用户名: 密码: 验证码:
基于2,7-咔唑的新型窄带隙共轭聚合物的合成及光伏性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭聚合物由于在聚合物太阳电池领域潜在的用途而受到广泛关注。经过近几年的研究,聚合物太阳电池的效率已经达到了4~7%的水平,但要在市场上广泛应用,其能量转换效率还是偏低。而现今,合成新型的、具有可见光至近红外吸收的共轭聚合物给体材料,对于提高聚合物太阳电池器件吸收光谱对太阳光谱的匹配,从而提高聚合物太阳电池的能量转换效率具有重要意义。
     聚咔唑及衍生物由于含有一个刚性的平面内联苯单元,其热稳定性及化学稳定性都较高;聚咔唑衍生物具有较高的空穴迁移率、较低的HOMO能级,使得基于聚咔唑衍生物的太阳电池器件的开路电压较高;另外,咔唑的N原子易于发生烷基链取代反应,可以显著增强聚合物溶解性和可加工性,使得聚咔唑及衍生物成为一类受到广泛关注的聚合物给体材料。
     咔唑可以很容易通过与其它单体共聚的方法调节聚合物的吸收和发射波长。通过和吸电子单元的共聚,在主链上形成交替的D-A结构,由于在聚合物主链上分子内的电荷转移效应,可以使聚合物的吸收光谱发生显著的红移,从而覆盖更宽的太阳光谱范围,使得太阳辐射中波长较长的光子也可以在太阳电池器件中被吸收。
     基于这种思路,通过Suzuki缩聚反应将具有强吸电子能力的窄带隙单元5,5-(4′,7′-双(噻吩-2-基)-2′,1′,3′-苯并硒二唑(DBSe)、2,5-二(3-辛基噻吩-2-基)-噻唑[5,4-d]噻唑(Tz)、5,7-二(噻吩-2-基)噻[3,4-b]并[1,4]二嗪(DTP)、2,3-二甲基-5,7-二(2-噻吩基)噻[3,4-b]并[1,4]二嗪(DMTP)、4,7-二(3,4-乙二氧撑噻吩-2-基)-2,1,3-苯并噻二唑(EBTE)引入咔唑主链,使聚合物具有更宽的光谱响应,从而能够吸收、利用更多的太阳光子。在第三章中,制备了2,7-咔唑与DBSe的交替共聚物PCzDBSe。聚合物的光谱响应达到了750nm,与其含硫的的同系物(PCDTBT)相比,光谱响应红移了56nm。FET测试结果表明PCzDBSe的空穴迁移率为3.9×10-4cm~2V-1s-1。PCzDBSe与PC71BM按重量比1:4共混膜制备的太阳电池器件,在模拟太阳光AM1.5(100mW/cm~2)条件下,得到的器件数据如下:Jsc = 7.23mA/cm~2,Voc = 0.75V,FF = 45%,光电转换效率ECE = 2.58%。说明该类材料是一种很有前途的聚合物太阳电池用共轭聚合物给体材料。在第四章中,将2,7-咔唑与Tz和DBT共聚,控制Tz和BDT的投料比,得到了五种共聚物。通过控制Tz和DBT的相对含量,对聚合物的吸收光谱进行了调节。结果表明,随着DBT相对含量的增加,聚合物的吸收光谱逐渐红移,当DBT相对含量为37.5%时,吸收光谱响应红移最大,到了696nm。与DBT相对含量为50%时的聚合物PCzDBT的光谱响应(668nm)相比,向长波方向移动了28nm。以这五种共聚物和PC61BM共混膜制备得到的太阳电池器件,在模拟太阳光AM1.5(100 mW/cm~2)条件下,得到了2.18~3.45%的能量转换效率;其中,以PCzTzDBT37为给体时,得到了最好的器件数据:Jsc = 6.27mA/cm~2,Voc = 0.85V,FF = 60.55%,光电转换效率ECE = 3.45%。
     在第五章中,将2,7-咔唑分别与噻[3,4-b]并[1,4]二嗪的衍生物DTP和DMTP共聚,得到了两种交替共聚物PCzDTP和PCzDMTP。其光谱响应扩展到了819nm(PCzDTP)和803nm(PCzDMTP)。由于DTP和DMTP的吸电子能力比DBT更强,与咔唑和DBT的交替共聚物(668nm)相比,PCzDTP和PCzDMTP吸收光谱分别红移了151nm和135nm。以这两种聚合物为给体的太阳电池器件,在模拟太阳光AM1.5 (100 mW/cm~2)条件下,获得了0.4~1%的光电转换效率。噻[3,4-b]并[1,4]二嗪结构中的氢原子被甲基取代后,其热稳定性和外量子效率都有了增加,使其太阳电池器件的性能也有了提升。
     在第六章中,将2,7-咔唑与窄带隙单元EBTE共聚,得到交替共聚物PCzEBTE。与其噻吩的同系物相比,由于EDOT比噻吩供电子能力更强,使得PCzEBTE的带隙更窄,其光谱响应(726nm)比PCzDBT(668nm)红移了58nm。以PCzEBTE和PCBM按重量比1:4共混膜制备得到的太阳电池器件。在模拟太阳光AM1.5(100 mW/cm~2)条件下,得到的器件数据如下:Jsc = 2.22mA/cm~2,Voc = 0.8V,FF = 36%,光电转换效率ECE = 0.64%。
