用户名: 密码: 验证码:
几种氧化物微纳米材料的制备、表征与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米材料以其优异的催化、光学和电学等性质引起了科学工作者的浓厚兴趣。由于形貌、尺寸以及结构会强烈影响微纳米材料的物理和化学性质,微纳米材料的可控生长已经成为当今纳米科技研究的重要内容。在本论文研究中,我们通过水热过程或微波辅助的水热过程制备了几种具有特定形貌的氧化物微纳米材料并研究了它们的光催化性质。论文的主要内容包括:
     1以硝酸铋、钨酸钠和六次甲基四胺为反应物,通过微波辅助水热过程制备了花状Bi2W06。利用X-射线衍射谱、电子能谱、场发射扫描电镜以及高分辨透射电镜表征了产物的物相和形貌。实验表明高温有利于花状微结构的生成。六次甲基四胺和硝酸的量会强烈影响产物的形貌。时间演化实验表明Bi2W06的生长过程是一个奥斯瓦尔德熟化过程。花状Bi2W06的形貌具有较好的热稳定性。可见光照射下所制备的Bi2W06可以有效地降解罗丹明B。形貌会强烈影响产物的光催化效率。焙烧处理会明显地降低花状Bi2W06微结构的光催化活性并且焙烧温度越高光催化活性越低。
     2(1)以硝酸铋、柠檬酸三钠、聚丙烯酰胺和尿素为原料,通过水热过程制备了柿子状(BiO)2C03。产物的物相和形貌通过X-射线衍射谱、电子能谱、场发射扫描电镜、高分辨透射电镜以及选区电子衍射谱得到表征。实验表明反应试剂如柠檬酸三钠、聚丙烯酰胺和尿素对于最终产物的物相和形貌有很大的影响。首先,适当用量的柠檬酸三钠是制备多级自组装微结构的必要条件。第二,聚丙烯酰胺可以影响纳米片进行自组装的方式从而影响最终产物的形貌。第三,在我们的反应体系中碳酸根离子优先来源于水热过程中尿素的水解。时间演化实验揭示了柿子状(BiO)2C03自组装微结构的生长过程。利用柿子状(BiO)2C03作为牺牲模板通过化学转化过程成功制备了.Bi2S3,Bi2Te3以及铋单质微结构。在模拟太阳光的照射下所制备的(Bi0)2C03可以有效地催化降解罗丹明B和曙红钠盐并且具有良好的稳定性和可重复使用性。
     (2)以硝酸铋和尿素为原料,通过微波辅助水热过程制备了(BiO)2C03单晶纳米片。利用X-射线衍射谱、电子能谱、场发射扫描电镜、高分辨透射电镜以及选区电子衍射谱表征了产物的物相和形貌。研究了实验条件对于产物形貌的影响。在模拟太阳光的照射下(Bi0)2C03纳米片可以有效地降解罗丹明B。相同条件下的光催化实验结果显示(BiO)2C03单晶纳米片的降解速率常数是上述水热过程制备的柿子状(BiO)2C03的5倍。
     3以硝酸锌、五氧化二钒和氢氧化钠为原料,通过十六烷基三甲基溴化铵(CTAB)辅助的水热过程制备了Zn3(OH)2V2O7·2H20纳米盘。产物的物相和形貌通过X-射线衍射谱、电感耦合等离子体发射光谱、傅立叶红外光谱、场发射扫描电镜、高分辨透射电镜以及电子能谱得到表征。表面活性剂CTAB的用量在控制产物的形貌、尺寸和自组装过程中起到了关键的作用。温度对照实验显示高温有利于层-层自组装结构的生成。同时,通过一系列的时间演化实验研究了晶体生长行为和自组装过程。
     4以硝酸铜为铜源,分别以氢氧化钠、尿素和氨水为碱源,通过微波辅助水热过程制备了三种形貌的CuO微纳米材料。利用X-射线衍射谱、电子能谱、场发射扫描电镜、高分辨透射电镜以及选区电子衍射谱表征了产物的物相和形貌。通过时间演化实验研究了三种形貌CuO产物的生长过程。发现在上述三种形貌产物的生长过程中都存在中间产物单斜相Cu2(OH)3NO3。
Recently, nano/micromaterials have received extensive interests due to their excellent performance in catalysis, optics, and electronics, etc. The controlled growth of nano/micromaterials was very important in current nanoscience and nanotechnology, as the morphology, size and crystal structure of the nano/micromaterials can greatly influence the physical and chemical properties. In this dissertation, we had prepared several oxides nano/micromaterials with different morphologies by hydrothermal process or microwave-assisted hydrothermal process and studied their photocatalytic properties. The main results can be summarized as follows:
     1 Flower-like Bi2WO6 microstructures were prepared via a simple, rapid, microwave-assisted solution-phase process using Bi(NO3)3, Na2WO4, and hexamethylene tetramine as the reactants. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HRTEM) were employed to characterize the phases and morphologies of the products. The high temperature is found to be favorable for the formation of the flower-like microstructures. The amounts of the hexamethylene tetramine and HNO3 can greatly influence the morphologies of the products. The time-dependent experiments showed an Ostwald ripening mechanism in the crystal growth process. The flower-like morphologies had a good thermal stability. The as-prepared Bi2WO6 was able to efficiently degrade Rhodamine B (RhB) under visible light irradiation. The morphologies of the products could strongly influence the photocatalytic efficiency. Calcination was found to decrease the photocatalytic performance of flower-like Bi2WO6 and the higher calcined temperature corresponds to the lower activity.
     2 (1) Self-assembled persimmon-like (BiO)2CO3 microstructures were prepared via a simple hydrothermal process employing Bi(NO3)3, trisodium citrate, polyacrylamide, and urea as the reactants. XRD, EDS, FE-SEM, selected area electron diffraction (SAED) and HRTEM were employed to characterize the phases and morphologies of the products. The reactants could greatly influence the phases and morphologies of the final products. Firstly, the suitable amount of trisodium citrate was a necessary condition to prepare the assembled microstructures. Secondly, polyacrylamide can influence the assembly process of the final products. Thirdly, the carbonate ion could preferentially come from the decomposition of the urea via the hydrolysis reaction under hydrothermal conditions. The growth process of the persimmon-like (BiO)2CO3 microstructures has been investigated. The persimmon-like (BiO)2CO3 could be utilized as the sacrificial templates to synthesize Bi2S3, Bi2Te3 and bismuth microstructures by a chemical transformation process. The as-prepared (BiO)2CO3 was able to efficiently degrade RhB and eosin sodium salt under simulated solar irradiation and had a good stability and repeatability after three recycles.
