barberoglou M., Zorba V., et al., Reverible Photoinduced wettablity transition of hierarchial ZnO structures, J. Phys. Chem. C, 2009(113) :2891-2895.
    [92] Cortese B., D’Amone S., Manca M., et al., Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces, Langmuir 2008(24):2712-2718.
    [93] Li Y. B., Zheng M. J., Ma L., et al., Fabrication of hierachical ZnO architectures and their superbydrophobic surfaces with strong adhesive force, Inorg. Chem., 2008(47) :3140-3143.
    [94] Neinhuis C., Barthlott W., Ann. Bot., 1997(79):667
    [95] Barthlott W., Neinhuis C., Planta, 1997(202):1
    [96] Feng L., Li S. H., Li Y. S., et al., Super-hydrophobic surfaces: from natural to artificial, Adv. Mater., 2002(14):1857-1860.
    [97] Gautam U. K., Fang X. S., Bando Y., et al., Synthesis, Structure, and Multiply Enhanced Field-Emission Properties of Branched ZnS Nanotube_In Nanowire Core_Shell Heterostructures, Acs Nano, 2008(2): 1015-1021.
    [98] Li. X. H., Shao C. L., Liu Y. C., et al., Preparation, structure and photoluminescence properties of SiO2/ZnO nanocables via electrospinning and vapor transport deposition, Materials Letters, 2008(62) :2088-2091.
    [99] Zhang Y., Xu J. Q., Xiang Q., et al., Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties, J. Phys. Chem. C, 2009(113): 3430-3435.
    [100] Qin K., Jiang Z. Y., Xie Z. X., et al., Tailoring the Optical Property by a Three-Dimensional Epitaxial Heterostructure: A Case of ZnO/SnO2, J. Am. Chem. Soc., 2005(127):11777-11784.
    [101] Shen G. Z., Chen D., Lee C. J., Hierarchical Saw-like ZnO Nanobelt/ZnS Nanowire Heterostructures Induced by Polar Surfaces, J. Phys. Chem. B, 2006(110):15689-15693.
    [102] Liu J. Y., Guo Z., Jia Y., et al., Novel Single-Crystalline Hierarchical StructuredZnO Nanorods Fabricated via a Wet-Chemical Route: Combined High Gas Sensing Performance with Enhanced Optical Properties, Cryst. Growth Des., 2009(9):1716–1722.
    [103] Harrison P. G., Willett M. J., the Mechanism of Operation of Tin(IV) Oxide Carbon Monoxide Sensors, Nature, 1988(332):337-339.
    [104] Gr?tzel M., Photoelectrochemical Cells, Nature, 2001(414):338-344.
    [105] Su M., Li S. Z., Dravid V. P., Miniaturized Chemical Multiplexed Sensor Array, J. Am. Chem. Soc., 2003(125):9930-9931.
    [106] Benk? G., Myllyperki? P., Pan J., et al., Photoinduced Electron Injection from Ru(dcbpy)2(NCS)2 to SnO2 and TiO2 Nanocrystalline Films, J. Am. Chem. Soc.,2003(125):1118-1119.
    [107] Sun C. H., Wang N. X., Zhou S. Y., Preparation of self-supporting hierarchical nanostructured anatase/rutile composite TiO2 film, Chem. Commun., 2008:3293-3295.
    [1]周龙强, ZnO材料的形态控制生长与机理研究.武汉:武汉理工大学硕士学位论文,2006.
    [2] Tong Y. H.,Liu Y. C,Dong L.,et a1.Growth of ZnO nanostruetures with different morphologies by using hydrothermal techinique, J. Phys. Chem. B, 2006(110):20263-20267.
    [3] Zhang J. H., Liu H. Y., Wang Z. L., et al., Polyvinylpyrrolidone-directed crystallization of ZnO with tunable morphology and bandgap, Adv. Funct. Mater., 2007( 17):3897-3905.
    [4] Tong Y. H., Liu Y. C., Dong L., Growth of ZnO nanostructures with different morphologies by using hydrothermal technique, J. Phys. Chem. B, 2006(110):20263-20267.
    [5] Peng Y., Xu A. W., Deng B., et al., Polymer-Controlled crystallization of Zinc Oxide hexagonal nanotings and disks, J. Phys. Chem. B, 2006(110):2988-2993.
    [6] Cao X. L., Zeng H. B., Wang M., et al., Large scale fabrication of quasi-aligned ZnO stacking nanoplates.
    [7] Z. R. Tian, J. A. Voigt, J. Liu, et al., Complex and oriented ZnO nanostructures,, Nat. Mater., 2003(2): 821-826.
    [8] Kuo C. L., Kuo T. J. , Huang M. H., Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures, J. Phys. Chem. B, 2005(109):20115-20121.
    [9] Oviedo J., Gillan M. J., Energetics and structures of stoichiometric SnO2 surfaces studied by first-principles calculations, Surface Science, 2000(463):93-101.
    [10] P. Mulheran, J. Harding, Modeling Simul. Mater. Sci. Eng., 1992, 1, 39.
    [11] Batzill M., Katsiev K., Diebold U., Surface morphologies of SnO2(1 1 0), Surface science, 2003(529):295-311.
    [1] McHale G., Newton M. I., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002(206):193-201.