π-conjugated polymers have attracted much attention for the pontential use as the donor materials in the polymer photovoltaic solar cells (PPVCs). Although the energy conversion efficiency of 4~7% of PPVCs have been achieved recently, it is necessary to improve the efficiency for commercial use. The optical active polymers, currently used in PPVCs devices are typically low bandgap conjugated polymer. In order to match solar terrestrial radiation, and thus improving the device efficiency, many researchers have foucsed on the synthesis of novel conjugated polymers with extending absorption.
     As compared with other conjugated polymer donors, poly(2,7-carbazole) derivatives (Cz) exhibit some unique merits such as excellent thermal stability duo to the rigid biphenyl structure, high hole mobility, low energy lying highest occupied molecular orbital (HOMO), and therefore can result in high air stability and high Voc. And the N-H could be modified by alkyl to give the polymer good solubility and processablity.
     The absorbency spectrum of poly(2,7-carbazole) derivatives could be tuned by copolymerization of 2,7-carbazole and other monomers. When copolymerized with low bandgap unit, the absorbency spectrum would red-shift because of the intramolecular charge transfer effect, thus enabling the photocurrent generation from lower energy photons.
     In this dissertation, the low bandgap units of 5,5-(4,7-di-2-thienyl-2,1,3-Benzoselenadia zole) (DBSe), 2,5-bis(3-octylthiophene-2-yl)-thiazole[5,4-d] thiazole (Tz), 5,7-(di-2-thienyl)- theno[3,4-b][1,4]pyrazine] (DTP), 2,3-dimethyl-5,7-(di-2-thienyl)-theno[3,4-b][1,4]pyrazine] (DMTP), 5,5-(4′,7′-di-3,4-ethylene dioxythiophene-2-yl)-2′,1′,3′-benzothiadiazole] (EBTE) were copolymerized with N-9′-heptadecanyl-2,7-carbazole by Suzuki polycondensation. And five series of low bandgap polymers were prepared to red-shift the absorbency spectrum of the copolymer.
