用户名: 密码: 验证码:
孔道几何形貌控制合成基于多酸的复合催化剂及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂多酸(HPA)以其独特的结构和优异的催化性能受到广泛的关注。然而,由于HPA的比表面积小(< 10 m2 g?1)、热稳定性差且易溶于极性溶剂,限制了其在许多催化过程中的实际应用。因此,将HPA固载到具有大比表面积、大孔径和高孔容的介孔材料上可克服它们在催化反应中的局限性并且获得更好的催化性能。本文致力于设计制备系列具有不同孔道结构有序性和几何形貌的二氧化硅或二氧化钛负载型H3PW12O40/SiO2和H3PW12O40/TiO2非均相催化材料,并分别通过双酚酸合成反应和水中典型有机污染物降解反应研究其非均相酸催化和光催化性能,具体研究内容如下。
     1.在聚乙氧基?聚异丙氧基?聚乙氧基三嵌段共聚物(PEO?PPO?PEO,P123)的结构导向作用下,采用一步溶胶?凝胶共缩合与水热处理相结合技术,制备了系列H3PW12O40担载量(4.0?65.1%)可调控的三维交联介孔结构H3PW12O40/SiO2复合催化剂。通过光谱技术、X射线粉末衍射技术、氮气吸附测定和电镜技术,对复合材料的组成与结构、表面物理化学性质和形貌进行了详细表征。当H3PW12O40的担载量低于20%时,这些材料呈现出较大的BET比表面积(604.5?753.0 m2 g?1)、较大的孔径(6.1?8.6 nm)和较高的孔隙率(0.75?1.2 cm3 g?1),而且,Keggin单元在整个材料中均匀分散。通过在无溶剂条件下以生物平台分子(乙酰丙酸)为原料合成双酚酸的反应,系统考察了这些复合材料的酸催化性能,并评价了其活化和循环使用情况。
     2.在低聚非离子型表面活性剂C18H37(OCH2CH2)10OH(C18EO10,Brij76)的作用下,通过一步共缩合技术,制备出了一系列介孔结构H3PW12O40/SiO2复合材料;通过调控前躯体的成分比例(主要是水与其它物质的摩尔比)和制备条件,分别获得了具有二维六方p6mm、三维六方P63/mmc和三维海绵状等不同孔几何构型的H3PW12O40/SiO2复合材料。这些材料具有较大的BET比表面积(590?1050 m2 g?1)、较高的孔隙率(0.4?1.3 cm3 g?1)和较大的孔径(3.0?5.4 nm)。作为一种可重复使用的新型固体酸催化剂,在无溶剂条件下,以上材料成功地应用于通过生物平台分子(乙酰丙酸)合成双酚酸的反应,并以此模型反应考察了复合材料的结构有序度、孔几何构型、H3PW12O40担载量及模板去除方法对催化反应活性和选择性的影响,并评价了其活化和循环使用情况。
     3.以非离子型表面活性剂为结构导向剂(P123和F127),分别采用蒸发诱导自组装(EISA)和水热处理技术,一步制备出了系列具有二维六方p6mm、三维立方Im3m和三维交联海绵结构的介孔H3PW12O40/TiO2复合材料,详细表征了这些复合材料的介孔结构、形貌、孔隙率、光吸收特性和组成与结构。随后,在模拟太阳光照射下(? > 320 nm和? > 400 nm),这些复合材料成功地应用于水溶液中环境激素邻苯二甲酸二乙酯和染料甲基橙及罗丹明B的光催化降解,同时,考察了H3PW12O40/TiO2复合材料的结构有序度、孔几何构型、H3PW12O40担载量、焙烧温度及入射光波长对光催化反应性能的影响。最后,评价了其活化和循环使用情况。
Heteropoly acid (HPA) have attracted significant attention because of their special properties. However, HPA exhibit low surface area(< 10 m2 g?1), low thermal stability, high solubility in polarity solvent which limit their utility in many catalytic reactions. Thus, the dispersion of HPAs on mesoporous supports with high surface area, large pore diameter, and high specific pore volume is seen as a critical means of improving their properties and obtaining better performance in many potential heterogeneous catalytic applications.
     1. Periodic mesoporous H3PW12O40/SiO2 composite catalysts with controllable H3PW12O40 loadings (4.0?65.1%) were prepared by a direct sol-gel co-condensation technique in the presence of triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer followed by hydrothermal treatment. Powder X-ray diffraction patterns and nitrogen sorption analysis indicate the formation of ordered mesoporous materials. With H3PW12O40 loadings lower than 20%, the materials exhibit higher BET surface area (604.5?753.0 m2 g?1), larger pore size (6.1?8.6 nm), larger pore volume (0.75?1.2 cm3 g?1), and highly dispersed Keggin unit throughout the materials. Raman scattering spectroscopy studies confirm that the primary Keggin structure remained intact after formation of the composites. The acid catalytic properties of as-prepared materials was tested by the reaction of solvent-free synthesis of diphenolic acid from levulinic acid. Remarkably high catalytic activity and stability were observed.