    [2] Taylor G. I., Michael D. H., On Making Holes in a Sheet of Fluid, J. Fluid Mech., 1973(58):625-639.
    [3] Shibuichi S., Onda T., Satoh N., et al., Super Water-repellent Surfaces Resulting from Fractal Structrue, J. Phys. Chem., 1996(100): 19512-19517.
    [4] Onda T., Shibuichi S., Satoh N., et al., Super Water-repellent Surfaces, Langmuir, 1996(12) :2125-2127.
    [5] Bico J., Torduex C., Quere D., Rough Wetting, Europhys Lett., 2001(55):214-220.
    [6] Bico J., Thiele U., Quere D., Wetting of Textured Surfaces, Colloids and Surfaces A : Physicochem Eng Aspect, 2002(206):41-46.
    [7] Herminghaus S., Roughness-induced non-wetting, Europhys lett., 2000(52):165-170.
    [8] Shibuichi S., Onda T., Satoh N., et al., Super Water-repellent Surfaces Resulting from Fractal Structrue, J. Phys. Chem., 1996(100): 19512-19517.
    [9] Didem ?ner, Thomas J. M., Ultrahydrophobic surfaces. Effect of topography length scales on wettabilty, Langmuir, 2000(16):7777-7782.
    [10] Yoshimitsu Z., Nakajima A., Watanabe T. et al., Effects of surface structure on hydrophobicity and sliding behavior of water droplets, Langmuir, 2002(18):5818-5822.
    [11] Neelesh A. P., On the modeling of hydrophobic contact angles on rough surfaces, Langmuir, 2003(19):1249-1253.
    [12] Li H. Q., Wang X. B., Song Y. L., et al., Super-“amphiphobic”aligned carbon nanotube films, Angew. Chem. Int. Ed., 2001(40):1743-1746.
    [13] Feng L., Li S. H., Li H. Q, et al., Super-hydrophobic surface of aligned polyarcylonitrile nanofibers, Angew. Chem. Int. Ed., 2002(41):1221-1223.
    [14] Li S. H., Li H. Q., Wang X. B., et al., Super-hydrophobic of large-area honeycomb-like aligned carbon nanotubes, J. Phys. Chem. B, 2002(106):9274-9276.
    [15] Feng L., Song Y. L., Zhai J., et al., Creation of a superhydrophobic surface from an anphiphilic polymer, Angew. Chem. Int. Ed., 2003(42):800-801.
    [16] Feng L., Yang Z. L., Zhai J., Superhydrophobic of nanostructured carbon films in a wide range of PH values, Angew. Chem. Int. Ed., 2003(42):4217-4220.
    [17] Li M., Zhai J., Liu H., et al., Elecrtrochemical Deposition of conductive superhydrophobic Zinc Oxide thin films, J. Phys. Chem. B, 2003(107):9954-9957.
    [18] Feng L., Zhang Z. Y., Mai Z. H., et al., A super-hydrophobic and super-oleophilic coating mesh film for the separatin of oil and water, Angew. Chem. Int. Ed., 2004(43):2012-2014.
    [19] Feng X. J., Feng L., Jin M. H., et al., Reversible super-hydrophobic to super-hydrophilicity transition of alined ZnO nanorods films, J. Am. Chem. Soc., 2004(126):62-63.
    [20] Liu H., Feng L., Zhai J., Reversible wettablity of a chemical vapor deposition prepared ZnO film between superhydropobicity and superhydrophilicity, Langmuir, 2004(20):5659-5661.
    [21] Feng L., Li S. H., Li H. Q., Super-hydrophobic surface of aligned polyacrylonitrile nanofibers, Angew. Chem. Int. Ed., 2002(41): 1221-1223.
    [22] Feng L., Song Y. L., Zhai J., Creation of a superhydrophobic surface from an amphiphilic polymer, Angew. Chem. Int. Ed., 2003(42):800-802.
    [23] A. Cassie, S. Baxter, Trans. Faraday Soc., 1944, 40, 546.
    [24] Goniakowski J., Gillan M., The Absorption of H2O on TiO2 and SnO2 (110) Studied by First-principles Calculations, Surf. Sci., 1996(350):145-158.
    [25] Gercher V. A., Cox D. F., Themlin J. M., Oxygen-vacancy-controlled chemistry on a metal oxide surface: methanol dissociation and oxidation on SnO2(110), Surf. Sci., 1994(306):279-293.
    [26] Sun D. R., Nakajima A., Fujishima A., et al., Photoinduced Surface WettabilityConversion of ZnO and TiO2 Thin Films, J. Phys. Chem. B, 2001(105):1984-1990.
    [27] Bico J., Thiele U., QuéréD., Wetting of Textured Surfaces, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2002(206):41-46.
    [28] J. Bico, C. Tordeux and D. Quéré, Europhys. Lett., 2001, 55, 214.
    [29] Wang L. Q., Baer D. R., Engelhard M. H., The absorption of liquid and vapor water on TiO2(110) surfaces: the role of defects, Surf. Sci., 1995(344):237-250.
    [30] Wang R., Sakai N., Fujishima A., Studies of surface wettablity conversion on TiO2 single-crystal surface, J. Phys. Chem. B, 1999(103): 2188-2194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700