用户名: 密码: 验证码:
孔结构多酸—二氧化钛复合材料的制备及其光催化降解酞酸酯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对目前TiO2光催化剂存在的量子效率低、可见光利用率低和回收困难等问题,分别制备了多酸-二氧化钛(H3PW12O40/TiO2)及银掺杂多酸-二氧化钛(H3PW12O40/Ag-TiO2)复合光催化材料,对其结构、形貌、光吸收特性和表面物理化学性质进行了表征,系统研究了两种复合材料的光催化行为,探讨了H3PW12O40/TiO2光催化降解邻苯二甲酸二乙酯(DEP)和邻苯二甲酸二丁酯(DBP)的机理。具体研究如下:
     1.利用溶胶-凝胶结合程序升温方法,制备了具有较高光催化活性的H3PW12O40/TiO2复合材料。通过电感耦合等离子体-原子发射光谱、透射电子显微镜、X-射线粉末衍射、紫外-可见漫反射光谱和X-射线光电子能谱对该复合材料的组成和结构、光吸收性质、形貌以及表面物理化学性质进行了表征;通过在模拟太阳光条件下降解水中酞酸酯类化合物(PAEs)对其光催化活性进行了评价;测定了溶液pH值对光催化降解效率的影响。结果表明:复合材料中活性组分H3PW12O40的基本骨架结构未发生改变,而且与TiO2网络间存在较强的化学作用,母体TiO2以锐钛矿晶型为主;H3PW12O40/TiO2具有微孔-介孔双重孔径及较大的BET比表面积;H3PW12O40/TiO2光催化剂的活性随着H3PW12O40的担载量(0%-19.8%)增加而增强,并且明显好于纯TiO2; H3PW12O40/TiO2复合材料光催化降解PAEs的效率由大到小的顺序是DBP>DEP>DMP;中性或碱性条件可以促进H3PW12O40/TiO2对DEP的光催化降解。
     2.采用高效液相色谱-质谱和离子色谱对H3PW12O40/TiO2复合材料在模拟太阳光条件下光催化降解DEP和DBP的中间产物进行了分析,测定了降解过程中TOC的变化。结果表明:DEP可以通过三条路径实现矿化,降解的主要中间产物有羟基化的邻苯二甲酸二乙酯、邻苯二甲酸、二羟基苯甲酸、马来酸酐和苯酚等化合物;DBP可通过四条路径实现矿化,降解的主要中间产物有羟基化的邻苯二甲酸二丁酯、羟基邻苯二甲酸、苯甲酸丁酯等化合物,两者的中间产物均可进一步降解生成甲酸、乙酸和丁二酸等小分子酸,最后生成CO2和H2O。
     3.采用溶胶-凝胶结合程序升温溶剂热处理方法制备了H3PW12O40和金属Ag共掺杂的TiO2复合材料H3PW12O40/Ag-TiO2。通过电感耦合等离子体-原子发射光谱、透射电子显微镜、X-射线粉末衍射、紫外-可见漫反射光谱和X-射线光电子能谱对复合材料的组成和结构、光吸收性质、形貌以及表面物理化学性质进行了表征;通过在模拟太阳光条件下降解DEP和磺胺甲恶唑(SMZ)对其光催化活性进行了评价。结果表明:该复合材料具有锐钛矿相结构,金属银以单质形式存在;复合材料不仅在200-380 nm处有强烈吸收,而且在400-600 nm之间也有明显的光吸收;H3PW12O40/Ag-TiO2具有微孔(0.45 nm)和介孔(4.2 nm)双重孔径;BET比表面积较H3PW12O40/TiO2略小;不同光催化剂的活性顺序是H3PW12O40/Ag-TiO2>Ag/TiO2> H3PW12O40/TiO2>TiO2。
In this thesis, we focus on the vital scientific difficult problem in the TiO2 photocatalytic technology such as the lower quantum efficiency, the lower activity under visible light, and difficult separation of powder catalyst from catalysed system. H3PW12O40/TiO2 and H3PW12O40/Ag-TiO2 were prepared and well-characterized, and their catalytic activities were systematically studied. The photocatalytic degradates mechanism of DEP and DBP were studied.
     New and efficient heterogeneous photocatalytic material, H3PW12O40/TiO2 with anatase crystalline phase, was prepared by combination of the methods of sol-gel and hydrothermal treatment at a lower temperature. Composition, structure, optical absorption property, physicochemical properties, and surface morphology of the composite were characterized by test technologies. Under simulated-sunlight irradiation, we studied the photocatalysic activities of H3PW12O/TiO2 for phthalate acid esters (PAEs) in aqua, and tested the effects of the pH value of solution on photocatalysic degration efficiency. Research results indicated that the starting Keggin structure of H3PW12O40 in the as-synthesized composites was still remained intactly after immobilization of the unit into the TiO2 network. Hydrogen bonding and chemical interactions between the unit and the anatase network existed in the composite. Moreover, the BET area of this material with dual-pore structures, micro-and meso-porosity, was increased obviously. Under simulated-sunlight the photocatalytic activity of the composites was evaluated by degradation of aqueous phthalate esters. The results showed that the photocatalytic activity of H3PW12O40/TiO2 was higher than that of pure TiO2, In addition, the photocatalytic activity of H3PW12O40/TiO2 monotonically increased along of loadings H3PW12O40 from 0 to 19.8%. Under the simulated-sunlight irradiation, the degradation efficiency of H3PW12O40/TiO2-19.8 for PAEs was determined in sequence DBP>DEP>DMP. It is also observed that pH variations influence the photocatalytic activity of the H3PW12O40/TiO2 composite, and neuter or alkaline conditions can promote the photocatalytic degradation of H3PW12O40/TiO2 for DEP.