     2. A series of mesostructured H3PW12O40/SiO2 materials were developed by using a single step co-condensation technique in the presence of nonionic oligomeric surfactant, C18H37(OCH2CH2)10OH (C18EO10, Brij76). By tuning the composition ratios of the starting precursors (mainly the molar ratios of water to the other materials) and the preparation conditions, the materials exhibited ordered two-dimensional (2D) hexagonal p6mm, three-dimensional (3D) hexagonal P63/mmc, and 3D disordered sponge-like pore geometries, respectively. The materials possessed unique textural properties including very large BET surface area (590?1050 m2 g?1), very high porosity (0.4?1.3 cm3 g?1), and well-distributed pore diameter (3.0?5.4 nm). As a novel type of reusable solid acid catalyst, as-prepared materials were applied for the synthesis of diphenolic acid (DPA) from biomass-derived platform molecule, levulinic acid (LA), under solvent-free condition, and special attention was paid to investigate the influences of the structural orderings, pore geometries, H3PW12O40 loadings, and template removal methods on the reactivity and selectivity of H3PW12O40/SiO2 materials to the target reaction.
     3. A series of mesostructured H3PW12O40/TiO2 materials with two-dimensional hexagonal p6mm, three-dimensional cubic Im3m, and three-dimensional interconnected sponge-like pore geometries were developed by using a single step nonionic-surfactant-templating strategy combined with evaporation-induced self-assembly (EISA) or hydrothermal treatment technique. The mesostructure, morphology, porosity, optical absorption property as well as composition and structure of as-prepared materials were well-characterized. Subsequently, the materials were successfully applied to the degradation of an aqueous phthalate ester (a kind of endocrine disrupting chemicals) under the simulated sunlight irradiation (? > 320 nm and ? > 400 nm), and special attention was paid to investigate the influences of the structural orderings, pore geometries, H3PW12O40 loadings as well as calcination temperature on the photocatalytic performance of the H3PW12O40/TiO2 materials to the target reaction.
引文
[1]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular?sieves synthesized by a liquid?crystal template mechanism[J]. Nature, 1992, 359(6397): 710?712.
    [2]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular?sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269(5228): 1242?1244.
    [3]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社, 1998 (第一版).
    [4]Mizuno M, Misono M. Heterogeneous Catalysis[J]. Chem Rev, 1998, 98(1): 199?217.
    [5]Misono M. Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state[J]. Chem Comm, 2001(13): 1141?1152.
    [6]Ninomiya W, Sadakane M, Matsuoka S, et al. An efficient heteropolyacid catalyzed acylation of pyruvate esters to a?acyloxyacrylate esters as potential candidate monomers for bio?based polymers[J]. Chem Commun, 2008: 5239?5241.
    [7]Rocha K S, Hoehne J L, Gusevskaya E V. Phosphotungstic acid as a versatile catalyst for the synthesis of fragrance compounds byα?pinene oxide isomerization: solvent?induced chemoselectivity[J]. Chem Eur J, 2008, 14: 6166?6172.
    [8]Sakthivel A, Komura K, Sugi Y. MCM?48 Supported tungstophosphoric acid: an efficient catalyst for the esterification of long?chain fatty acids and alcohols in supercritical carbon dioxide[J]. Ind Eng Chem Res, 2008, 47(8): 2538?2544.
    [9]Hou Z, Okuhara T. Condensation of benzene and aqueous formaldehyde to diphenylmethane in a biphasic system consisting of an aqueous phase of heteropolyacid[J]. J Mol Catal A: Chem, 2003, 206: 121?130.
    [10]Kamalakar G, Komura K, Kubota Y, et al. Friedel–Crafts benzylation of aromatics with benzyl alcohols catalyzed by heteropoly acids supported on mesoporous silica[J]. J Chem Technol Biotechnol, 2006, 81: 981?988.
    [11]Xu L, Li W, Hu J, et al. Biodiesel production from soybean oil catalyzed by multifunctionalized Ta2O5/SiO2?[H3PW12O40/R] (R = Me or Ph) hybrid catalyst[J]. Appl Catal B: Environ, 2009, 90: 587?594.
    [12]Xu L, Wang Y, Yang X, et al. Simultaneous esterification and transesterification of soybean oil with methanol catalyzed by mesoporous Ta2O5/SiO2–[H3PW12O40/R] (R = Me or Ph) hybrid catalysts[J]. Green Chem, 2009, 11: 314–317.
    [13]Xu L, Li W, Hu J, et al. Transesterification of soybean oil to biodiesel catalyzed by mesostructured Ta2O5?based hybrid catalysts functionalized by both alkyl?bridged organosilica moieties and Keggin?type heteropoly acid[J]. J Mater Chem, 2009, 19: 8571?8579.
    [14]Xu L, Wang Y, Yang X, et al. Preparation of mesoporous polyoxometalate?tantalum pentoxide composite catalyst and its application for biodiesel production by esterification and transesterification[J]. Green Chem, 2008, 10(7): 746?755.
    [15]Fujishima A, Honda K. Electrochemical photolysis of water at semiconductor electrode[J]. Nature, 1972, 238(1): 37?38.
    [16]Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chem Rev, 2007, 107(7): 2891?2959.
    [17]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用,北京:化学化工出版社, 2002.
    [18]Park S W, Jang J T, Cheon J, et al. Shape?dependent compressibility of TiO2 anatase nanoparticles[J]. J Phys Chem C, 2008, 112(26): 9627?9631.
    [19]Tachikawa T, Fujitsuka M, Majima T. Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts[J]. J Phys Chem C, 2007, 111(14): 5259?5275.
    [20]Es?Souni M, Es?Souni M, Habouti S, et al. Brookite formation in TiO2?Ag nanocomposites and visible?light?induced templated growth of Ag nanostructures in TiO2[J]. Adv Funct Mater, 2010, 20(3): 377?385.