     (2) (BiO)2CO3 single crystal nanoplates were prepared via a simple microwave-assisted hydrothermal process using Bi(NO3)3, and urea as the reactants. XRD, EDS, FE-SEM, SAED and HRTEM were employed to characterize the phases and morphologies of the products. The controlled experiments were operated to study the influence of the experimental parameters to the morphologies of the final products. The (BiO)2CO3 single crystal nanoplates was able to efficiently degrade RhB under simulated solar irradiation. Under the same photocatalytic conditions, the rate constant of the (BiO)2CO3 single crystal nanoplates was 5 times higher than the above persimmon-like (BiO)2CO3 microstructures prepared via the hrdrothermal process.
     3 Zn3(OH)2V2O7-2H2O nanodisks were prepared by a simple CTAB-assisted hydrothermal route employing the reaction of zinc nitrate, vanadium pentoxide and sodium hydroxide. The phases and morphologies of the products were characterized by powder XRD, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), Fourier transform infrared spectroscopy (FTIR), HRTEM, EDS and FE-SEM. The results showed that the amount of the CTAB played a key role in controlling the morphology, the size and the self-assembly process of the products. The controlled experiments showed that the high temperature is favorable for the formation of the layer-by-layer self-assembled structures. The crystal growth behavior and the self-assembly process were also investigated by the time evolution experiments.
     4 CuO nano/micromaterials with three morphologies were prepared via a simple, rapid, microwave-assisted solution-phase process employing Cu(NO3)2 as the copper source, NaOH, urea, and ammonia as the alkali source, respectively. XRD, EDS, FE-SEM HRTEM and SAED were employed to characterize the phases and morphologies of the products. The time-dependent experiments were operated to investigate the crystal growth processes of the products prepared with different alkali source, respectively. The intermediate monoclinic phase Cu2(OH)3NO3 were found in crystal growth processes of three products with different morphologies.
引文
1 张立德,牟季美,纳米材料与纳米结构,科学出版社,2001.
    2 Y. W. Jun, J. S. Choi, and J. Cheon, Angew. Chem. Int. Ed.,2006,45,3414-3439.
    3 (a) A. Kudo and Y. Miseki, Chem. Soc. Rev.,2009,38,253-278; (b) A. H. Lu, E. L. Salabas, and F. Schuth, Angew. Chem. Int. Ed.,2007,46,1222-1244; (c) N. A. Frey, S. Peng, K. Cheng, and S. H. Sun, Chem. Soc. Rev,2009,38,2532-2542.
    4 (a) A. P. Alivisatos, Seienee,1996,271,933-937; (b) J. T. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res.,1999,32,435-445.
    5 (a) J. P. Liu, X. T. Huang, K. M. Sulieman, F. L. Sun, and X. He, J. Phys. Chem. B,2006,110,10612-10618; (b) H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, J. Am. Chem. Soc.,2006,128,6426-6436; (c) P. Zhou, Z. H Dai, M. Fang, X. H Huang, and J. C. Bao, J. Phys. Chem. C,2007, 111,12609-12616.
    6 王世敏,许祖勋,傅晶,纳米材料制备技术,化学工业出版社,2002.
    7 E. Filippo, D. Manno, and A. Serra, Cryst. Growth Des.,2010,10,4890-4897.
    8 X. Duan and C. M. Liber, J. Am. Chem. Soc.,2000,122,188-189.
    9 Z. P. Sun, L. Liu, L. Zhang, and D.Z. Jia, Nanotechnology,2006,17,2266-2270.
    10 X. R. Ye, D. Z. Jia, J. Q. Yu, X. Q. Xin, and Z. L. Xue, Adv. Mater.,1999,11, 941-942.
    11 Z. X. Tang, C. M. Sorensen, K. J. Klabunde, and G. C. Hadjipanayis, Phys. Rev. Lett.,1991,67,3602-3605.
    12 H. L. Chen, X. P. Qiu, W. T. Zhu, and P. Hagenmuller, Electrochem. Comm.,2002, 4,488-491.
    13 Z. D. Huang, X. M. Liu, B. Zhang, S. W. Oh, P. C. Ma and J. K. Kim, Scripta Mater.,2011,64,122-125.
    14 J. Z. Zhang, Y. D. Shen, Y. W. Li, Z. G. Hu, and J. H. Chu, J. Phys. Chem. C, 2010,114,15157-15164.
    15 J. Ahmed, B. Kuma, A. M. Mugweru, P. Trinh, K. V. Ramanujachary, S. E. Lofland, Govind, and A. K. Ganguli, J. Phys. Chem. C,2010,114,18779-18784.
    16 C. Kind, R. Popescu, E. Muller, D. Gerthsen, and C. Feldmann, Nanoscale,2010, 2,2223-2229.
    17 M. Rajamathi and R. Seshadri, Curr. Opin. Solid State Mater. Sci.,2002,6, 337-345.
    18 K. Byrappa and T. Adschiri, Prog. Cryst. Growth Char act. Mater.,2007,53, 117-166.
    19 N. Cordente, M. Respaud, F. Senocq, M. J. Casanove, C. Amiens, and B. Chaudret, Nano Lett.,2001,1,565-568.
    20 K. J. Carroll, D. M. Hudgins, S. Spurgeon, K. M. Kemner, B. Mishra, M. I. Boyanov, L. W. Brown, M. L. Taheri, and E. E. Carpenter, Chem. Mater.,2010, 22,6291-6296.
    21 X. P. Ge, M. Z. Wang, Q. Yuan, H. Wang and X. W. Ge, Chem. Commun.,2009, 2765-2767.
    22徐兵,赵惠忠,贺中央,应用化学,2010,27,983-986.
    23 B. L. Cushing, V. L. Kolesnichenko, and C. J. O'Connor, Chem. Rev.,2004,104, 3893-3946.
    24 (a) S. H. Feng and R. R. Xu, Acc. Chem. Res.,2001,34,239-247; (b) I. Bilecka and M. Niederberger, Nanoscale,2010,2,1358-1374.