     HPLC-MS and IC were used to detect and analysis the intermediates generated during the DEP and DBP degradation process. Tests of TOC also were carried out. Based on the intermediates identified in the reaction system, the photocatalytic degradation pathway of DEP and DBP were put forward. DEP can realize mineralization by three path, and the main products among the degradation process is consist of hydroxyl DEP, phthalic acid,2-hydroxyl benzoic acid, maleic anhydride and phenol, etc. DBP can realize mineralization by four path, and the main products among the degradation process is consist of hydroxyl DBP, hydroxyl phthalic acid, butyl acrylate acid, etc. Both the intermediates generate formate, succinic acid, and acetic acid, etc. through degradation, further CO2 and H2O.
     H3PW12O40/Ag-TiO2 nanocomposites, H3PW12O40 and Ag co-doped TiO2 nanocomposites with enhanced photocatalytic activity, was successfully prepared by combination of the methods of sol-gel and hydrothermal treatment at a lower temperature. Composition, structure, optical absorption property, physicochemical properties, and surface morphology of the composite were characterized by test technologies. It was obsreved that the H3PW12O40/Ag-TiO2 show anatase crystalline phase, and metallic Ag particles well distributed on the surface. Also it was shown that the maximum absorption of composite material after introduction of Ag ion occured a obvious small shift toward longer wavelengths, and appeared not only at 200-380 nm but also at 400-600 nm; Compared with pure TiO2, the BET area of composite material with dual-pore structures, micro-and meso-porosity (0.45 nm and 4.2 nm) was slightly decreased. The photocatalysic activities of H3PW12O40/Ag-TiO2 was tested by degradation of aqueous DEP and Sulfamethoxazole (SMZ) under simulated-sunlight irradiation. The results showed that the photocatalytic activity of H3PW12O40/TiO2 was higher than that of pure TiO2. The photocatalytic activity of different composites are arranged as follows:H3PW12O40/Ag-TiO2>Ag/TiO2>H3PW12O40/TiO2>TiO2. The reasons of this enhanced photocatalytic activity were discussed logically.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at semiconductor electrode[J]. Nature, 1972,238 (1):37-38.
    [2]施利毅.纳米材料[M], 上海:华东理工大学出版社.2006,164-165.
    [3]沈伟韧,赵文宽,贺飞.TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4)349-361.
    [4]韩维屏.催化化学导论[M].北京:科学出版社,2003,599-600.
    [5]Zhang D, Qiu R, Song L, et al. Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO2 under visible light irradiation[J]. Hazard Mate,2009,163 (2-3):843-847.
    [6]于向阳,梁文,杜永娟等.二氧化钛光催化材料的应用[J].材料导报,2000,14(2):38-40.
    [7]谭小伟,高家诚,邹建等.不同品型的纳米TiO2粉体的低温制备及光催化性能研究[J].兵器材料科学与工程,2007,30(1):27-30.
    [8]孙晓君,蔡伟民,井立强等.二氧化钛半导体光催化技术研究进展[J].哈尔滨工业大学学报,2001,33(4):534-541.
    [9]Salvador P, Gonzalez Garcia M L, Munoz F, Catalytic Role of Lattice Defacts in the Photoassisted Oxidation of Water at (001) n-TiO2 Rutile[J]. J. Phys. Chem.,1992,96 (25):10349-10353.
    [10]Yamashita H, Kamada N, He H, et al. Reduction of CO2 with H2O on TiO2 (110) Single Crystals under UV-irradiation[J]. Chem. Lett.,1994, (5):855-858.
    [11]井立强.ZnO超微粒子的制备、改性、表征及其在S02与烃的气相光催化反应中催化作用的研究[D].[硕士学位论文].1997.
    [12]Hoffman M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J].Chem. Rev.,1995,95 (1):69-96.
    [13]Sokmen M, Candan F, Sumer Z. Disinfection of E. coli by the Ag-TiO2/UV system: lipidperoxidation[J]. J Photochem Photobiol A:Chem.2001,143 (2-3):241-244.
    [14]Wu G, Chen T, Zong X, et al. Suppressing CO formation by anion adsorption and Pt deposition on TiO2 in H2 production from photocatalytic reforming of methanol[J]. J Catal.2008,253 (1):225-227.