     In charpter 3, alternating copolymer of Cz and DBSe (PCzDBSe) was synthesed. The spectrum response is extended to 750nm, which was 56nm red-shifted compared with its S analogue(PCDTBT). The hole mobility is estimated to be 3.9×10-4cm~2V-1s-1. Polymer solar cells (PSCs) based on the blends of PCzDBSe and [6,6]-phenyl-C71 butyric acid methyl ester (PC71BM) with a weight ratio of 1: 4 were fabricated. Under AM 1.5 (AM, air mass), 100 mW/cm~2 illumination, the devices were found to have an open-circuit (Voc) of 0.75V, a short-circuit current density (Jsc) of 7.23mA/cm~2, a fill factor (FF) of 45% and a power conversion efficiency (PCE) of 2.58%. The primary results indicate that PCzDBSe is a promising donor for polymer solar cells.
     In charpter 4, five copolymers based on Cz, Tz and DBT were prepared. The absorption of the polymer was red-shifted with the increasing content of DBT, and the spectrum response is extended to 696nm when the DBT content is 37.5%. Polymer solar cells were fabricated using the blend of the copolymer and PCBM as the active layer. Under AM 1.5(AM, air mass), 100 mW/cm~2 illumination, the bset device performances were recorded to be an open-circuit (Voc) of 0.85V, a short-circuit current density (Jsc) of 6.27mA/cm~2, a fill factor (FF) of 60.55% and a power conversion efficiency (PCE) of 3.45%, when the weight ratio of PCzTzDBT37:PCBM was 1:2.
     In charpter 5, Cz is copolymerized with DTP and DMTP The absorption response is extended to 819nm (PCzDTP) and 803nm (PCzDMTP). Polymer solar cells (PSCs) based on the blends of the two polymers and PCBM were fabricated. Under AM 1.5(AM, air mass), 100 mW/cm~2 illumination, a power conversion efficiency (PCE) of 0.41~0.99% was recorded. In charpter 6, Cz is copolymerized with EBTE. The spectrum response of PCzEBTE (726nm) is 58nm red-shift compared with its thiophene analogue PCzDBT, because the electron-donating effect of EDOT is stronger than thiophene. Polymer solar cells (PSCs) based on the blends of PCzEBTE and PCBM with a weight ratio of 1: 4 were fabricated. Under AM 1.5(AM, air mass), 100 mW/cm~2 illumination, the devices were found to have an open-circuit (Voc) of 0.8V, a short-circuit current density (Jsc) of 2.22mA/cm~2, a fill factor (FF) of 36% and a power conversion efficiency (PCE) of 0.64 %.
引文
[1] Chiang C. K., Fincher C. R., Park Y. W., et al., Electrical-conductivity in doped polyacetylene. Physical Review Letters, 1977, 39(17):1098-1101
    [2] Chiang C. K., Druy M. A., Gau S. C., et al., Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. Journal of the American Chemical Society, 1978, 100(3):1013-1015
    [3] Heeger A. J., Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel lecture). Angewandte Chemie-International Edition, 2001, 40(14):2591-2611
    [4] Doi S., Kuwabara M., Noguchi T., et al., Organic electroluminescent devices having poly(dialkoxy-p-phenylene vinylenes) as a light-emitting material. Synthetic Metals, 1993, 57(1):4174-4179
    [5] Johansson D. M., Srdanov G., Yu G., et al., Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes). Macromolecules, 2000, 33(7):2525-2529
    [6] Yang Y., Pei Q. and Heeger A. J., Efficient blue polymer light-emitting diodes from a series of soluble poly(paraphenylene)s. Journal of Applied Physics, 1996, 79(2):934-939
    [7] Rehahn M., Schlueter A. D., Wegner G., et al., Soluble poly(para-phenylenes). 2. Improved synthesis of poly(para-2,5-di-n-hexylphenylene) via palladium-catalyzed coupling of 4-bromo-2,5-di-n-hexylbenzeneboronic acid. Polymer, 1989, 30(6):1060-1062
    [8] Rehahn M., Schlueter A. D., Wegner G., et al., Soluble poly(para-phenylenes). 1. Extension of the Yamamoto synthesis to dibromobenzenes substituted with flexible side chains. Polymer, 1989, 30(6):1054-1059