    [21]Liu G, Wang L, Yang H G, et al. Titania?based photocatalysts—crystal growth, doping and heterostructuring[J]. J Mater Chem, 2010, 20: 831?843.
    [22]Sheppard S E, Eberlin L W, Ultra?violet sensitive layer [P]. U.S. Patent 1934451, 1933.
    [23]Hori H, Yamamoto A, Koike K, et al. Photocatalytic decomposition of a perfluoroether carboxylic acid by tungstic heteropolyacids in water[J]. Appl Catal B: Environ, 2008, 82: 58?66.
    [24]郭伊荇,李丹峰,胡长文等,仲钨酸盐A柱撑化合物Mg12Al6(OH)36(W7O24)·4H2O的合成及其光催化性能研究[J].高等学校化学学报, 2001, 22(9): 1453?1455.
    [25]Carriazo D, Addamo M, MarcìG, et al. Tungstophosphoric acid supported on polycrystalline TiO2 for the photodegradation of 4?nitrophenol in aqueous solution and propan?2?olin vapour phase[J]. Appl Catal A: Gen, 2009, 356: 172?179.
    [26]Gu C, Shannon C. Investigation of the photocatalytic activity of TiO2–polyoxometalate systems for the oxidation of methanol[J]. J Mol Catal A: Chem, 2007, 262: 185?189.
    [27]Farhadi S, Zaidi M. Polyoxometalate–zirconia (POM/ZrO2) nanocomposite prepared by sol–gel process: A green and recyclable photocatalyst for efficient and selective aerobic oxidation of alcohols into aldehydes and ketones[J]. Appl Catal A: Gen, 2009, 354: 119?126.
    [28]Li J, Kang W, Yang X, et al. Mesoporous titania?based H3PW12O40 composite by a block copolymer surfactant?assisted templating route: Preparation, characterization, and heterogeneous photocatalytic properties[J]. Desalination, 2010, 255(1?3): 107?116.
    [29]李莉,郭伊荇,周萍等.孔道结构H3PW12O40/TiO2的制备及其可见光光催化降解水溶性染料的性能[J].催化学报. 2005, 26(3): 209?215.
    [30]Chai S H, Wang H P, Liang Y, et al. Sustainable production of acrolein: gas?phase dehydration of glycerol over 12?tungstophosphoric acid supported on ZrO2 and SiO2[J]. Green Chem, 2008, 10: 1087?1093.
    [31]Mukherjee B, Karthik C, Ravishankar N. Hybrid sol?gel combustion synthesis of nanoporous anatase[J]. J Phys Chem C, 2009, 113(42): 18204?18211.
    [32]Newman A D, Brown D R, Siril P, et al. Structural studies of high dispersion H3PW12O40/SiO2 solid acid catalysts[J]. Phys Chem Chem Phys, 2006, 8: 2893?2902.
    [33]Obal? Z, Do?u T. Activated carbon–tungstophosphoric acid catalysts for the synthesis of tert?amyl ethyl ether (TAEE)[J]. Chem Eng J, 2008, 138: 548?555.
    [34]Timofeeva M N, Matrosova M M, Reshetenko T V, et al. Filamentous carbons as a support for heteropoly acid[J]. J Mol Catal A: Chem, 2004, 211: 131?137.
    [35]Chimienti M E, Pizzio L R, Cáceres C V, et al. Tungstophosphoric and tungstosilicic acids on carbon as acidic catalysts[J]. Appl Catal A: Gen, 2001, 208: 7?19.
    [36]Strano M S, Wyre J, Foley H C. Novel heteropolyacid nanoporous carbon reactive barriers for supra?equilibrium conversion and in situ component separation[J]. Ind Eng Chem Res, 2005, 44(16), 6414?6422.
    [37]Fei B, Lu H, Chen W, et al. Ionic peapods from carbon nanotubes and phosphotungstic acid[J]. Carbon, 2006, 44: 2261?2264.
    [38]Guo Y, Wang Y, Hu C, et al. Microporous polyoxometalates POMs/SiO2: synthesis and photocatalytic degradation of aqueous organocholorine pesticides[J]. Chem Mater, 2000, 12(11): 3501?3508.
    [39]Guo Y, Hu C, Wang X, et al. Microporous Decatungstates: Synthesis and Photochemical Behavior[J]. Chem Mater, 2001, 13(11): 4058?4064.
    [40]Peng G., Wang Y, Hu C, et al. Hereropolyoxometalates which are included in microporous silica, CsxH3?xPMo12O40/SiO2 and CsyH3?yPMo10V2O40/SiO2 as insoluble solid bifunctional catalysis: synthesisand selective oxidation of benzyl alcohol in liquid?solid systems[J]. Appl Catal A: Gen, 2001, 218(1?2): 91?99.
    [41]Yang L, Li J, Yuan X, et al. One step non?hydrodesulfurization of fuel oil: Catalyzed oxidation adsorption desulfurization over HPWA?SBA?15[J]. J Mol Catal A: Chem, 2007, 262: 114?118.
    [42]Fujita S, Inagaki S. Self?organization of organosilica solids with molecular?scale and mesoscale periodicities[J]. Chem Mater, 2008, 20(3): 891?908.
    [43]Melero J A, Grieken R, Morales G. Advances in the synthesis and catalytic applications of organosulfonic?functionalized mesostructured materials[J]. Chem Rev, 2006, 106(9): 3790?3812.
    [44]Inumaru K, Ishihara T, Kamiya Y, et al. Water?tolerant, highly active solid acid catalysts composed of the keggin?type polyoxometalate H3PW12O40 immobilized in hydrophobic nanospaces of organomodified mesoporous silica[J]. Angew Chem Int Ed, 2007, 46: 7625?7628.