    25 C. W. Guo, Y. Cao, S. H. Xie, W. L. Dai and K. N. Fan, Chem. Commun.,2003, 700-701.
    26 X. Wen and H. C. Zeng, Inorg. Chem.,2003,42,6169-6171.
    27 Z. D. Wang, Y. M. Liu, J. G. Jiang, M. Y. He and P. Wu, J. Mater. Chem.,2010,20, 10193-10199.
    28 X. T. Su, Y. N. Li, J. K. Jian, and J. D. Wang, Mater. Res. Bull.,2010,45, 1960-1963.
    29 L. Zhang, Y H. Ni, and J. M. Hong, J. Phys. Chem. Solids,2009,70,1408-1412.
    30 H. F. Shi, Z. S. Li, J. H. Kou, J. H. Ye, and Z. G. Zou, J. Phys. Chem. C, DOI: 10.1021/jp102680y.
    31 C. R. Xiong, A. E. Aliev, B. Gnade, and K. J. Balkus, Jr, ACS Nano,2008,2, 293-301.
    32 F. Ji, C. L. Li, and J. H. Zhang, ACSAppl. Mater. Interfaces,2010,2,1674-1678.
    33王润涵,姜继森,胡鸣,物理化学学按,2009,25,2167-2172.
    34 Y. Cong, J. L. Zhang, F. Chen, and M. Anpo, J. Phys. Chem. C,2007,111, 6976-6982.
    35 P. Zhang and L. Gao, Langmuir,2003,19,208-210.
    36 M. H. Cao, C. W. Hu, and E. B. Wang, J. Am. Chem. Soc.,2003,125, 11196-11197.
    37 Y. H. Ni, A. L. Tao, G Z. Hu, X. F. Cao, X. W. Wei, and Z. S. Yang, Nanotechnology,2006,17,5013-5018.
    38 J. Lin, J. T. Dipre, and M. Z. Yates, Chem. Mater.,2003,15,2764-2773.
    39 M. M. Wu, G. Lin, D. H. Chen, G. G Wang, D. He, S. H. Feng, and R. R. Xu, Chem. Mater.,2002,14,1974-1980.
    40 Y. D. Hou, L. Hou, M. K. Zhu, and H. Yan, Appl. Phys. Lett.,2006,89, 243114(3pp).
    41 J. B. Xu, J. W. Zhai, and X. Yao, Appl. Phys. Lett.,2006,89,252902(3pp).
    42 J. B. Xu, B. Shen, and J. W. Zhai, J. Sol-Gel Sci. Technol.,2010,55,343-347.
    43 Z. W. Chen and X. H. He, J. Alloys Compd,2010,497,312-315.
    44 I. S. Neira, Y. V. Kolen'ko, O. I. Lebedev, G Van Tendeloo, H. S. Gupta, F. Guitian, and M. Yoshimura, Cryst. Growth Des.,2009,9,466-474.
    45 J. G. Yu, X. X. Yu, B. B. Huang, X. Y. Zhang, and Y. Du, Cryst. Growth Des., 2009,9,1474-1480.
    46 S. H. Yu, X. J. Cui, L. L. Li, K. Li, B. Yu, M. Antonietti, and H. Colfen, Adv. Mater.,2004,16,1636-1640.
    47 L. B. Luo, S. H. Yu, H. S. Qian, and T. Zhou, J. Am. Chem. Soc.,2005,127, 2822-2823.
    48 G A. Tompsett, W. C. Conner, and K. S. Yngvesson, ChemPhysChem,2006,7, 296-319.
    49 S. A. Galema, Chem. Soc. Rev.,1997,26,233-238.
    50 J. A. Gerbec, D. Magana, A. Washington, and G F. Strouse, J. Am. Chem. Soc., 2005,127,15791-15800.
    51 Y. N. Li, X. T. Su, J. K. Jian, and J. D. Wang, Ceram. Int.,2010,36,1917-1920.
    52 B. Sakintuna and Y. Yurum, J. Porous Mater.,2010,17,727-736.
    53 R. Wang, C. Liu, J. Zeng, K. W. Li, and H. Wang, J. Solid State Chem.,2009,182, 677-684.
    54 S. Kundu, L. H. Peng and H. Liang, Inorg. Chem.,2008,47,6344-6352.
    55 L. F. Gou, M. Chipara and J. M. Zaleski, Chem. Mater,2007,19,1755-1760.
    56 D. S. Li and S. Komarneni, J. Am. Ceram. Soc.,2006,89,1510-1517.
    57 M. Tsuji, K. Matsumoto, P. Jiang, R. Matsuo, X. L. Tang, and K. S. N. Kamarudin, Colloids Surf., A,2008,316,266-277.
    58 W. X. Tu and H. F. Liu, J. Mater. Chem.,2000,10,2207-2211.
    59 K. Patel, S. Kapoor, D. P. Dave, and T. Mukherjee, Res. Chem. Intermed,2006, 32,103-113.
    60 V. Polshettiwar, M. N. Nadagouda, and R. S. Varma, Aust. J. Chem.,2009,62, 16-26.
    61 M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, and T. Tsuji, Chem. Eur. J., 2005,11,440-452.
    62 J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, Chem. Rev,2007,107, 2228-2269.
    63 A. G. Whittaker and D. M. P. Mingos, J. Chem. Soc., Dalton Trans.,2000, 1521-1526.
    64 A. G. Whittaker and D. M. P. Mingos, J. Chem. Soc., Dalton Trans.,2002, 3967-3970.
    65 S. Komarneni, R. Roy and Q. H. Li, Mater. Res. Bull.,1992,27,1393-1405.
    66 X. L. Hu, J. C. Yu, J. M. Gong, Q. Li, and G. S. Li, Adv. Mater.,2007,19,2324-2329.
    67 C. R. Patra and A. Gedanken, New J. Chem.,2004,28,1060-1065.
    68 G. C. Xi, Y. T. He, Q. Zhang, H. Q. Xiao, X. Wang and C. Wang, J. Phys. Chem. C,2008,112,11645-11649.
    69 Q. Y. Lu, F. Gao, and S. Komarneni, J. Am. Chem. Soc.,2004,126,54-55.
    70 H. F. Qian, X. Qiu, L. Li and J. C. Ren, J. Phys. Chem. B,2006,110,9034-9040.
    71 M. Q. Chu, X. Y. Shen and G. J. Liu, Nanotechnology,2006,17,444-449.
    721 M. V. Limaye, S. Gokhale, S. A. Acharya, and S. K. Kulkarni, Nanotechnology, 2008,19,415602 (5pp).
    73 Y. Zhao, J. J. Zhu, J. M. Hong, N. S. Bian and H. Y. Chen, Eur. J. Inorg. Chem., 2004,4072-4080.
    74 X. L. Hu, J. M. Gong, L. Z. Zhang and J. C. Yu, Adv. Mater.,2008,20, 4845-4850.
    75 T. Yamamoto, Y. Wada, H. B. Yin, T. Sakata, H. Mori, and S. Yanagida, Chem. Lett.,2002,964-965.
    76 M. Zawadzki, J. Alloys Compd.,2008,454,347-351.
    77 I. Bilecka, I. Djerdj and M. Niederberger, Chem. Commun.,2008,886-888.
    78 S. Komarneni, M. C. D'Arrigo, C. Leonelli, and G. C. Pellacani, J. Am. Ceram. Soc.,1998,81,3041-3043.
    79 O. Palchik, J. J. Zhu, and A. Gedanken, J. Mater. Chem.,2000,10,1251-1254.
    80 J. H. Bi, L. Wu, H. Li, Z. H. Li, X. X. Wang and X. Z. Fu, Acta Mater.,2007,55, 4699-4705.
    81 M. L. Moreira, E. C. Paris, G. S. do Nascimento, V. M. Longo, J. R. Sambrano, V. R. Mastelaro, M. I. B. Bernardi, J. Andres, J. A. Varela and E. Longo, Acta Mater., 2009,57,5174-5185.