    [9] Pei J., Yu W. L., Ni J., et al., Thiophene-based conjugated polymers for light-emitting diodes: Effect of aryl groups on photoluminescence efficiency and redox behavior. Macromolecules, 2001, 34(21):7241-7248
    [10] Groenendaal L. B., Jonas F., Freitag D., et al., Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced Materials, 2000, 12(7):481-494
    [11] Pei Q. B. and Yang Y., Efficient photoluminescence and electroluminescence from a soluble polyfluorene. Journal of the American Chemical Society, 1996,118(31):7416-7417
    [12] Braun D. and Heeger A. J., Visible-light emission from semiconducting polymer diodes. Applied Physics Letters, 1991, 58(18):1982-1984
    [13] Burn P. L., Holmes A. B., Kraft A., et al., Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning. Nature, 1992, 356(6364):47-49
    [14] Heeger A. J., Light emission from semiconducting polymers: Light-emitting diodes, light-emitting electrochemical cells, lasers and white light for the future. Solid State Communications, 1998, 107(11):673-679
    [15] Wohrle D. and Meissner D., Organic Solar-Cells. Advanced Materials, 1991, 3(3):129-138
    [16] Smilowitz L., Sariciftci N. S., Wu R., et al., Photoexcitation spectroscopy of conducting-polymer-C(60) composites-photoinduced electron-transfer. Physical Review B, 1993, 47(20):13835-13842
    [17] Yu G., Wang J., McElvain J., et al., Large-area, full-color image sensors made with semiconducting polymers. Advanced Materials, 1998, 10(17):1431-1434
    [18] McQuade D. T., Pullen A. E. and Swager T. M., Conjugated polymer-based chemical sensors. Chemical Reviews, 2000, 100(7):2537-2574
    [19] Huang F., Hou L. T., Wu H. B., et al., High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: Green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors. Journal of the American Chemical Society, 2004, 126(31):9845-9853
    [20] Forrest S. R., Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chemical Reviews, 1997, 97(6):1793-1896
    [21] Bao Z. A., Lovinger A. J. and Brown J., New air-stable n-channel organic thin film transistors. Journal of the American Chemical Society, 1998, 120(1):207-208
    [22] Sariciftci N. S., Smilowitz L., Heeger A. J., et al., Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258(5087):1474-1476
    [23] Yu G., Zhang C. and Heeger A. J., Dual-function semiconducting polymer devices-light-emitting and photodetecting diodes. Applied Physics Letters, 1994, 64(12):1540-1542
    [24] Sariciftci N. S., Braun D., Zhang C., et al., Semiconducting polymer- buckminsterfullerene heterojuncions-diodes, photodiodes, and photovoltaic cells. Applied Physics Letters, 1993, 62(6):585-587
    [25] Yu G., Gao J., Hummelen J. C., et al., Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243):1789-1791
    [26] Shaheen S. E., Brabec C. J., Sariciftci N. S., et al., 2.5% efficient organic plastic solar cells. Applied Physics Letters, 2001, 78(6):841-843
    [27] Hoppe H. and Sariciftci N. S., Morphology of polymer/fullerene bulk heterojunction solar cells. Journal of Materials Chemistry, 2006, 16(1):45-61
    [28] Yang X. N., van Duren J. K. J., Janssen R. A. J., et al., Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules, 2004, 37(6):2151-2158
    [29] Yang X. and Loos J., Toward high-performance polymer solar cells: The importance of morphology control. Macromolecules, 2007, 40(5):1353-1362
    [30] Ma W. L., Yang C. Y., Gong X., et al., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005, 15(10):1617-1622