    [45]Yanagida S, Nakajima A, Sasaki T, et al. Processing and photocatalytic properties of transparent 12 tungsto(VI) phosphoric acid?TiO2 hybrid films[J]. Chem Mater, 2008, 20(11): 3757?3764.
    [46]Chen C, Lei P, Ji H, et al. Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study[J]. Environ Sci Technol, 2004, 38(1): 329?337.
    [47]Ozer R R, Ferry J L. Investigation of the photocatalytic activity of TiO2?polyoxometalate systems[J]. Environ Sci Technol, 2001, 35(15): 3242?3246.
    [48]Xie Y, Zhou L, Huang H. Enhanced photoelectrocatalytic performance of polyoxometalate?titania nanocomposite photoanode[J]. Appl Catal B: Environ, 2007, 76: 15?23.
    [49]Xie Y. Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstate encapsulated in titania nanotubes[J]. Adv Funct Mater, 2006, 16: 1823?1831.
    [50]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc, 1992, 114(27):10834?10843.
    [51]Huo Q S, Margolese D I, Stucky G D, Surfactant control of phases in the synthesis of mesoporous silica?based materials[J]. Chem Mater, 1996, 8(5):1147?1160.
    [52]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548?552.
    [53]Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinumfilms from lyotropic liquid crystalline phases [J]. Science, 1997, 278(5339): 838?840.
    [54]Braun P V, Osenar P, Tohver V, et al. Nanostructure templating in inorganic solids with organiclyotropic liquidcrystals[J]. J Am Chem Soc, 1999, 121(32): 7302?7309.
    [55]Schuth F. Non?siliceous mesostructured and mesoporous materials[J]. Chem Mater, 2001, 13: 3184?3195.
    [56]Kruk M, Dufour B, Celer E B, et al. Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor[J]. J Phys Chem B, 2005, 109(19): 9216?9225.
    [57]Wan Y, Shi Y, Zhao D. Supramolecular aggregates as templates: ordered mesoporous polymers and carbons[J]. Chem Mater, 2008, 20(3): 932?945.
    [58]Kondo J N, Domen K. Crystallization of mesoporous metal oxides[J]. Chem Mater, 2008, 20(3): 835?847.
    [59]Hoffmann F, Cornelius M, Morell J, et al. Silica?Based Mesoporous Organic?Inorganic Hybrid Materials[J]. Angew Chem Int Ed, 2006, 45(20): 3216?3251.
    [60]Soler?Illia G, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures[J]. Chem Rev, 2002, 102(11): 4093?4138.
    [61]Wan Y, Zhao D. On the controllable soft?templating approach to mesoporous silicates[J]. Chem Rev, 2007, 107(7): 2821?2860.
    [62]El?Safty S A, Kiyozumi Y, Hanaoka T, et al. Controlled design of ordered and disordered porearchitectures, geometries, and dimensions of HOM?type mesostructured monoliths and their hydrothermal stabilities[J]. J Phys Chem C, 2008, 112(14): 5476?5489.
    [63]Wan Y, Shi Y, Zhao D. Designed synthesis of mesoporous solids via nonionic?surfactant?templating approach[J]. Chem Commun, 2007: 897?926.
    [64]Meng Y, Gu D, Zhang F, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic?organic self?assembly[J]. Chem Mater, 2006, 18(18): 4447?4464.
    [65]Yang P, Zhao D, Chmelka B F, et al. Triblock?copolymer?directed syntheses of large?pore mesoporous silica fibers[J]. Chem Mater, 1998, 10(8): 2033?2036.
    [66]Fan J, Yu C, Gao F, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties[J]. Angew Chem Int Ed, 2003, 42: 3146?3150.
    [67]Park I, Wang Z, Pinnavaia T J. Assembly of large?pore silica mesophases with wormhole framework structures fromα,ω?diamine porogens[J]. Chem Mater, 2005, 17(2): 383?386.
    [68]Bozell J J, Moens L, Elliott D C, et al. Production of levulinic acid and use as a platform chemical for derived products[J]. Resources Conserv Recycling, 2000, 28(3?4): 227?239.
    [69]Yu X, Guo Y, Li K, et al. Catalytic synthesis of diphenolic acid from levulinic acid over cesium partly substitutedWells–Dawson type heteropolyacid[J]. 2008, 290: 44?53.
    [70]Yang Q , Liu J, Yang J, et al. Synthesis, characterization, and catalytic activity of sulfonic acid?functionalized periodic mesoporous organosilicas[J]. J Catal, 2004, 228(2): 265?272.
    [71]Cha J Y, Hanna M A. Levulinic acid production based on extrusion and pressurized batch reaction[J]. Ind Crops Prod, 2002, 16(2): 109?118.
    [72]Taguchi A, Schuth F. Ordered mesoporous materials in catalysis[J]. Microporous Mesoporous Mater, 2005, 77(1): 1?45.
    [73]Kozhevnikov I V. Sustainable heterogeneous acid catalysis by heteropoly acids[J]. J Mol Catal A: Chem, 2007, 262(1?2): 86?92.
    [74]Kaur J, Griffin K, Harrison B, et al. Friedel–crafts acylation catalysed by heteropoly acids[J]. J Catal, 2002, 208(2): 448?455.
    [75]Okuhara T. Water?tolerant solid acid catalysts[J]. Chem. Rev, 2002, 102(10): 3641?3666.