    82 M. L. Moreira, J. Andres, J. A. Varela and E. Longo, Cryst. Growth Des.,2009,9, 833-839.
    83 H. M. Zhang, J. B. Liu, H. Wang, W. X. Zhang and H. Yan, J. Nanopart. Res., 2008,10,767-774.
    84 M. Zawadzki, Solid State Sci.,2006,8,14-18.
    85 X. L. Hu, J. C. Yu, J. M. Gong, and Q. Li, Cryst. Growth Des.,2007,7, 2444-2448.
    86 Y. L. Ma, L. Zhang, X. F. Cao, X. T. Chen, and Z. L. Xue, CrystEngComm,2010, 12,1153-1158.
    87 L. Zhang, X. F. Cao, Y. L. Ma, X. T. Chen, and Z. L. Xue, CrystEngComm,2010, 12,207-210.
    88 L. Zhang, X. F. Cao, Y. L. Ma, X. T. Chen, and Z. L. Xue, New J. Chem.,2010, 34,2027-2033.
    89 L. Zhang, X. F. Cao, Y. L. Ma, X. T. Chen, and Z. L. Xue, CrystEngComm,2010, 12,3201-3206.
    90 X. F. Cao, L. Zhang, X. T. Chen, and Z. L. Xue, CrystEngComm,2011,13, 306-311.
    91 M. S. Islam, S. Lazure, R. Vannier, G. Nowogrocki, and G. Mairesse, J. Mater. Chem.,1998,8,655-660.
    92 A. Kudo and S. Hijii, Chem. Lett.,1999,10,1103-1104.
    93 J. W. Tang, Z. G. Zou, and J. H. Ye, Catal. Lett.,2004,92,53-56.
    94 S. C. Zhang, C. Zhang, Y. Man, and Y. F. Zhu, J. Solid State Chem.,2006,179, 62-69.
    95 L. W. Zhang, Y. J. Wang, H. Y. Cheng, W. Q. Yao, and Y. F. Zhu,Adv. Mater., 2009,21,1286-1290.
    96 L. Zhou, W. Z. Wang, and L. S. Zhang, J. Mol. Catal. A,2007,268,195-200.
    97 Z. J. Zhang, W. Z. Wang, M. Shang, and W. Z. Yin, J. Hazard. Mater.,2010,177, 1013-1018.
    98 C. Zhang and Y. F. Zhu, Chem. Mater.,2005,17,3537-3545.
    99 M. Shang, W. Z. Wang, S. M. Sun, L. Zhou, and L. Zhang, J. Phys. Chem. C, 2008,112,10407-10411.
    100 F. Amano, K. Nogami, R. Abe, and B. Ohtani, J. Phys. Chem. C,2008,112, 9320-9326.
    101 Y Y. Li, X. T. Huang, J. P. Liu, and H. H. Ai, J. Nanosci. Nanotechnol.,2009,9, 1530-1534.
    102Z. Chen, L. W. Qian, J. Zhu, Y P. Yuan, and X. F. Qian, CrystEngComm,2010,12, 2100-2106.
    103 L. Wu, J. H. Bi, Z. H. Li, X. X. Wang, and X. Z. Fu, Catal. Today,2008,131, 15-20.
    104 H. D. Xie, D. Z. Shen, X. Q. Wang, and G. Q. Shen, Mater. Chem. Phys.,2007, 103,334-339.
    105 S. S. Yao, J. Y Wei, B. B. Huang, S. Y Feng, X. Y. Zhang, X. Y Qin, P. Wang, Z. Y. Wang, Q. Zhang, X. Y Jing, and J. Zhan, J. Solid State Chem.,2009,182, 236-239.
    106 J. D. Grice, Can. Mineral.,2002,40,693-698.
    107 R. Chen, M. H. So, J. Yang, F. Deng, and H. Z. Sun, Chem. Commun.,2006, 2265-2267.
    108 R. Chen, G. Cheng, M. H. So, J. L. Wu, Z. Lu, C. M. Che, and H. Z. Sun, Mater. Res. Bull.,2010,45,654-658.
    109 G. Cheng, H. M. Yang, K. F. Rong, Z. Lu, X. L. Yu, and R. Chen, J. Solid State Chem.,2010,183,1878-1883.
    110 G. Cheng, J. L. Wu, F. Xiao, H. Yu, Z. Lu, X. L. Yu, and R. Chen, Mater. Lett., 2009,63,2239-2242.
    111 X. Y Chen, H. S. Huh, and S. W. Lee, J. Solid State Chem.,2007,180, 2510-2516.
    112 Y. Zheng, F. Duan, M. Q. Chen, and Y. Xie, J. Mol. Catal. A,2010,317,34-40.
    113 Y. Y Liu, Z. Y. Wang, B. B. Huang, K. S. Yang, X. Y Zhang, X. Y. Qin, and Y Dai, Appl. Surf. Sci.,2010,257,172-175.
    114 H. F. Cheng, B. B. Huang, K. S. Yang, Z. Y. Wang, X. Y. Qin, X. Y Zhang, and Y Dai, ChemPhysChem,2010,11,2167-2173.
    115 D. F. Wang, J. W. Tang, Z. G. Zou, and J. H. Ye, Chem. Mater,2005,17, 5177-5182.
    116 L. F. Xiao, Y Q. Zhao, J. Yin, and L. Z. Zhang, Chem. Eur. J.,2009,15, 9442-9450.
    117 H.W. Liu and D. G. Tang, Mater. Chem. Phys.,2009,114,656-659.
    118 P. Y. Zavalij, F. Zhang, and M. S. Whittingham, Acta Crystallogr. C,1997,53, 1738-1739.
    119 H. S. Qian, S. H. Yu, J. Y Gong, L. B. Luo, and L. L. Wen, Cryst. Growth Des., 2005,5,935-939.
    120 S. B. Ni, S. M. Lin, Q.T. Pan, K. Huang, F. Yang, and D. Y He, J. Alloys Compd, 2009,477, L1-L3.
    121S. B. Ni, G. Zhou, S. M. Lin, X. H. Wang, Q. T. Pan, F. Yang, and D. Y He, Matte. Lett.,2009,63,2459-2461.