    [31] Li G., Shrotriya V., Yao Y., et al., Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). Journal of Applied Physics, 2005, 98(4):043704-043704
    [32] Kim Y., Choulis S. A., Nelson J., et al., Composition and annealing effects in polythiophene/fullerene solar cells. Journal of Materials Science, 2005, 40(6):1371-1376
    [33] Kim J. Y., Kim S. H., Lee H. H., et al., New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Advanced Materials, 2006, 18(5):572-576
    [34] Kim Y., Cook S., Choulis S. A., et al., Effect of electron-transport polymer addition to polymer/fullerene blend solar cells. Synthetic Metals, 2005, 152(1-3):105-108
    [35] Kim Y., Cook S., Tuladhar S. M., et al., A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat. Mater., 2006, 5(3):197-203
    [36] Akoudad S. and Roncali J., Electrogenerated poly(thiophenes) with extremely narrow bandgap and high stability under n-doping cycling. Chemical Communications, 1998, 19):2081-2082
    [37] Yamamoto T., Komarudin D., Arai M., et al., Extensive studies on pi-stacking of poly(3-alkylthiophene-2,5-diyl)s and poly(4-alkylthiazole-2,5-diyl)s by opticalspectroscopy, NMR analysis, light scattering analysis, and X-ray crystallography. Journal of the American Chemical Society, 1998, 120(9):2047-2058
    [38] Zhang Q. T. and Tour J. M., Alternating donor/acceptor repeat units in polythiophenes. Intramolecular charge transfer for reducing band gaps in fully substituted conjugated polymers. Journal of the American Chemical Society, 1998, 120(22):5355-5362
    [39] Svensson M., Zhang F. L., Veenstra S. C., et al., High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials, 2003, 15(12):988-991
    [40] Wang E. G., Wang M., Wang L., et al., Donor Polymers Containing Benzothiadiazole and Four Thiophene Rings in Their Repeating Units with Improved Photovoltaic Performance. Macromolecules, 2009, 42(13):4410-4415
    [41] Zhou Q. M., Hou Q., Zheng L. P., et al., Fluorene-based low band-gap copolymers for high performance photovoltaic devices. Applied Physics Letters, 2004, 84(10):1653-1655
    [42] Blouin N., Michaud A., Gendron D., et al., Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. Journal of the American Chemical Society, 2008, 130(2):732-742
    [43] Blouin N., Michaud A. and Leclerc M., A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Advanced Materials, 2007, 19(2295-2300
    [44] Blouin N., Michaud A. and Leclerc M., New low bandgap poly(2,7-carbazole) derivatives in high performance solar cells. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry), 2007, 48(1):76-77
    [45] Wakim S., Beaupre S., Blouin N., et al., Highly efficient organic solar cells based on a poly(2,7-carbazole) derivative. Journal of Materials Chemistry, 2009, 19(30):5351-5358
    [46] Park S. H., Roy A., Beaupre S., et al., Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics, 2009, 3(5):297-303
    [47] Boudreault P. L. T., Michaud A. and Leclerc M., A new poly(2,7-dibenzosilole) derivative in polymer solar cells. Macromolecular Rapid Communications, 2007, 28(2176-2179
    [48] Wang E. G., Wang L., Lan L. F., et al., High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Applied Physics Letters, 2008, 92(3):033307
    [49] Lu J. P., Liang F. S., Drolet N., et al., Crystalline low band-gap alternating indolocarbazole and benzothiadiazole-cored oligothiophene copolymer for organicsolar cell applications. Chemical Communications, 2008, 42):5315-5317
    [50] Zhou E. J., Yamakawa S., Zhang Y., et al., Indolo[3,2-b]carbazole-based alternating donor-acceptor copolymers: synthesis, properties and photovoltaic application. Journal of Materials Chemistry, 2009, 19(41):7730-7737