    [15]SalvadO-Estivill I, Brucato A, Puma G L. Two-dimensional modeling of a flat-plate photocatalytic reactor for oxidation of indoor air pollutants[J]. Ind Eng Chem Res,2007,46 (23):7489-7496.
    [16]Yu H, Chen S, Quan X, et al. Fabrication of a TiO2-BDD heterojunction and its application as a photocatalyst for the simultaneous oxidation of an azo dye and reduction of Cr (Ⅵ) [J]. Environ Sci Technol,2008,42 (10):3791-3796.
    [17]Lachheb H, Puzenat E, Houas A, et al. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania[J]. Appl Catal B:Environ,2002,39 (1):75-90.
    [18]Richard C, Halle A, Brahmia O, et al. Auto-remediation of surface waters by solar-light:Photolysis of 1-naphthol, and two herbicides in pure and synthetic waters[J]. Catal Today,2007,124(3-4):82-87.
    [19]雷乐成,汪大翚.水处理高级氧化技术[M].北京:化学工业出版社,2001,250.
    [20]Lachheb H, Puzenat E, Houas A, et al. Photocatalytic degradation of various types of dyes (Alizarin s, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania[J]. Appl. Catal. B:Environ.,2002,39:75-90.
    [21]Stylidi M, Kondarides D I, Verykios X E. Pathways of solar light-induced photocatalytic degradation of azo dyes in TiO2 aqueous suspensions[J]. Appl. Catal. B:Environ.,2003,40:271-286.
    [22]Carole K. G, Marie J, Michael G. Decomposition of organophosphorus compounds on photoactivated TiO2 surfaces[J]. J. Mole Cata,1990,60:375-387.
    [23]陈士夫,赵梦月,陶跃武等.久效磷农药光催化降解过程及机理研究[J].郑州工学院学报,1996,17(1):25-28.
    [24]葛飞,戴友芝,罗卫玲.TiO2光催化氧化技术在环保领域的研究新进展[J].化学进展,2002,(12):20-22.
    [25]白玉兰,孔德良,叶庆国.纳米TiO2光催化剂固定化技术及其改性的研究进展[J].青岛化工学院学报,2001,22(4):326-333.
    [26]Mitsunobu Lwasaki, Masayoshi Hara, Hiromi Kawada, et.al. Cobalt Ion-doped TiO2 photocatalyst response to visible light[J]. Journal of Colloid and Interface Science J,2000,224:202-204.
    [27]管晶,梁文懂.掺钒二氧化钛的可见光催化性能研究[J].应用化工,2006,35(2):117-119.
    [28]张雪红,唐星华,程新孙.TiO2-CeO2介孔复合氧化物的合成及应用[J].物理化学学报,2003,32(5):532-537.
    [29]周武艺,唐绍裘等.制备不同稀土掺杂的纳米氧化钛光催化剂及其光催化活性[J].硅酸盐学报,2004,32(10):1203-1206.
    [30]Li J, Yang X, Yu X, et al. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide[J]. Appl Surf Sci,2009,255 (6): 3731-3738.
    [31]Li X Z, Li F B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment[J]. Environ Sci Technol[J].2001,35 (11):2381-2387.
    [32]Stathatos E, Petrova T, Lianos P. Study of the efficiency of visible-light photocatalytic degradation of basic blue adsorbed on pure and doped mesoporous titania films[J]. Langmuir,2001,17(16):5025-5030.
    [33]Wang C H, Hller A, Gerischer H. Palladium catalysis of O2 reduction by elections accumulated on TiO2 particles during photoassisted oxidation of organic compounds[J]. Am. Chem. Soc.,1992,114: 5230-5234.
    [34]Hyung Mi Sung-Suh, Jae Ran Choi, Hoe Jin Hah, et.al.Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation[J]. Journal of Photochemistry and Photobiology.A, Chemistry,2004,163 (1-2):37-44
    [35]彭绍琴.掺杂二氧化钛光催化剂的制备及性能研究[D].[博士学位论文].南昌:南昌大学,2005.
    [36]于宏燕,杨儒,李敏等.锐钛相虫蛀状介孔二氧化钛的表征[J].无机化学学报,2003,19(9):963-966.
    [37]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293 (5528):269-271.
    [38]Khan Sum, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,297(5590):2243-2245.
    [39]Nukumizu K, Nunoshige J, Takata T, et al. TiNxOyFz as a stable photocatalyst for water oxidation in visible light (< 570 nm)[J]. Chem. Lett,2003,32(2):196-197.
    [40]Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Appl. Catal. B:Environmental,2003,42:403-409.
    [41]Vogel R., Hoyer P., Weller H., Quantun-sized PbS, CdS, Ag2S, Sb2B3 and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-band Gap Semiconductors[J]. J.Phys.Chem.,1994,98 (12):3183-3188.
    [42]Liu D, Kamat Pv. Electrochemical rectification in cdse+TiO2 coupled semiconductor-films[J]. Journal of Electroanalytical Chemistry.1993,347(1-2):451-456.
    [43]袁志好,张立德.掺锌的TiO2纳米粉的结构相变及发光性质[J].高等学校化学学报,1999,20(7):1007-1011.