    122 S. B. Ni, X. H. Wang, X. L. Sun, F. Yang, Y Q. Liu, and D. Y. He, Mater. Chem. Phys.,2010,124,803-808.
    123 S. B. Ni, X. H. Wang, G. Zhou, F. Yang, J. M. Wang, and D. Y He, J. Alloys Compd.,2010,491,378-381.
    124 F. Zhang, A. W. Zhu, Y. P. Luo, Y. Tian, J. H. Yang, and Y. Qin, J. Phys. Chem. C, 2010,114,19214-19219.
    125D. Q. Gao, G. J. Yang, J. Y. Li, J. Zhang, J. L. Zhang, D. S. Xue, J. Phys. Chem. C, 2010,114,18347-18351.
    126 S.Q. Wang, J.Y. Zhang and C.H. Chen, Scripta Mater,2007,57,337-340.
    127 F. Gao, H. Pang, S. P. Xu, and Q. Y. Lu, Chem. Commun.,2009,3571-3573.
    128 S. L. Wang, H. Xu, L. Q. Qian, X. Jia, J. W. Wang, Y. Y. Liu, and W. H. Tang, J. Solid State Chem.,2009,182,1088-1093.
    129 A. M. Cao, J. D. Monnell, C. Matranga, J. M. Wu, L. L. Cao, D. Gao, J. Phys. Chem. C,2007,111,18624-18628.
    130 H. Kang, H. J. Lee, J. C. Park, H. Song, and K. H. Park, Top Catal.,2010,53, 523-528.
    131 S. Pande, A. Saha, S. Jana, S. Sarkar, M. Basu, M. Pradhan, A. K. Sinha, S. Saha, A. Pal, and T. Pal, Org. Lett.,2008,10,5179-5181.
    132 M. L. Kantam, J. Yadav, S. Laha, B. Sreedhar, and S. Jha, Adv. Synth. Catal., 2007,349,1938-1942.
    133 M. L. Kantam, S. Laha, J. Yadav, P. R. Likhar, B. Sreedhar, and B. M. Choudary, Adv. Synth. Catal.,2007,349,1797-1802.
    134 L. Rout, S. Jammi, and T. Punniyamurthy, Org. Lett.,2007,9,3397-3399.
    135 L. Rout, Tamal K. Sen, and T. Punniyamurthy, Angew. Chem. Int. Ed.,2007,46, 5583-5586.
    136 D. Alves, C. G. Santos, M. W. Paixao, L. C. Soares, D. de Souza, O. E. D. Rodrigues, and A. L. Braga, Tetrahedron Lett.,2009,50,6635-6638.
    137 V. P. Reddy, A. V. Kumar, K. Swapna, and K. R. Rao, Org. Lett.,2009,11, 951-953.
    138 D. Singh, E. E. Alberto, O. E. D. Rodrigues, and A. L. Braga, Green Chem.,2009, 11,1521-1524.
    139 D. Singh, A. M. Deobald, L. R. S. Camargo, G. Tabarelli, O. E. D. Rodrigues, and A. L. Braga, Org. Lett.,2010,12,3288-3291.
    1 S. Lazure, R. Vannier, G. Nowogrocki, G. Mairesse, C. Muller, M. Anne, and P. Strobel,J. Mater. Chem.,1995,5,1395-1403.
    2 K. R. Kendall, C. Navas, J. K. Thomas, and H. C. zur Loye, Chem. Mater.,1996, 8,642-649.
    3 M. S. Islam, S. Lazure, R. Vannier, G. Nowogrocki, and G. Mairesse, J. Mater. Chem.,1998,8,655-660.
    4 N. Kim, R. Vannier, and C. P. Grey, Chem. Mater,2005,17,1952-1958.
    5 M. Shang, W. Z. Wang, J. Ren, S. M. Sun, L. Wang, and L. Zhang, J. Mater. Chem.,2009,19,6213-6218.
    6 Y. H. Shi, S. H. Feng, and C. S. Cao, Mater. Lett.,2000,44,215-218.
    7 N. A. McDowell, K. S. Knight, and P. Lightfoot, Chem. Eur.J.,2006,12, 1493-1499.
    8 H. B. Fu, C. S. Pan, W. Q. Yao, and Y. F. Zhu, J. Phys. Chem. B,2005,109, 22432-22439.
    9 Y. Y Li, J. P. Liu, X. T. Huang, and G. Y Li, Cryst. Growth Des.,2007,7, 1350-1355.
    10 C. Zhang and Y F. Zhu, Chem. Mater.,2005,17,3537-3545.
    11 D. K. Ma, S. M. Huang, W. X. Chen, S. W. Hu, F. F. Shi, and K. L. Fan, J. Phys. Chem. C,2009,113,4369-4374.
    12 A. Kudo and S. Hijii, Chem. Lett.,1999,10,1103-1104.
    13 J. W. Tang, Z. G. Zou, and J. H. Ye, Catal. Lett.,2004,92,53-56.
    14 (a) S. C. Zhang, C. Zhang, Y Man, and Y F. Zhu, J. Solid State Chem.,2006,179, 62-69; (b) L. W. Zhang, Y J. Wang, H. Y Cheng, W. Q. Yao, and Y F. Zhu, Adv. Mater.,2009,21,1286-1290.