    [76]Izumi Y, Ono M, Kitagawa M, et al. Silica?included heteropoly compounds as solid acid catalysts[J]. Microporous Mater, 1995, 5(4):255?262.
    [77]Guo Y H, Wang Y H, Hu C W, et al. Microporous polyoxometalates POMs/SiO2: synthesis and photocatalytic degradation of aqueous organocholorine pesticid[J]. Chem Mater, 2000, 12(11): 3501?3508.
    [78]Guo Y H, Hu C W, Jiang C J, et al. Preparation and heterogeneous photocatalytic behaviors of the surface?modified porous silica materials impregnated with monosubstituted keggin units[J]. Catal, 2003, 217(1): 141?151.
    [79]Guo Y H, Hu C W, Jiang S C, et al. Heterogeneous photodegradation of aqueous hydroxyl butanedioic acid by microporous polyoxometalates[J]. Appl Catal B: Environ,2002, 36(1): 9?17.
    [80]Guo Y H, Li D F, Hu C W, et al. Photocatalytic degradation of aqueous organocholorine pesticide on the layered double hydroxide pillared by paratungstate A ion[J]. Appl Catal B: Environ, 2001, 30(3?4): 337?349.
    [81]Kozhevnikov I V, Kloetstra K R, Sinnema , et al. Study of catalysts comprising heteropoly acid H3PW12O40 supported on MCM?41 molecular sieve and amorphous silica[J]. J Mol Catal A: Chem, 1996, 114(1?3): 287 298.
    [82]Sawant D P, Vinu A, Jacob N E, et al. Formation of nanosized zirconia?supported 12?tungstophosphoric acid in mesoporous silica SBA?15: A stable and versatile solid acid catalyst for benzylation of phenol[J]. J Catal, 2005, 235(2): 341?352.
    [83]Izumi Y, Hisano K, Hida T. Acid catalysis of silica?included heteropolyacid in polar reaction media[J]. Appl Catal A: Gen, 1999, 181(2): 277?282.
    [84]Guo Y H, Hu C W, Wang X L, et al. Microporous decatungstates: synthesis and photochemicalbehavior[J]. Chem Mater, 2001, 13( 11): 4058?4064.
    [85]Verhoef M J, Kooyman P J, Peters J A, et al. A study on the stability of MCM?41?supported heteropoly acids under liquid? and gas?phase esterification conditions[J]. Microporous Mesoporous Mater, 1999 , 27( 2?3): 365?371.
    [86]Q H Xia, K Kidajat, S Kawi. Structure, acidity, and catalytic activity of mesoporous acid catalysts for the gas?phase synthesis of MTBE from MeOH and ButOH[J]. J Catal, 2002, 209(2): 433?444.
    [87]Lu Z?L, Lindner E, Mayer H A. Applications of sol?gel?processed interphase Catalysts. Chem Rev, 2002, 102(10): 3543–3578.
    [88]M T Pope, A Mu¨ller. Polyoxometalate chemistry: An old field with new dimensions in several disciplines[J]. Angew Chem Int Ed Engl, 1991, 30(1): 34?48.
    [89]Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric sufactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998, 120(24): 6024?6036.
    [90]M Kruk, M Jaroniec, C H Ko, et al. Characterization of the porous structure of SBA?15[J]. Chem Mater, 2000, 12(7): 1961?1968.
    [91]Li L, Wu Q Y, Guo Y H, et al. Nanosize and bimodal porous polyoxotungstate?anatase TiO2 composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible?light excitation[J]. Microporous Mesoporous Mater, 2005, 16(2): 1?9.
    [92]Kozhevnikova E F, Quartararo J, Kozhevnikov I V. Fries rearrangement of aryl esters catalysed by heteropoly acid[J]. Appl Catal A: Gen, 2003, 245(1): 69?78.
    [93]Jiang S, Guo Y H, Wang C, et al. One?step sol?gel preparation and enhanced photocatalytic activity of porous polyoxometalate?tantalum pentoxide nanocomposites[J]. Colloid Interface Sci, 2007, 308(1): 208?215.
    [94]D Margolese, J A Melero, S C Christiansen, et al. Direct Syntheses of Ordered SBA?15 Mesoporous Silica Containing Sulfonic Acid Groups[J]. Chem Mater, 2000, 12(8): 2448?2459.
    [95] Clark J H, Macquarrie D J, Tavener S J. The application of modified mesoporous silicas in liquid phase catalysis[J]. Dalton Trans, 2006, (36):4297?4309..
    [96]Yun H S, Kuwabara M, Zhou H S, et al. One?step synthesis of mesoporous PWA/SiO2 composite materials using triblock copolymer templates[J]. J Mater Sci, 2004, 39: 2341?2347.
    [97]Taguch A, Schüth F. Ordered mesoporous materials in catalysis[J]. Microporous Mesoporous Mater, 2005, 77(1): 1?45.
    [98]Goettmann F, Sanchez C. How does confinement affect the catalytic activity of mesoporous materials?[J]. J Mater Chem, 2007, 17(1): 24?30.
    [99]Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of superamolecular?templated mesoporous materials[J]. Angew Chem Int Ed, 1999, 38: 56~77.
    [100]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548?552.
    [101]Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinumfilms from lyotropic liquid crystalline phases [J]. Science, 1997, 278(5339): 838?840.
    [102]El?Safty S A, Hanaoka T. Monolithic nanostructured silicate family templated by lyotropic liquid?crystalline nonionic surfactant mesophases[J]. Chem Mater, 2003, 15(15): 2892?2902.