    [44]施利毅,李春忠,古宏晨等.SnO2-TiO2复合颗粒的形态结构及光催化活性[J].化学物理学报,2000,13(3):336-341.
    [45]Do Y R, Lee W, Dwight K, et al.. The Effect of WO3 on the Photocatalytic Activity of TiO2[J]. J. Solid State Chem.,1994,108 (1):198-201.
    [46]施利毅,古宏晨,李春忠等.SnO2-TiO2复合光催化剂的制备和性能[J].催化学报,1999,20(3):338-342.
    [47]张长拴,李志勋,张乐等.超细纳米TiO2/Al2O3复合体的制备及其组成分布的研究[J].化学研究与应用,2000,12(4):379-381.
    [48]Luan Z H, Hartmann M, Zhao D Y, et al. Alumination and ion exchange of mesoporous SBA-15 molecular sieves[J]. Chem. Mater,1999,11 (6):1621-1627.
    [49]赵敬哲,杨少凤,王子忱等.制备高比表面多孔Ti-Si复合氧化物材料的新方法[J].高等学校化学学报,2000,21(2):292-294.
    [50]Hadjiivanov K., Reddy B M, Knzinger H, FTIR Study of Low-temperature Adsorption and CO Adsorption of 12CO and 13CO on a TiO2-SiO2 Mixed Oxide[J]. Applied Catalysis A:General,1999, 188:355-360.
    [51]Vogel R., Hoyer P, Weller H. Quantun-sized PbS, CdS, Ag2S, Sb2B3 and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-band Gap Semiconductors[J]. J.Phys.Chem.,1994,98 (12):3183-318
    [52]Cheng P, Zheng M, Jin Y, et al. Preparation and characterization of silica-doped titania photocatalyst through sol-gel method[J]. Mater. Letters.,2003,57:2989-2994.
    [53]魏子栋,殷菲,谭君等.TiO2光催化氧化研究进展[J].化学通报,2001,2:76-80.
    [54]Chen C Y, Burkett S L, Li H X, et al. Studies on mesoporous materials. II.Synthesis mechanism of MCM-41[J]. Micropor Mater.1993,2(1):27-34.
    [55]Ranjit K T, Cohen H, Willner I, et al. Lanthanide oxide-doped titanium dioxide:Effective photocatalysts for the degradation of organic pollutants[J]. J Mater Sci,1999,34(21):5273-5280.
    [56]Lu H M, Takata T, Lee Y. Photocaalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine[J]. Chem Mater,2004,16:846-849.
    [57]Liu H Y, Gao L. Codoped rutile TiO2 as a new photocatalyst for visible light irradiation[J]. Chem Lett,2004,33:730-731.
    [58]刘国光,张学治等.铁、锌、铁酸锌掺杂对纳米级二氧化钛光催化降解罗丹明B活性的影响[J].环境工程,2003,21(2):72-74.
    [59]Yang X, Xu L, Yu X, et al. One-step preparation of silver and indium oxide co-doped TiO2 photocatalyst for the degradation of rhodamine B[J]. Catal Commun,2008,9:1224-1229.
    [60]Tian B, Li C, Gu F, et al. Synergetic effects of nitrogen doping and Au loaading on enhancing the visible-light photocatalytic activity of nano-[J]. Catal Commun,2009,10:925-929.
    [61]郑珊, 高濂, 郭景坤.温和条件下介孔分子筛MCM-41的修饰与表征[J].无机材料学报,2000,15(5):844-848.
    [62]Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method[J]. Angew. Chem. Int.Ed.Engl,1995,34(18):2014-2017.
    [63]Kloetatra K R, Zandbergen H W, Jansen J C. Overgrowth of mesoporous MCM-41 On faujasite[J]..Micropor. Mater.,1996,6:287-293.
    [54]黄少云,葛学贵,石磊等.介微孔复合沸石分子筛对重金属离子吸附性能的实验研究[J].岩石矿物学杂志,2004,24(1):57-60.
    [65]Li L, Li Y, Ma Y, et al. Preparation and photocatalytic behaviors of nanoporous polyoxotungstate anatase TiO2 composites[J]. J. Rare Earths.,2007,25:68-73.
    [66]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998(第一版)
    [67]MisonoM, Okuhara T, Ichiki T, et al. Pesudoliquid behavior of heteropoly compound catalysts, unusual pressure dependencies of the rate and selectivity for ethanol dehydration[J]. J Am Chem Soc, 1987,109 (18):5535-5536.
    [68]Friesen D A, Headley J V, Langford C H. The photooxidative degradation of N-methylpyrrolidinone in the presence of CS3PW12O40 and TiO2 colloid photocatalysts[J]. Environ. Sci. Technol,1999,33: 3193-3198.
    [69]Hiskia A, Mylonas A, Papaconstantinou E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles[J]. Chem Soc Rev,2001,30:62-69.
    [70]Yamase T. Water splitting by photoirradiation of alkylammonium polytungstates in homogeneous solutions and detectable paramagnetic species[J]. Inorg Chim Acta,1983,76:L25-L27.