    15 H. B. Fu, L. W. Zhang, W. Q. Yao, and Y F. Zhu, Appl. Catal. B,2006,66, 100-110.
    16 J. Wu, F. Duan, Y. Zheng, and Y. Xie, J. Phys. Chem. C,2007,111,12866-12871.
    17 F. Amano, A. Yamakata, K. Nogami, M. Osawa, and B. Ohtani, J. Am. Chem. Soc.,2008,130,17650-17651.
    18 F. Amano, K. Nogami, and B. Ohtani, J. Phys. Chem. C,2009,113,1536-1542.
    19 Y G. Sun and Y N. Xia, Science,2002,298,2176-2179.
    20 D. Wang, S. Lin, Y. Wu, and C. M. Lieber, Nano Lett.,2003,3,1255-1259.
    21 P. D. Yang, Nature,2003,425,243-244.
    22 M. Shang, W. Z. Wang, and H. L. Xu, Cryst. Growth Des.,2009,9,991-996.
    23 L. S. Zhang, W. Z. Wang, Z. G. Chen, L. Zhou, H. L. Xu, and W. Zhu, J. Mater. Chem.,2007,17,2526-2532.
    24 L. S. Zhang, W. Z. Wang, L. Zhou, and H. L. Xu, Small,2007,3,1618-1625.
    25 M. Shang, W Z. Wang, S. M. Sun, L. Zhou, and L. Zhang, J. Phys. Chem. C, 2008,112,10407-10411.
    26 L. W Zhang, Y. J. Wang, H. Y. Cheng, W. Q. Yao, and Y. F. Zhu, Adv. Mater., 2009,21,1286-1290.
    27 H. B. Fu, W Q. Yao, L. W. Zhang, and Y. F. Zhu, Mater. Res. Bull.,2008,43, 2617-2625.
    28 H. B. Fu, S. C. Zhang, T. G. Xu, Y. F. Zhu, and J. M. Chen, Environ. Sci. Technol., 2008,42,2085-2091.
    29 S. B. Zhu, T. G. Xu, H. B. Fu, J. C. Zhao, and Y F. Zhu, Environ. Sci. Technol., 2007,41,6234-6239.
    30 Q. Xiao, J. Zhang, C. Xiao, and X. K. Tan, Catal. Commun.,2008,9,1247-1253.
    31 M. Shang, W. Z. Wang, L. Zhang, S. M. Sun, L. Wang, and L. Zhou, J. Phys. Chem. C,2009,113,14727-14731.
    32 L. S. Zhang, K. H. Wong, Z. G. Chen, J. C. Yu, J. C. Zhao, C. Hu, C. Y. Chan, and P. K. Wong, Appl. Catal. A,2009,363,221-229.
    33 A. P. Finlayson, V. N. Tsaneva, L. Lyons, M. Clark, and B.A. Glowacki, Phys. Status Solidi A,2006,203,327-335.
    34 Y. Y. Li, X. T. Huang, J. P. Liu, and H. H. Ai, J. Nanosci. Nanotechnol.,2009,9, 1530-1534.
    35 F. Amano, K. Nogami, R. Abe, and B. Ohtani, J. Phys. Chem. C,2008,112, 9320-9326.
    36 L. Zhou, W. Z. Wang, and L. S. Zhang, J. Mol. Catal. A,2007,268,195-200.
    37 Z. J. Zhang, W. Z. Wang, M. Shang, and W Z. Yin, J. Hazard. Mater.,2010,177, 1013-1018.
    38 S. A. Galema, Chem. Soc. Rev.,1997,26,233-238.
    39 J. A. Gerbec, D. Magana, A. Washington, and G. F. Strouse, J. Am. Chem. Soc., 2005,127,15791-15800.
    40 G. A. Tompsett, W. C. Conner, and K. S. Yngvesson, ChemPhysChem,2006,7, 296-319.
    41 L. Wu, J. H. Bi, Z. H. Li, X. X. Wang, and X. Z. Fu, Catal. Today,2008,131, 15-20.
    42 H. D. Xie, D. Z. Shen, X. Q. Wang, and G. Q. Shen, Mater. Chem. Phys.,2007, 103,334-339.
    43 S. S. Yao, J. Y. Wei, B. B. Huang, S. Y. Feng, X. Y. Zhang, X. Y. Qin, P. Wang, Z. Y Wang, Q. Zhang, X. Y. Jing, and J. Zhan, J. Solid State Chem.,2009,182, 236-239.
    44 A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, J Sol-Gel Sci. Technol.,2006, 39,49-56.
    45 Y C. Guo, S. R. Luan, Y. R. Chen, X. S. Zang, Y Q. Jia, G. Q. Zhong, and S. K. Ruan, J. Therm. Anal. Calorim.,2002,68,1025-1033.