    [51] Peet J., Kim J. Y., Coates N. E., et al., Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials, 2007, 6(7):497-500
    [52] Lee J. K., Ma W. L., Brabec C. J., et al., Processing additives for improved efficiency from bulk heterojunction solar cells. Journal of the American Chemical Society, 2008, 130(11):3619-3623
    [53] Soci C., Hwang I. W., Moses D., et al., Photoconductivity of a low-bandgap conjugated polymer. Advanced Functional Materials, 2007, 17(4):632-636
    [54] Chan S. H., Chen C. P., Chao T. C., et al., Synthesis, characterization, and photovoltaic properties of novel semiconducting polymers with thiophene-phenylene-thiophene (TPT) as coplanar units. Macromolecules, 2008, 41(15):5519-5526
    [55] Chen C. P., Chan S. H., Chao T. C., et al., Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells. Journal of the American Chemical Society, 2008, 130(38):12828-12833
    [56] Zhou E. J., Nakamura M., Nishizawa T., et al., Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2 ',3 '-d]pyrrole. Macromolecules, 2008, 41(22):8302-8305
    [57] Yue W., Zhao Y., Shao S. Y., et al., Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. Journal of Materials Chemistry, 2009, 19(15):2199-2206
    [58] Zhang S. M., Guo Y. L., Fan H. J., et al., Low Bandgap pi-Conjugated Copolymers Based on Fused Thiophenes and Benzothiadiazole: Synthesis and Structure-Property Relationship Study. Journal of Polymer Science Part a-Polymer Chemistry, 2009, 47(20):5498-5508
    [59] Hou J. H., Chen H. Y., Zhang S. Q., et al., Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. Journal of the American Chemical Society, 2008, 130(48):16144-16145
    [60] Liao L., Dai L. M., Smith A., et al., Photovoltaic-active dithienosilole-containingpolymers. Macromolecules, 2007, 40(26):9406-9412
    [61] Wong W. Y., Wang X. Z., He Z., et al., Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nature Materials, 2007, 6(7):521-527
    [62] Liang Y. Y., Feng D. Q., Wu Y., et al., Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. Journal of the American Chemical Society, 2009, 131(22):7792-7799
    [63] Liang Y. Y., Wu Y., Feng D. Q., et al., Development of New Semiconducting Polymers for High Performance Solar Cells. Journal of the American Chemical Society, 2009, 131(1):56-57
    [64] Thompson B. C. and Frechet J. M. J., Organic photovoltaics - Polymer-fullerene composite solar cells. Angewandte Chemie-International Edition, 2008, 47(1):58-77
    [65] Spanggaard H. and Krebs F. C., A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells, 2004, 83(2-3):125-146
    [66] Brabec C. J., Organic photovoltaics: technology and market. Solar Energy Materials and Solar Cells, 2004, 83(2-3):273-292
    [67] Brabec C. J., Sariciftci N. S. and Hummelen J. C., Plastic solar cells. Advanced Functional Materials, 2001, 11(1):15-26
    [68] Fedorko P. and Kanicki J., Electrical and photovoltaic properties of metal contacts to trans-polyacetylene. Thin Solid Films, 1984, 113(1):1-14
    [69] Kanicki J., Metal polyacetylene schottky-barries diodes. Molecular Crystals and Liquid Crystals, 1984, 105(1-4):203-217
    [70] Kanicki J. and Fedorko P., Electrical and photovoltaic properties of trans-polyacetylene. Journal of Physics D-Applied Physics, 1984, 17(4):805-817
    [71] Sariciftci N. S., Braun D., Zhang C., et al., Semiconducting polymer-buckminster fullerene heterojunctions–diodes, photodiodes, and photovoltaic cells. Applied Physics Letters, 1993, 62(6):585-587
    [72] Brabec C. J., Shaheen S. E., Winder C., et al., Effect of LiF/metal electrodes on the performance of plastic solar cells. Applied Physics Letters, 2002, 80(7):1288-1290