    [71]Yamase T, Watanabe R. Photochemical hydrogen-evolution from alkaline solution of alkylammonium isopolyvanadate[J]. Inorg Chim Acta,1983,77:L193-L195.
    [72]Mylonas A, Papaconstantinou E. On the mechanism of photocatalytic degradation of chlorinated phenols to CO2 and HCl by polyoxometalates[J]. J Photochem Photobiol,1996,94 (1):77-82.
    [73]Mylonas A, Papaconstantinou E, Roussis V. Photocatalytic degradation of phenol and p-cresol by polyoxotungstates. mechanistic implications[J]. Polyhedron,1996,15 (19):3211-3217.
    [74]Mylonas A, Hiskla A, Papaconstantinou E. Contribution to water purification using polyoxo-metalates, Aromatiddenvatives, chloroaceticacids[J]. J. Mol Catal A:Chem,1996, 114:191-196.
    [75]Antonaraki S, Androulaki E, Dimotikali D, et al. Photolytic degradation of all chlorophenols with polyoxometallates and H2O2 [J]. J Photochem Photobiol A:Chem,2002,148 (1-3):191-197.
    [76]Texier I, Giannotti C, Malato S, et al. Solar photodegradation of pesticides in water by sodium decatungstate[J]. Cataly Today,1999,54 (2-3):297-307.
    [77]Ozer R R, Ferry J L. Kinetic Probes of the Mechanism of Polyoxometalate-Mediated Photocatalytic Oxidation of Chlorinated Organics[J]. J Phys Chem,2000,104 (40):9444-9448.
    [78]Friesen D A, Headley J V, Langford C H. The photooxidative degradation of N-methylpyrrolidinone in the presence of Cs3PW12O40 and TiO2 colloidal photocatalysts[J]. Environ. Sci.Technol.,1999, 33:3193-3198.
    [79]Friesen D A, Morello L, Headley J V, et al. Factors influencing relative efficiency in photo-oxidations of organic molecules by Cs3PW12O40 and TiO2 colloidal photocatalysts[J]. J. Photochem Photobiol A: Chem,2000,133 (3):213-220.
    [80]Guo Y, Hu C, Jiang S, et al. Heterogeneous photodegradation of aqueous hydroxy butanedioic acid by microporous polyoxometalates[J]. Appl Catal B,2002,36 (1):9-17.
    [81]Hori H, Hayakawa E, Koike K, et al. Decomposition of nonafluoropentanoic acid by heteropolyacid photocatalyst H3PW12O40 in aqueous solution[J]. J. Mol Catal A:Chem 2004,211:35-41.
    [82]Mizuno N, Misono M. Heterogenous catalysis[J]. Chem. Rev,1998,98(1):199-217.
    [83]Guo Y, Wang Y, Hu C, et al. Microporous polyoxometalates POMs/SiO2:synthesis and photocatalytic degradation of aqueous organocholorinepesticides[J]. Chem Mater,2000,12 (11) 3501-3508.
    [84]Schroden R C, Holland B T, Melde B J, et al. Direct systhesis of ordered macroporous silica materials functionalized with polyoxometalate cluster[J]. Chem Mater,2001,13 (3):1074-1081.
    [85]Izumi Y, Ono M, Hida T. Acid catalysis of silica-included heteropolyacid in polar reaction media[J]. Appl Catal A,1999,181 (6):277-282.
    [86]Guo Y, Yang Y, Hu C, et al. Preparation, characterization and photochemical properties of ordered macroporous hybrid silica materials based on monovacant Keggin-type polyoxometalates[J]. Mater Chem, 2002,12 (2):3046-3052.
    [87]Kozhevnilov I V, Kloetstra K R, Sinnema A, et al. Study of catalysts comprising heteropoly acid H3PW12O40 supported on MCM-41 molecular sieve and amorphous silica[J]. J Mole Catal A,1996,114 (1):287-298.
    [88]Izumi Y, Urabe K. Catalysis of heteropoly acids entrapped in activated carbon[J]. Chem. Lett, 1981,5:663-666.
    [89]Vazquez P, Pizzio L, Romanelli G, et al. Mo and W heteropolyacid based catalysts applied to the preparation of flavones and substituted chromones by cyclocondensation of o-hydroxyphenyl aryl 1, 3-propanediones[J]. Appl Catal A:Gen,2002,235 (1-2):233-240.
    [90]Liu Q Y, Wu W L, Wang J, et al. Characterization of 12-tungstophosphoric acid impregnated on mesoporous silica SBA-15 and its catalytic performance in isopropylation of naphthalene with isopropanol[J]. Micropor Mesopor Mater,2004,76 (1-3):51-60.
    [91]Farhadi S, Afshari M, Maleki M, et al. Photocatalytic oxidation of primary and secondary benzylic alcohols to carbonyl compounds catalyzed by H3PW12O40/SiO2 under an O2 atmosphere[J]. Tetra Lett, 2005,46 (49):8483-8486.