    46 T. Watanabe, T. Takizawa, and K. Honda, J. Phys. Chem.,1977,81,1845-1851.
    47 W. Zhao, C. C. Chen, X. Z. Li, and J. C. Zhao, J. Phys. Chem. B,2002,106, 5022-5028.
    48 S. B. Copp, S. Subramanian, and M. J. Zaworotko, Angew. Chem. Int. Ed. Engl., 1993,32,706-709.
    49 J. W. Tang, Z. G. Zou, and J. H. Ye, Angew. Chem. Int. Ed.,2004,43,4463-4466.
    1 L. G. Sillen, Naturwiss 1942,30,318-324.
    2 J. D. Grice, Can. Mineral.,2002,40,693-698.
    3 J. Henle, P. Simon, A. Frenzel, S. Scholz, and S. Kaskel, Chem. Mater.,2007,19, 366-373.
    4 Z. T. Deng, D. Chen, B. Peng, and F. Q. Tang, Cryst. Growth Des.,2008,8, 2995-3003.
    5 Z. H. Ai, W. K. Ho, S. C. Lee, and L. Z. Zhang, Environ. Sci. Technol.,2009,43, 4143-4150.
    6 X. Zhang, Z.H. Ai, F.L. Jia, and L.Z. Zhang, J. Phys. Chem. C,2008,112, 747-753.
    7 R. Chen, M. H. So, J. Yang, F. Deng, and H. Z. Sun, Chem. Commun.,2006, 2265-2267.
    8 G. Cheng, H. M. Yang, K. F. Rong, Z. Lu, X. L. Yu, and R. Chen, J. Solid State Chem.,2010,183,1878-1883.
    9 R. Chen, G. Cheng, M. H. So, J. L. Wu, Z. Lu, C. M. Che, and H. Z. Sun, Mater. Res. Bull.,2010,45,654-658.
    10 G. Cheng, J. L. Wu, F. Xiao, H. Yu, Z. Lu, X. L. Yu, and R. Chen, Mater. Lett., 2009,63,2239-2242.
    11 P. J. Sadler, H. Y. Li, and H. Z. Sun, Coord. Chem. Rev.,1999,185-186,689-709.
    12 N. Yang and H. Z. Sun, Coord. Chem. Rev.,2007,251,2354-2366.
    13 X. Y. Chen, H. S. Huh, and S. W. Lee, J. Solid State Chem.,2007,180, 2510-2516.
    14 Y. Zheng, F. Duan, M. Q. Chen, and Y. Xie, J. Mol. Catal. A,2010,317,34-40.
    15 Y. Y. Liu, Z. Y. Wang, B. B. Huang, K. S. Yang, X. Y Zhang, X. Y Qin, and Y. Dai, Appl. Surf. Sci.,2010,257,172-175.
    16 H. F. Cheng, B. B. Huang, K. S. Yang, Z. Y. Wang, X. Y. Qin, X. Y. Zhang, and Y. Dai, ChemPhysChem,2010,11,2167-2173.
    17 D. K. Ma, S. M. Huang, W. X. Chen, S. W. Hu, F. F. Shi, and K. L. Fan, J. Phys. Chem. C,2009,113,4369-4374.
    18 A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J. P. Boilot, Chem. Mater., 2002,14,2264-2269.
    19 X. Li, C. J. Tang, M. Ai, L. Dong, and Z. Xu, Chem. Mater.,2010,22,4879-4889.
    20 Y. Peng, A. W. Xu, B. Deng, M. Antonietti, and H. Colfen, J. Phys. Chem. B, 2006,110,2998-2993.
    21 W. Cheng, K. B. Tang, Y X. Qi, J. Sheng, and Z. P. Liu, J. Mater. Chem.,2010, 20,1799-1805.
    22 H. B. Li, W. J. Kang, B. J. Xi, Y Yan, H. Y. Bi, Y. C. Zhu, and Y T. Qian, Carbon, 2010,48,464-469.
    23 W R. Lee, L. Piao, C. H. Park, Y S. Lim, Y R. Do, S. Yoon, and S. H. Kim, J. Colloid Interf. Sci.,2010,342,198-201.
    24 Y. Xu, J. Jiang, Y. Lu, R. J. Sun, J. M. Song, L. Ren, and S. H. Yu, Cryst. Growth Des.,2008,8,3822-3828.
    25 T. A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, and D. W. Bahnemann, Chem. Mater.,2010,22,2050-2060.
    26 Y Y. Li, J. P. Liu, X. T. Huang, and G. Y. Li, Cryst. Growth Des.,2007,7, 1350-1355.
    27 L. W. Qian, J. Zhu, Z. Chen, Y. C. Gui, Q. Gong, Y. P. Yuan, J. T. Zai, and X. F. Qian, Chem. Eur.J.,2008,15,1233-1240.
    28 L. S. Zhang, W. Z. Wang, L. Zhou, and H. L. Xu, Small,2007,3,1618-1625.
    29 L. S. Li, R. G. Cao, Z. J. Wang, J. J. Li, and L. M. Qi, J. Phys. Chem. C,2009, 113,18075-18081.
    30 J. Wu, F. Duan, Y. Zheng, and Y. Xie, J. Phys. Chem. C,2007,111,12866-12871.
    31 W. Zhao, C. C. Chen, X. Z. Li, and J. C. Zhao, J. Phys. Chem. B,2002,106, 5022-5028.
    32 Z Chen, L. W. Qian, J. Zhu, Y. P. Yuan, and X. F. Qian, CrystEngComm,2010,12, 2100-2106.
    33 J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. Gonzalez-Elipe, and A. Fernandez, Appl. Catal. B,1997,13,219-228.
    34 R. G. Chen, J. H. Bi, L. Wu, Z. H. Li, and X. Z. Fu, Cryst. Growth Des.,2008,9, 1775-1779.
    1 J. Park, J. Kim, H. Kwon, and H. Song, Adv. Mater.,2009,21,803-807.
    2 A. M. Cao, J. S. Hu, H. P. Liang, W. G. Song, L. J. Wan, X. L. He, X. G. Gao, and S. H. Xia, J. Phys. Chem. B,2006,110,15858-15863.
    3 S. Shanmugam and A. Gedanken, J. Phys. Chem. C,2008,112,15752-15758.
    4 Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science,2001,291,1947-1949.
    5 L. W. Qian, J. Zhu, Z. Chen, Y. C. Gui, Q. Gong, Y. P. Yuan, J. T. Zai, and X. F. Qian, Chem. Eur. J.,2008,15,1233-1240.
    6 G.H. Pan, H. W. Song, X. Bai, L. B. Fan, H. Q. Yan, Q. L. Dai, B. Dong, R. F. Qin, S. W. Li, S. Z. Lu, X. G. Ren, and H. F. Zhao, J. Phys. Chem. C,2007,111, 12472-12477.
    7 C. C. Yu, M. Yu, C. X. Li, C. M. Zhang, P. P. Yang, and J. Lin, Cryst. Growth Des.,2009,9,783-791.
    8 P. P. Yang, Z. W. Quan, L. L. Lu, S. S. Huang, J. Lin, and H. G Fu, Nanotechnology,2007,18,235703 (lOpp).
    9 L. Zhang, D. R. Chen, and X. L. Jiao, J. Phys. Chem. B,2006,110,2668-2673.
    10 R. Strobel, H. J. Metz, and S. E. Pratsinis, Chem. Mater.,2008,20,6346-6351.
    11 L. Zhou, W. Z. Wang, L. S. Zhang, H. L. Xu, and W. Zhu, J. Phys. Chem. C,2007, 111,13659-13664.
    12 M. W Shao, L. Lu, H. Wang, S. Wang, M. L. Zhang, D. D. D. Ma, and S. T. Lee, Chem. Commun.,2008,2310-2312.
    13 C. J. Mao, X. C. Wu, H. C. Pan, J. J. Zhu, and H. Y. Chen, Nanotechnology,2005, 16,2892-2896.
    14 C. R. Xiong, A. E. Aliev, B. Gnade, and K. J. Balkus, Jr, ACS Nano,2008,2, 293-301.
    15 J. M. Song, Y. Z. Lin, H. B. Yao, F. J. Fan; X. G. Li, and S. H. Yu, ACS Nano,2009, 3,653-660.
    16 V. Nivoix and B. Gillot, Chem. Mater.,2000,12,2971-2976.
    17 H. Takei, T. Suzuki, and T. Katsufuji, Appl. Phys. Lett.,2007,91,072506 (3 pp).
    18 Z. Z. He, Y. Ueda, and M. Itoh, J. Cryst. Growth,2006,297,1-3.
    19 Z. Z. He, J. Yamaura, Y. Ueda, and W. D. Cheng, J. Am. Chem. Soc.,2009,131, 7554-7555.
    20 Y Zhang, J. R. D. Debord, C. J. O. Connor, R. C. Haushalter, A. Clearfield, and J. Zubieta, Angew. Chem. Int. Ed. Engl.,1996,35,989-991.