    [73] Geens W., Shaheen S. E., Wessling B., et al., Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent. Organic Electronics, 2002, 3(3-4):105-110
    [74] Li G., Shrotriya V., Huang J. S., et al., High-efficiency solution processable polymerphotovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4(11):864-868
    [75] Dennler G., Scharber M. C. and Brabec C. J., Polymer-Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials, 2009, 21(13):1323-1338
    [76] Romero D. B., Schaer M., Leclerc M., et al., The role of carbazole in organic light-emitting devices. Synthetic Metals|Synthetic Metals, 1996, 80(3):271-277
    [77] Zhang C., Vonseggern H., Kraabel B., et al., Blue emission from polymer light-emitting-diodes using nonconjugated polymer blends with air-stable electrodes. Synthetic Metals, 1995, 72(2):185-188
    [78] Gautier-Thianche E., Sentein C., Lorin A., et al., Effect of coumarin on blue light-emitting diodes based on carbazol polymers. Journal of Applied Physics, 1998, 83(8):4236-4241
    [79] Leclerc M., Polyfluorenes: Twenty years of progress. Journal of Polymer Science Part a-Polymer Chemistry, 2001, 39(17):2867-2873
    [80] Admassie S., Inganas O., Mammo W., et al., Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers. Synthetic Metals, 2006, 156(7-8):614-623
    [81] Gadisa A., Mammo W., Andersson L. M., et al., A new donor-acceptor-donor polyfluorene copolymer with balanced electron and hole mobility. Advanced Functional Materials, 2007, 17(18):3836-3842
    [82] Yang R. Q., Tian R. Y., Yan J. G., et al., Deep-red electroluminescent polymers: Synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices. Macromolecules, 2005, 38(2):244-253
    [83] Wienk M. M., Kroon J. M., Verhees W. J. H., et al., Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angewandte Chemie-International Edition, 2003, 42(29):3371-3375
    [84] Yang C. H., Li H. M., Sun Q. J., et al., Photovoltaic cells based on the blend of MEH-PPV and polymers with substituents containing C-60 moieties. Solar Energy Materials and Solar Cells, 2005, 85(2):241-249
    [85] Veenstra S. C., Verhees W. J. H., Kroon J. M., et al., Photovoltaic properties of a conjugated polymer blend of MDMO-PPV and PCNEPV. Chemistry of Materials, 2004, 16(12):2503-2508
    [86] Kietzke T., Horhold H. H. and Neher D., Efficient polymer solar cells based on M3EH-PPV. Chemistry of Materials, 2005, 17(6532-6537
    [87] Egbe D. A. M., Kietzke T., Carbonnier B., et al., Synthesis, characterization, and photophysical, electrochemical, electroluminescent, and photovoltaic properties of yne-containing CN-PPVs. Macromolecules, 2004, 37(24):8863-8873
    [88] Kietzke T., Egbe D. A. M., Horhold H. H., et al., Comparative study of M3EH-PPV-based bilayer photovoltaic devices. Macromolecules, 2006, 39(12):4018-4022
    [89] Greenwald Y., Xu X., Fourmigue M., et al., Polymer-polymer rectifying heterojunction based on poly(3,4-dicyanothiophene) and MEH-PPV. Journal of Polymer Science Part a-Polymer Chemistry, 1998, 36(17):3115-3120
    [90] Chochos C. L., Economopoulos S. P., Deimede V., et al., Synthesis of a soluble n-type cyano substituted polythiophene derivative: A potential electron acceptor in polymeric solar cells. Journal of Physical Chemistry C, 2007, 111(28):10732-10740
    [91] Zhan X. W., Tan Z. A., Domercq B., et al., A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. Journal of the American Chemical Society, 2007, 129(23):7246-7247
    [92] Sommer M., Lindner S. M. and Thelakkat M., Microphase-separated donor-acceptor diblock copolymers: Influence of HOMO energy levels and morphology on polymer solar cells. Advanced Functional Materials, 2007, 17(9):1493-1500