    [92]Sawant D P, Vinu A, Jacob N E, et al. Formation of nanosized zirconia-supported 12-tungstophosphoric acid in mesoporous silica SBA-15:A stable and versatile solid acid catalyst for benzylation of phenol[J]. J Catal,2005,235 (2):341-352.
    [93]Misono M. Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten[J]. Catal. Rev-Science and Engineering,1987,29(2-3):269-321.
    [94]Izumi Y, Ono M, Kitagawa M, et al. Silica-included heteropoly compounds as solid acidcatalysts[J]. Micropor Mater,1995,5 (4):255-262.
    [95]Izumi Y, Hisano K, Hida T. Acid catalysis of silica-included heteropolyacid in polar reactionmedia[J]. Appl Catal A:General,1999,181 (2):277-282.
    [96]Guo Y, Hu C, Wang X, et al. Microporous Decatungstates:Synthesis and Photochemical Behavior[J]. Chem Mater,2001,13 (11):4058-4064.
    [97]Guo Y, Li D, Hu C, et al. Photocatalytic degradation of aqueous organocholorine pesticide on the layered double hydroxide pillared by Paratungstate A ion, Mg12Al6 (OH) 36 (W7O24)·4H2O[J]. Appl Catal B:Environmental,2001,30 (3-4):337-349.
    [98][95] Peng G., Wang Y, Hu C, et al. Hereropolyoxometalates which are included in microporous silica, CsxH3-xPMo12O40/SiO2 and CsyH3-yPMo10V2O40/SiO2 as insoluble solid bifunctional catalysis: synthesis and selective oxidation of benzyl alcohol in liquid-solid systems[J]. Appl Catal A:Gen,2001, 218 (1-2):91-99.
    [99]Ozer R R, Ferry J L. Photocatalytic oxidation of aqueous 1,2-dichlorobenzene by polyoxomeatlates
    supported on the NaY zeolite[J]. J Phys. Chem B,2002,106:4336-4342.
    [100]李莉,郭伊荇,周萍.孔道结构H3Pwl2O40/Ti02的制备及其可见光光催化降解水溶液中染料的研
    究[J].催化学报,2005,3:259-262.
    [101]Yang Y, GuoY, Hu Cet al. Preparation of surface modifications of mesoporous titania with
    monosubstituted Keggin units and their catalytic performance for organochlorine pesticide and dyes under
    UV irradiation[J]. Appl Catal A,2004,273 (1-2):201-210.
    [102]Bai B, Zhao J L, Feng X. Preparation and characterization of supported photocatalysts:
    HPA/TiO2/SiO2 composite[J]. Materials Letters,2003,57:3914-3918.
    [103]Yang Y, Guo Y, Hu C, et al. Lacunary Keggin-type polyoxometalates-based macroporous composite
    films:preparation and photocatalytic activity[J]. Appl Catal A:Gen,2003,252 (2):305-314.
    [104]陈玺,孙继朝,黄冠星等.酞酸酯类物质污染及其危害性研究进展[J].地下水,2008,30(2):57-59.
    [105]丁鹏,赵晓松,刘剑峰等.酞酸酯类化合物(PEAs)研究新进展[J].吉林农业大学学报,1999,21(3):119-123,128.
    [106]庞金梅, 池宝亮, 段亚利.苯二甲酸酯的微生物降解与转化[J].环境科学,1993,18(3):88-90.
    [107]张蕴辉.邻苯二甲酸二乙基己酯对环境和生物体的危害[J].国外医学卫生学分册,2002,29:73-77.
    [108]胡晓宇,张克荣等.中国环境中邻苯二甲酸酯类化合物污染的研究[J].中国卫生检验杂志,2003,13(1):9-14.
    [109]Kluwe W M, Mccorrnell E E, Huff J E, et al. Carcinogenecity of phthalate esters and related compounds by National Toxicology Program and The National Cancer Institute[J]. Environmental Health Prospect,1982,45:129-133.
    [110]Wams T J. Diethylhexyphthalates as environmental contaminant-A review[J]. Sci. Total Environ. 1987,66:1-16.
    [11l]郎佩珍, 赵元慧, 丁蕴铮等.松花江水中23种有机污染物的迁移转化研究-应用野外实验池方法[J].环境科学学报,1997,17(3):302-311.
    [112]程爱华,王磊,王旭东等.纳滤膜去除水中微量邻苯二甲酸酯的研究[J].水处理技术,2007,33(11):14-16.
    [113]Thebault P, Cases J M, Fiessinger F. Mechanism underlying the removal of organic micropollutants during flocculation by an aluminum or iron salt[J]. Water Res,1981,15 (2) 183-189.
    [114]Venkata Mohan S, Shailaja S, Rama Krishna M, et al. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon:A kinetic study[J]. J. Hazar. Mater,2007,146: 278-282.
    [115]Wang X, Leslie Grady C P. Comparison of biosorption isotherms for di-n-butyl phthalate by live and dead bacteria[J]. Water Res,1994,28 (5):1247-1251.