    [103]El?Safty S A, Hanaoka T. Microemulsion liquid crystal templates for highly ordered three?dimensional mesoporous silica monoliths with controllable mesopore structures[J]. Chem Mater, 2004, 16(3): 384?400.
    [104]Kruk M, Celer E B, Jaronie M. Exceptionally high stability of copolymer?templated ordered silica with large cage?like mesopores[J]. Chem Mater, 2004, 16(4): 698?707.
    [105]Tiemann M. Repeated templating[J]. Chem Mater, 2008, 20(3): 961?971.
    [106]Vinu A. Mesoporous carbon nitrides with tunable pores[J]. Adv Funct Mater, 2008, 18(5): 816–827.
    [107]He X, Antonelli D M. Recent Advances in Transition Metal Containing Mesoporous Molecular Sieves[J]. Angew Chem Int Ed, 2002, 41: 214?229.
    [108]Burkett S L, Sims S D, Mann S. Synthesis of hybrid inorganic–organic mesoporous silica by co?condensation of siloxane and organosiloxane precursors[J]. Chem Commun, 1996, 1367?1368.
    [109]Dragoi B, Dumitriu E, Guimon C, et al. Acidic and adsorptive properties of SBA?15 modified by aluminum incorporation[J]. Microporous Mesoporous Mater, 2009, 121(1?3): 7?17.
    [110]Braun P V, Osenar P, Tohver V, et al. Nanostructure templating in inorganic solids with organiclyotropic liquidcrystals[J]. J Am Chem Soc, 1999, 121(32): 7302?7309.
    [111]Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature, 2001, 412: 169?172.
    [112]Yang Q, Liu J, Yang J, et al. Acid catalyzed synthesis of ordered bifunctionalized mesoporous organosilicas with large pore[J]. Microporous Mesoporous Mater, 2005, 77(2?3): 257?264.
    [113]Izumi Y, Ono M, Ogawa M, et al. Acidic cesium salts of keggin?type heteropolytungstic acids as insoluble solid acid catalysts for estenfication and hydrolysis reactions[J]. Chem Lett, 1993, 825?828.
    [114]Yang Q, Liu J, Yang J, et al. Synthesis, characterization, and catalytic activity of sulfonic acid?functionalized periodic mesoporous organosilicas[J]. J Catal, 2004, 228(2): 265?272.
    [115]Pope M T, Müller A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines[J]. Angew Chem Int Ed, 1991, 30(1): 34?48.
    [116]Misono M, Ono I, Koyano G, et al. Heteropolyacids. versatile green catalysts usable in a variety of reaction media[J] Pure Appl Chem, 2000, 72(7): 1305?1311.
    [117]Shikata S, Misono M. Strong influence of the polyanion structure on the secondary structure of solid heteropolyacids and their catalytic activity; methyl tert?butyl ether synthesis in the pseudo?liquid phase of heteropolyacids[J]. Chem Commun, 1998, (12):1293?1294.
    [118]Corma A, García H, Lewis acids as catalysts in oxidation reactions: From homogeneous to heterogeneous systems[J]. Chem Rev, 2002, 102: 3837?3892.
    [119]Udayakumar S, Ajaikumar S, Pandurangan A. Electrophilic substitution reaction of phenols with aldehydes: enhance the yield of bisphenols by HPA and supported HPA[J]. Catal Commun, 2007, 8(3): 366?374.
    [120]Guo Y, Li K, Yu X,et al. Mesoporous H3PW12O40?silica composite: efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid[J]. Appl Catal B: Environ, 2008, 81(3?4): 182?191.
    [121]Sawant D P, Justus J, Balasubramanian V V, et al. Heteropoly Acid Encapsulated SBA?15/TiO2 nanocomposites and their unusual performance in acid?catalysed organic transformations[J]. Chem Eur J, 2008, 14(10): 3200.
    [122]Guo Y, Li K, Clark J H. The synthesis of diphenolic acid using the periodic mesoporous H3PW12O40?silica composite catalysed reaction of levulinic acid[J]. Green Chem, 2007, 9(8): 839?841.
    [123]Xu L, Wang Y, Yang X, et al. Preparation of mesoporous polyoxometalate?tantalum pentoxide composite catalyst and its application for biodiesel production by esterification and transesterification[J]. Green Chem, 2008, 10(7): 746?755.
    [124]Guo Y, Li K, Clark J. The synthesis of diphenolic acid using the periodic mesoporous H3PW12O40?silica composite catalysed reaction of levulinic acid[J]. Green Chem, 2007, 9(8): 839?841.
    [125]Campbell G M, Webb C, McKee S L. Cereals: Novel Uses and Processes[M], Manchester, United Kingdom, 1996, 49?55
    [126]Isoda Y, Azuma M. Preparation of bis(hydroxyaryl)pentanoic acids[p]. Japanese patent, 08053390 to Honshu Chemical Ind.1996?02?27.
    [127]Ravikovitch I P, Neimark A V. Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three?dimensional hexagonal structures[J]. Langmuir, 2002, 18(5): 1550?1560.
    [128]Kapoor M P, Sectoyama N, Yang Q, et al. Oligomeric polymer surfactant driven self?assembly of phenylene?bridged mesoporous materials and their physicochemical properties[J]. Langmuir, 2005, 21(1): 443?449.
    [129]Sakamoto Y, Díaz I, Terasaki O, et al. Three?dimensional cubic mesoporous structures of SBA?12 and related materials by electron crystallography[J]. J Phys Chem B, 2002, 106(12): 3118?3123.