    21 T. Chirayil, P. Y. Zavalij, and M. S. Whittingham, Chem. Mater.,1998,10, 2629-2640.
    22 J. Skibsted, C. J. H. Jacobsen, and H. J. Jakobsen, Inorg. Chem.,1998,37, 3083-3092.
    23 D. F. Wang, J. W. Tang, Z. G. Zou, and J. H. Ye, Chem. Mater.,2005,17, 5177-5182.
    24 L. F. Xiao, Y. Q. Zhao, J. Yin, and L. Z. Zhang, Chem. Eur. J.,2009,15, 9442-9450.
    25 H.W. Liu, and D. G. Tang, Mater. Chem. Phys.,2009,114,656-659.
    26 P. Y. Zavalij, F. Zhang, and M. S. Whittingham, Acta Crystallogr. C,1997,53, 1738-1739.
    27 H. S. Qian, S. H. Yu, J. Y. Gong, L. B. Luo, and L. L. Wen, Cryst. Growth Des., 2005,5,935-939.
    28 D. Hoyos, L. A. Palacio, J. L. Paillaud, A. Simon-Masseron, and J. L. Guth, Solid State Sci.,2004,6,1251-1258.
    29 X. C. Wu, Y R. Tao, C. Y. Song, C. J. Mao, L. Dong, and J. J. Zhu, J. Phys. Chem. B,2006,110,15791-15796.
    30 Z. H. Lin and H. T. Chang, Langmuir,2008,24,365-367.
    31 R. Q. Song, A. W. Xu, and S. H. Yu, J. Am. Chem. Soc.,2007,129,4152-4153.
    32 G. Surendran, L. Ramos, B. Pansu, E. Prouzet, P. Beaunier, F. Audonnet, and H. Remita, Chem. Mater.,2007,19,5045-5048.
    33 H. Nakanishi, K. Tsuchiya, T. Okubo, H. Sakai, and M. Abe, Langmuir,2007,23, 345-347.
    34 M. H. Cao, C. W. Hu, Y. H. Wang, Y. H. Guo, C. X. Guo, and E. B. Wang, Chem. Comm.,2003,1884-1885
    35 L. F. Guo, and C. J. Murphy, Nano Lett.,2003,3,231-234
    36 Y Mi, Z. Y. Huang, F. L. Hu, Y. F. Li, and J. Y Jiang, J. Phys. Chem. C,2009, 113,20795-20799
    37 W. M. Du, X. F. Qian, Xi D. Ma, Q. Gong, H. L. Cao, and J. Yin, Chem. Eur. J., 2007,13:3241-3247.
    1 H. Wang, Q. Shen, X. P. Li, and F. L. Liu, Langmuir,2009,25,3152-3158.
    2 C. H. Lu, L. M. Qi, J. H. Yang, D. Y. Zhang, N. Z. Wu, and J. M. Ma, J. Phys. Chem. B,2004,108,17825-17831.
    3 X. P. Gao, J. L. Bao, G L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, J. Phys. Chem. B,2004,108,5547-5551.
    4 J. T. Zhang, J. F. Liu, Q. Peng, X. Wang, and Y. D. Li, Chem. Mater.,2006,18, 867-871
    5 J. C. Park, J. Kim, H. Kwon, and H. Song, Adv. Mater.,2009,21,803-807.
    6 J. B. Reitz and E. I. Solomon, J. Am. Chem. Soc.,1998,120,11467-11478.
    7 A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, and P. K. Patanjali, Appl. Phys. Lett.,2004,84,1180-1182.
    8 K. Yamamoto, T. Kasuga, and M. Nogami, Electrochem. Solid-State Lett.,1999,2, 595-596.
    9 C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih, Appl. Phys. Lett.,2003,83, 3383-3385.
    10 J. Chen, S. Deng, N. Xu, W. Zhang, X. Wen, and S. Yang, Appl. Phys. Lett.,2003, 83,746-748.
    11 H. W. Hou, Y. Xie, and Q. Li, Cryst. Growth Des.,2005,5,201-205.
    12 J. Zhu and X. F. Qian, J. Solid State Chem.,2010,183,1632-1639.
    13 C. T. Hsieh and J. M. Chen, Appl. Phys. Lett.,2003,82,3316-3318.
    14 S. H. Wang, Q. J. Huang, X. G Wen, X. Y. Li, and S. H. Yang, Phys. Chem. Chem. Phys.,2002,4,3425-3429.
    15 X. C. Jiang, T. Herricks, and Y. N. Xia, Nano Lett.,2002,2,1333-1338.
    16 M. H. Cao, C. W. Hu, Y H. Wang, Y H. Guo, C. X. Guo, and E. B. Wang, Chem. Commun.,2003,1884-1885.
    17 Y. Chang and H. C. Zeng, Cryst. Growth Des.,2004,4,397-402.
    18 S. H. Lee, Y. S. Her, and E. Matijevic, J. Colloid Interface Sci.,1997,186, 193-202.
    19 B. Liu and H. C. Zeng, J. Am. Chem. Soc.,2004,126,8124-8125
    20 F. Gao, H. Pang, S. P. Xu and Q. Y. Lu, Chem. Commu.,2009,3571-3573.
    21 J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang, and S. J. Shi, Electrochim. Acta,2010,55,1820-1824.
    22 J. X. Xia, H. M. Li, Z. J. Luo, K. Wang, S. Yin, and Y. S. Yan, Appl. Surf. Sci., 2010,256,1871-1877.
    23 H. Wang, J. Z. Xu, J. J. Zhu, and H. Y. Chen,J. Cryst. Growth,2002,244,88-94.
    24 Z. H. Liang and Y. J. Zhu, Chem. Lett.,2004,33,1314-1315.
    25 Z. H. Liang and Y. J. Zhu, Chem. Lett.,2005,34,214-215.
    26 W. W. Wang, Y. J. Zhu, G F. Cheng, and Y. H. Huang, Mater. Lett.,2006,60, 609-612.
    27 X. D. Xu, M. Zhang, J. Feng, and M. L. Zhang, Mater. Lett.,2008,62, 2787-2790.
    28 J. X. Xia, H. M. Li, Z. J. Luo, H. Shi, K. Wang, H. M. Shu, and Y S. Yan, J. Phys. Chem. Solid,2009,70,1461-1464.
    29 D. Keyson, D. P. Volanti, L.S. Cavalcante, A. Z. Simoes, J. A. Varela, and E. Longo, Mater. Res. Bulle.,2008,43,771-775.
    30 D. P. Volanti, M. O. Orlandi, J. Andres, and E. Longo, CrystEngComm,2010,12, 1696-1699
    31 S. H. Park and H. J. Kim, J. Am. Chem. Soc.,2004,126,14368-14369.
    32 C. H. Yoder, E. Bushong, X. Liu, V. Weidner, P. Mcwilliams, K. Martin, J. Lorgunpai, and J. Haller, Mineral. Mag.,2010,74,433-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700