    [116]Murai S, Imajo Y, Takasu K, et al. Removal of phthalic acid esters from aqueous solution by inclusion and adsorption on β-cyclodextrin[J]. Environ. Sci.Technol,1998,32 (6):782-787.
    [117]M·斯尼茨尔著(吴奇虎等译).环境中的腐殖物质[M].北京:工业出版社,1979:218-219.
    [118]Wang J, Liu P, Qian Y. Biodegradation of phthalic acid esters by acclimated activated sludge[J]. Environ.Inter,1996,22 (6):737-741.
    [119]陈英旭,沈东升,胡志强等.酞酸醋类有机毒物在土壤中降解规律的研究[J].环境科学学报,1997,17(3):340-3450.
    [120]Liang D W, Zhang T, Fang H P, et al. Anaerobic degradation of dimethyl phthalate in wastewater in a UASB reactor[J]. Water Res,2007,41:2879-2884.
    [121]Matsui Y. Biodegradation model of organic compounds by activated sludge. I.Non-ionic aliphatic compounds[J]. Bull.Natl.Inst.Res.Pollut.Res.,1983,13:135-139.
    [122]雷乐成,王大翚.水处理高级氧化技术[M].北京:化学工业出版社,2001,244-249.
    [123]XuB, GaoNY, Sun X F, et al. Photochemical degradation of diethyl phthalate with UV/H2O2[J]. J. Hazar. Mater,2007,139:132-139.
    [124]胡晓宇,张克荣,郑波等.水体中邻苯二甲酸酯光降解研究[J].四川大学学报(医学版),2003,34(2):300-302.
    [125]Alistair B A, Boxall, et al. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters,2002,131:19-28.
    [126]王国忠,郭文欣,姚春翥.动物性产品中药物残留的危害性[J].黑龙江畜牧兽医杂志,2000,39:23-27.
    [127]Littlefield N A, Sheldon W G, Allen R, Chronic toxicity/carcinogenicity studies of sulphamethazine in Fischer 344/N rats:two-generation exposure[J]. Food-and-Chemical-Toxicology,1990,28 (3):157-167.
    [128]Cribb Ae, Miller m, Tesoro A, et al. Peroxidase-dependent oxidation of sulfonamides by monocytes and neutrophils from humans and dogs[J]. Molecular Pharmacology,1990,38(5):744-751.
    [129]姜蕾,陈书怡,杨蓉等.长江三角洲地区典型废水中抗生素的初步分析[J].环境化学,2008,27(3):371-374.
    [130]Hirsch R, Haberer T, Kratz K L. Occurrence of antibiotics in the aquatic environment[J]. The Science of the Total Environment,1999,225:109-118.
    [131]McArdell C S, Molnar E, Suter M J-F, Giger W. Occurrence and fate of marolide antibiotics in wasterwater treatment plantss and in the Glatt valley watershed[J]. Switzerland. Environ. Sci. Technol, 2003,37:5479-5486.
    [132]Baran W, Sochacka J, Wardas W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere,2006,65:12951-12959.
    [133]Boxall A B A, Blackwell P, Cavallo R, et al. The sorption and transport of a sulphonamide antibiotic in soil system[J]. Toxicol Lett,2002,131:19-28.
    [134]许月卿,赵仁兴,白天雄等.大孔吸附树脂处理含磺胺废水的研究[J].离子交换与吸附,2003,19(2):163-169.
    [135]Liu X B, Sun Y, Yang C, et al. Adsorptive removal of sulfanilamide, sulphamethazine and roxithromycin by mesoporous carbon[C]. Study on Biological Control and Bio-technology,2009,
    [136]Alexy R, Kumpel T, Kummerer K. Assessment of degradation of 18 antibiotics in the Closed Bottle Test[J]. Chemosphere,2004,57:505-512.
    [137]常红,胡建英,王乐征等.城市污水处理厂中磺胺类抗生素的调查研究[J].中国科学,2008,3(2):159-164.
    [138]梁凤颜,尹平河,赵玲等.水体中微污染物磺胺嘧啶光催化降解行为[J].生态环境学报,2009,18(4):1227-1230.
    [139]Carrera R, Castillo N, Arce E, et al. Analysis of polymorphic nanocrystals of TiO2 by X-ray rietveld refinement and high-resolution transmission electronmicroscopy:acetaldehyde decomposition [J]. Res. Lett. Nanotechnology,2008,2008:1-5.
    [140]Takagi H, Fujishiro Y, Awano M. Preparation and characterization of the Sb-doped TiO2 photocatalysts[J]. J. Mater. Sci.,2001,36:949-955.
    [141]Bohren C F, Huffman D R. Absorption and scattering of light by small particles, John Wiley & Sons, New York, NY, USA,1983.
    [142]Huang D, Wang Y, Yang L, et al. Direct synthesis of mesoporous TiO2 modified with phosphotungstic acid under template-free condition[J]. Micropor. Mesopor. Mater.,2006,96:301-306.
    [143]Zhou M, Yu J, Cheng B, et al. Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystlline photocatalyst[J]. Mater. Chem. Phys,2005,93:159-163.