    [93] Alam M. M. and Jenekhe S. A., Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers. Chemistry of Materials, 2004, 16(23):4647-4656
    [94] Kim Y., Cook S., Choulis S. A., et al., Organic photovoltaic devices based on blends of regioregular poly(3-hexylthiophene) and poly(9.9-dioctylfluorene-co-benzothiadiazole). Chemistry of Materials, 2004, 16(23):4812-4818
    [95] Babudri F., Cardone A., Farinola G. M., et al., Synthesis and optical properties of a copolymer of tetrafluoro- and dialkoxy-substituted poly (p-phenylenevinylene) with a high percentage of fluorinated units. Macromolecular Chemistry and Physics, 2003, 204(13):1621-1627
    [96] Fukuda M., Sawada K. and Yoshino K., Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics. J. Polym. Sci., Part A: Polym. Chem., 1993, 31(10):2465-2471
    [97] Yamamoto T., Hayashi Y. and Yamamoto A., A novel type of polycondensation utilizing transition metal-catalyzed C-C coupling. I. Preparation of thermostablepolyphenylene type polymers. Bull. Chem. Soc. Jpn., 1978, 51(7):2091-2097
    [98] Yamamoto T., Electrically conducting and thermally stable pi-conjugated polyarylenes prepared by organometallic processes. Prog. Polym. Sci., 1992, 17(6):1153-1205
    [99] Kreyenschmidt M., Klaerner G., Fuhrer T., et al., Thermally stable blue-light-emitting copolymers of poly(alkylfluorene). Macromolecules, 1998, 31(4):1099-1103
    [100]Miyaura N., Yanagi T. and Suzuki A., The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun., 1981, 11(7):513-519
    [101]Stille J. K., Palladium-catalyzed coupling reactions of organic electrophiles with organic tin compounds. Angew. Chem., 1986, 98(6):504-519
    [102]Qin R., Li W., Li C., et al., A planar copolymer for high efficiency polymer solar cells. J Am Chem Soc, 2009, 131(41):14612-14613
    [103]Baek N. S., Hau S. K., Yip H. L., et al., High performance amorphous metallated pi-conjugated polymers for field-effect transistors and polymer solar cells. Chemistry of Materials, 2008, 20(18):5734-5736
    [104] Hou J. H., Chen T. L., Zhang S. Q., et al., Poly [4,4-bis(2-ethylhexyl)cyclopenta [2, 1-b;3,4-b '] dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl], a New Low Band Gap Polymer in Polymer Solar Cells. Journal of Physical Chemistry C, 2009, 113(4):1601-1605
    [105]Scharber M. C., Wuhlbacher D., Koppe M., et al., Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Advanced Materials, 2006, 18(6):789-794
    [106]Naraso and Wudl F., Two poly (2,5-thienythiazolothiazole)s: Observation of spontaneous ordering in thin films. Macromolecules, 2008, 41(9):3169-3174
    [107] Osaka I., Sauve G., Zhang R., et al., Novel thiophene-thiazolothiazole copolymers for organic field-effect transistors. Advanced Materials, 2007, 19(23):4160-4165
    [108]夏养君,邓先宇,王藜,李贤真,曹墉,一类近红外电致发光芴基共聚物的合成与性能研究.高分子学报, 2006, 2006(5):697-702
    [109]Xia Y., Luo J., Deng X., et al., Novel random low-band-gap fluorene-based copolymers for deep red/near infrared light-emitting diodes and bulk heterojunction photovoltaic cells. Macromol. Chem. Phys., 2006, 207(5):511-520
    [110]Wang E. G., Li C., Zhuang W. L., et al., High-efficiency red and green light-emitting polymers based on a novel wide bandgap poly( 2,7-silafluorene). [Article]. Journal ofMaterials Chemistry, 2008, 18(7):797-801
    [111]Slooff L. H., Veenstra S. C., Kroon J. M., et al., Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling. Applied Physics Letters, 2007, 90(14):143506-143501-143503
    [112]Muhlbacher D., Scharber M., Morana M., et al., High photovoltaic performance of a low-bandgap polymer (vol 18, pg 2884, 2006). Advanced Materials, 2006, 18(22):2931-2931

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700