    [130]Jayasundera S, Burleigh M C, Zeinali M, et al. Organosilica copolymers for the adsorption and separation of multiple pollutants[J]. J Phys Chem B, 2005, 109(19): 9198?9201.
    [131]Sayari A, Yang Y. Nonionic oligomeric polymer directed synthesis of highly ordered large pore periodic mesoporous organosilica[J]. Chem Commun, 2002, 8(21): 2582?2583.
    [132]El?Safty S A, Evans J. Formation of highly ordered mesoporous silica materials adopting lyotropic liquid crystal mesophases[J]. J Mater Chem, 2002, 12(1): 117?123.
    [133]Jung S B, Ha T J, Seon J.B, et al. Phase behavior of ordered mesoporous silica film prepared by Brij?76 block copolymer[J]. Microporous Mesoporous Mater, 2008, 111(1?3): 188?193.
    [134]Xia Y, Mokaya R. Generalized and facile synthesis approach to N?doped highly graphitic mesoporous carbon materials[J]. Chem Mater, 2005, 17(6): 1553?1560.
    [135]Newman A D, Lee A F, Wilson K, et al. On the active site in H3PW12O40/SiO2 catalysts for fine chemical synthesis[J]. Catal Lett, 2005, 102(1?2): 45?50.
    [136]El?Safty S A, Prabhakaran D, Ismail A A, et al. Three?dimensional wormhole and ordered mesostructures and their applicability as optically ion?sensitive probe templates[J]. Chem Mate, 2008, 20(8): 2644?2654.
    [137]Thompson T L, Yates Jr J T. Surface science studies of the photoactivation of TiO2 ? New photochemical processes[J]. Chem Rev, 2006, 106(10): 4428?4453.
    [138]Lv K, Xu Y. Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic dye X3B on TiO2: the difference in the production of reactive species[J]. J Phys Chem B, 2006,110(12): 6204?6212.
    [139]Parkin I P, Palgrave R G. Self?cleaning coatings[J]. J Mater Chem, 2005, 15(17); 1689?1695.
    [140]Yu H, Lee S C, Yu J, et al. Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers[J]. J Mol Catal A: Chem, 2006, 246 (1?2):206?211.
    [141]Wang S, Hou W, Wei L, et al. Antibacterial activity of nano?SiO2 antibacterial agent grafted on wool surface[J]. Surf Coat Technol, 2007, 202(3): 460?465.
    [142]Li J, Xu J, Dai W, et al. One?pot synthesis of twist?like helix tungsten?nitrogen?codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol[J]. Appl Catal B: Environ, 2008, 82(3?4): 233?243.
    [143]Puddu V, Mokaya R, Puma G L. Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity[J]. Chem Commun, 2007, (45): 4749?4751.
    [144]Marci G, Palmisano L, Sclafani A, et al. Influence of tungsten oxide on structural and surface properties of sol?gel prepared TiO2 employed for 4?nitrophenol photodegradation[J]. J Chem Soc Faraday Trans, 1996, 92(5):819?829.
    [145]Shibata H, Ogura T, Mukai T, et al. Direct synthesis of mesoporous titania particles having a crystalline wall[J]. J Am Chem Soc, 2005, 127(47): 16396?16397.
    [146]Fukuda K, Ebina Y, Shibata T, et al. Unusual crystallization behaviors of anatase nanocrystallites from a molecularly thin titania nanosheet and its stacked forms: Increase in nucleation temperature and oriented growth[J]. J Am Chem Soc, 2007, 129(1): 202?209.
    [147]Li H, Bian Z, Zhu J, et al. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity[J]. J Am Chem Soc, 2007, 129(15): 4538?4539.
    [148]Yu J C, Li G, Wang X, et al. An ordered cubic Im3m mesoporous Cr–TiO2 visible light photocatalyst[J]. Chem Commun, 2006, 2717?2719.
    [149]Mitoraj D, Kisch H. The nature of nitrogen?modified titanium dioxide photocatalysts active in visible light[J]. Angew Chem Int Ed, 2008 47(51): 9975?9978.
    [150]Wu G, Wang J, Thomas D F, et al. Synthesis of F?doped flower?like TiO2 nanostructures with high photoelectrochemical activity[J]. Langmuir 2008, 24(7): 3503?3509.
    [151]Junin C, Thanachayanont C, Euvananont C, et al. Effects of precipitation, sol–gel synthesis conditions, and drying methods on the properties of nano?TiO2 for photocatalysis applications[J]. Eur J Inorg Chem, 2008, 2008(6): 974?979.
    [152]Yang X, Wang Y, Xu L, et al. Silver and indium oxide codoped TiO2 nanocomposites with enhanced photocatalytic activity[J]. J Phys Chem C, 2008, 112(30): 11481?11489.
    [153]Yang X, Ma F, Li K, et al. Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: New efficient photocatalyst for dye degradation[J]. J Hazard Mater, 2010, 175(1?3): 429?438.
    [154]Schmidt W. Solid catalysts on the nanoscale: design of complex morphologies and pore structures[J]. ChemCatChem, 2009, 1(1): 53?67.
    [155]Sawant D P, Vinu A, Jacob N E, et al. Formation of nanosized zirconia?supported 12?tungstophosphoric acid in mesoporous silica SBA?15: A stable and versatile solid acid catalyst for benzylation of phenol[J]. J Catal, 2005, 235: 341–352.