    [144]Rengaraj S, Li X. Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2, 4,6-trichlorophenol in aqueous suspension[J]. J. Mol. Catal. A:Chem.,2006,243:60-67.
    [145]Chen H, Ku Y, Kuo Y. Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis[J]. Water Res.,2007,41:2069-2078.
    [146]Li J, Zeng H. Preparation of Monodisperse Au/TiO2 nanocatalysts via self-assembly[J]. Chem. Mater.,2006,18:4270-4277.
    [147]Jalil P A, Faiz M, Tabet N, et al. A study of the stability of tungstophosphorc acid, H3PW1204o, using synchrotron XPS, XANES, hexane cracking, XRD, and IR spectroscopy[J]. J. Catal.,2003, 217:292-297.
    [148]Jing L, Sun X, Cai W, et al. The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity[J]. J. Phy. Chem. Solids,2003,64:615-623.
    [149]Jing L, Xu Z, Sun X, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles[J]. Appl. Surf. Sci.,2001,180:308-314.
    [150]Turek W, Pomarzansk E S, PronA, et al. Propylene oxidation over poly (azomethines) doped with heteropolyacids[J]. J. Catal.,2000,189:297-313.
    [151]Rao P M, Wolfson A, KababyaS, et al. Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices[J]. J. Catal.,2005,232: 210-225.
    [152]Jiang S, Guo Y, Wang C, et al. One-step sol-gel preparation and enhanced photocatalytic activity of porous polyoxometalate-tantalum pentoxide nanocomposites[J]. J. Colloid Interface Sci,2007, 308:208-215.
    [153]Hizal. G., et al. On the photolysis of phthalic acid diakyl esters A product analysis study[J]. J. Photobiol A:Chemistry,1993,72:147-152.
    [154]Zhang Z, Wang C, Zakaria R, et al. Role of particle size in nanocrystalline TiO2-based photocatalysts[J]. J. Phys. Chem. B,1998,102:10871-10878.
    [155]Dagan G, Sampath S, Lev O. Preparation and utilization of organically modified silica-titania photocatalysts for decontamination of aquatic environments [J]. Chem. Mater.,1995,7:446-453.
    [156]Feng J, Zheng Z, Luan J, et al. Degradation of diuron in aqueous solution by ozonation[J]. J. Environ. Sci. Health B.,2008,43:576-587.
    [157]石万聪,赵晨阳.增塑剂的毒性与相关法规[J].塑料助剂,2007,62(2):46-51.
    [158]Kaneco S, Kastumata H, Suzuki T, et al. Titanium dioxide mediated photo-catalytic degradation of dibutyl phthalate in aqueous solution-kinetics, mineralization and reaction mechanism[J]. Chem. Eng. J., 2006,125:59-66.
    [159]Muneer M, Theurich J, Bahnemann D. Titanium dioxide mediated photocatalytic degradation of 1, 2-diethyl phthalate[J]. J. Photochem. Photobiol. A:Chem.,2001,143:213-219.
    [160]张靖峰,杜志平,赵永红等.纳米Ag/ZnO光催化剂及其催化降解壬基酚聚氧乙烯醚性能[J].催化学报,2007,28, (5):457-462.
    [161]Whang T, Huang H, Hsieh M, et al. Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue[J]. Int. J. Mol. Sci.,2009.10:4707-4718.
    [162]陈建华,张辉鹏,王建国等.Ag掺杂对TiO2性质影响的第一性原理研究[J].广西大学学报:自然科学版,2009,34(2):241-245.
    [163]Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-ray Photoelectron Spectroscopy, 2nd ed; Perkin-Elmer Corp:USA,1992.
    [164]Sun L, Li J, Wang C, et al. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity [J]. J. Hazar. Mater.,2009,171:1045-1050.
    [165]Sobana N, Muruganadham M, Swaminathan M. Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes[J]. J. Mol. Catal. A:Chem,2006,258:124-132.
    [166]J Feng, Zheng Z, Luan J, et al. Degradation of diuron in aqueous solution by ozonation[J]. J. Environ. Sci. Health B.2008,43:576-587.
    [167]Zhang F, Pi Y, Cui J, et al. Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide[J]. J Phys Chem C,2007,111 (9):3756-3761.
    [168]He C, Yu Y, Hu X, et al. Influence of silver doping on the photocatalytic activity of titania films[J].Appl Surf Sci,2002,200 (1-4):239-247.
    [169]Xin B, Ren Z, Hu H, et al. Photocatalytic activity and interfacial carrier transfer of Ag-TiO2 nanoparticle films[J]. Appl Surf Sci,2005,252 (5):2050-2055.
    [170]Sung-Suh H M, Choi J R, Hah H J, et al. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation[J]. J Photochem Photobiol A: Chemistry,2004,163:37-44.
    [171]Roucoux A, Schlz J, Patin H. Reduced transition metal colloids:A novel family of reusable catalysts[J]. Chem Rev,2002,102 (10):3757-3778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700