    [156]Taguchi A, Schüth F. Ordered mesoporous materials in catalysis[J]. Microporous Mesoporous Mater, 2005, 77(1): 1?45.
    [157]Nowinska K, Formanniak R, Kaleta W, et al. Heteropoly compounds incorporated into mesoporous material structure[J]. Appl Catal A: Gen, 2003, 256: 115?123.
    [158]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548?552.
    [159]Li K, Hu J, Li W, et al. Design of mesostructured H3PW12O40?silica materials with controllable ordered and disordered pore geometries and their application for the synthesis of diphenolic acid[J]. J Mater Chem, 2009, 19(45): 8628?8638.
    [160]Kozhevnikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid?phase reactions[J]. Chem Rev, 1998, 98(1): 171?198.
    [161]Kozhevnikov I V. Friedel–Crafts acylation and related reactions catalysed by heteropoly acids[J]. Appl Catal A: Gen, 2003, 256(1?2): 3?18.
    [162]Kozhevnikova E F, Derouane E G, Kozhevnikov I V. Heteropoly acid as a novel efficient catalyst for Fries rearrangement[J]. Chem. Commun. 2002, 11: 1178?1179.
    [163]Izumi Y, Urabe K, Onaka M. Zeolite, clay and heteropoly acid in organic reactions, rodansha/VCH [M]. Tokyo, 1992.
    [164]Guo Y, Hu C. Porous hybrid photocatalysts based on polyoxometalates[J]. J Cluster Sci, 2003, 14(4): 505?526.
    [165]Guo Y, Hu C. Heterogeneous photocatalysis by solid polyoxometalates[J]. J Mol Catal A: Chem, 2007, 262(1?2): 136?148.
    [166]Vinu R, Madras G. Kinetics of sonophotocatalytic degradation of anionic dyes with nano?TiO2 [J]. Environ Sci Technol, 2009, 43(2): 473?479.
    [167]Yoon M, Chang J A, Kim Y, et al. Heteropoly acid?incorporated TiO2 colloids as novel photocatalytic systems resembling the photosynthetic reaction center[J]. J Phys Chem B, 2001, 105(13): 2539?2545.
    [168]Yang Y, Wu Q, Guo Y, et al. Efficient degradation of dye pollutants on nanoporous polyoxotungstate?anatase composite under visible?light irradiation[J]. J Mol Catal A: Chem, 2005, 225(2): 203?212.
    [169]Li L, Wu Q, Guo Y, et al. Nanosize and bimodal porous polyoxotungstate?anatase TiO2 composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible?light excitation[J].Micropor Mesopor Mater, 2005, 87(1): 1?9.
    [170]MarcìG, García?López E, Palmisano L, et al. Preparation, characterization and photocatalytic activity of TiO2 impregnated with the heteropolyacid H3PW12O40: Photo?assisted degradation of 2?propanol in gas?solid regime[J]. Appl Catal B: Environ, 2009, 90(3?4), 497?506.
    [171]Yang Y, Wu Q, Wang E, et al. Efficient degradation of dye pollutants on nanoporous polyoxotungstate–anatase composite under visible?light irradiation[J]. J Mol Catal A: Chem, 2005, 225(2): 203?212.
    [172]Yanagida S, Nakajima A, Sasaki T, et al. Preparation and photocatalytic activity of Keggin?ion tungstate and TiO2 hybrid layer?by?layer film composites[J]. Appl Catal A: Gen, 2009, 366(1): 148?153.
    [173]Chen C, Zhao W, Zhao J. Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible?light irradiation: mechanistic implications[J]. J Eur Chem, 2004, 10(8):1956?1965.
    [174]Wams T J. Diethylhexylphthalate as an environmental contaminant ? A review[J]. Sci Total Environ, 1987, 66: 1?16.
    [175]Miao L, Tanemura S, Toh S, et al. Fabrication, characterization and Raman study of anatase?TiO2 nanorods by a heating?sol?gel template process[J]. J Crystal Growth, 2004, 264(1?3): 246?252.
    [176]Li K, Guo Y, Ma F, et al. Design of ordered mesoporous H3PW12O40?titania materials and their photocatalytic activity to dye methyl orange degradation[J]. Catal. Commun, 2010, 11: 839?843.
    [177]Xu L, Wang Y, Yang X, et al. Preparation of mesoporous polyoxometalate?tantalum pentoxide composite catalyst and its application for biodiesel production by esterification and transesterification[J]. Green Chem, 2008, 10(7): 746?755.
    [178]Madhusudhan Rao P, Wolfson A, Kababya S, et al. Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina?grafted silica?gel and mesostructured SBA?15 silica matrices[J]. J Catal, 2005, 232(1): 210?225.
    [179]Kormali P, Triantis T, Dimotikali D, et al. On the photooxidative behavior of TiO2 and PW12O403?: OH radicals versus holes[J]. Appl Catal B: Environ, 2006, 68: 139?146.
    [180]Jin H, Wu Q, Pang W, Photocatalytic degradation of textile dye X?3B using polyoxometalate–TiO2 hybrid materials[J]. J Hazardous Mater, 2007, 141(1):123?127.
    [181]Gu D, Yang B, Hu Y, et al. N co?doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation[J]. Catal Commun, 2008, 9(6): 1472?1476.
    [182]Chang S, Hou C, Lo P, et al. Preparation of phosphated Zr?doped TiO2 exhibiting high photocatalytic activity through calcination of ligand?capped nanocrystals[J]. Appl Catal B: Environ, 2009, 90(1?2): 233?241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700