用户名: 密码: 验证码:
君子兰栽培光环境机理与调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
君子兰属石蒜科君子兰属,原生于非洲的品种独特的花卉,传入我国有100多年历史,在民间养殖40多年,受到广大养花者的喜爱。1984年,君子兰被命名为长春市市花。目前,长春市有君子兰温室面积30多万平方米,占全国总面积三分之一,年产君子兰3亿株,规模以上养植户达到5000多户,从业人员达到5万多人。成为长春市十大支柱产业之一。
     然而在目前君子兰栽培中,存在着以下几个问题,制约着产业化的进程,
     1花期固定;很多节假日没有花;
     2离开花窖,长的七扭八歪,普通人家养不好,减少消费人群;
     3单层栽培,土地升值,无论栽培设施购买还是租赁,势必增加单位成本;
     4夏季温度高、日照时间长、光照强度大,叶片过长,变薄;难以保障整体品质。
     这些都与光环境密切相关,本研究从实际出发,研究其环境机理,探索确实可行的方案,以解决上述实际问题为目标。
     具体研究内容利用了LED作为单色人工光源研究了君子兰对各种波段不同强度光源的反应及复合光源的光环境机理,在此基础上,提出了在夏季采用蓝紫色透光材料解决温室内日照时间及强度过大,影响君子兰品质问题的方案,并于2008年夏季实施,效果良好;同时针对立体栽培,家庭栽培光源,研究用光源,对人工光源作了研究,提出了些具有一定可行性的方案。
Clivia is a genus of monocot flowering plants native to southern Africa. They are from the family Amaryllidaceous. Common names include Kaffir lily and bush lily. They are herbaceous evergreen plants, with dark green, strap-like leaves. Flowers are bell-shaped flowers on a stalk above the foliage, and they are borne in whites through yellow to red colors Of the six known species, Clivia miniata is the most widely cultivated, and hybrid varieties with flowers ranging from deep red-orange to pale yellow have been bred by growers.
     In 1984, the clivia was named City flower of Changchun. Now there are more than three-hundreds thousand square meters of clivia glasshouse in this city, is One of three of national total area , it can produce 300,000,000 stubs every year, more than 5000 doors, the employee are more than 50,000 peoples. Be becoming one of the ten pillar industries in Changchun City. As merchandise of ornamental, the clivia’s price is decided by its appearance and characteristic, which are closely-related with the cultivation light environment. Light quality is important parameter of light environment. Researching control mechanism of clivia light environment, it is first how light quality to work.
     The light source generally used for in vitro culture is fluorescent lamps. Metal halide, high-pressure sodium and incandescent lamps are also applied to increase PPF level. However, these sources contain unnecessary wavelengths that are of low quality for promoting growth. Compared with those traditional lamps, the improved features of the light-emitting diode (LED) include smaller mass and volume, a longer life, and a single wavelength.
     The concrete research contents are as follows:
     1, Various mere qualities act on the impact on Clivia nobilis alone in visible light range;
     2, Normal greenhouse adopt, compound all quality mend all impact on Clivia nobilis under the terms;
     3, Adopt and cover the membrane to regulate naturally merely, the impact on Clivia nobilis;
     4, Naturally mere artificial light source development of simulation So LEDs are used in this research and research result as follows:
     1) With increase of wavelength, whom chlorophyll formate the more unsatisfactory result, present the yellow phenomenon of taking;
     2) The blade under violet-blue LED is short and thick; Do not extend, have the tendency to downgrade; Have good facilitation to rigidity and hardness which improve the Clivia nobilis blade;
     3) The Clivia nobilis, to only having tropism that moves violet-bluly;
     4) Red yellow LED has facilitation in improving the line quality of pulse;
     5) In summer it can improve the whole quality of the Clivia nobilis to cover the purple membrane of basket;
     6) The ones that adopted many kinds of LED when can imitate the natural light can see spectral distribution.
     These are only preliminary exploration, have only carried on qualitative research, and then need quantitative research deeply and carefully, in order to define the mechanism of the mere environment of culture of Clivia nobilis, realize the complete regulation and control of all environment, especially adjust and control in florescence, on the basis of confirming environmental condition that buds are formed, utilize accurate technology of mere environmental regulation and control, change the florescence naturally of Clivia nobilis, flower frequently of opening.
引文
[1]江泽慧主编,中国君子兰[M],中国林业出版社,2003
    [2] E.K. Lis, Strawberry plant regeneration by organgenesis from peduncle and stolon segments[J], Acta Horticult. 348 (1993), pp. 435–438.
    [3]于海业,王永志,张蕾. LED在设施农业中的应用[J].农机化研究, 2009,31(5):190-192.
    [4] M. Barcelo, I. Mansouri, J.A. Mercado, M.A. Quesada and A.F. Pliego, Regeneration and transformation via Agrobacterium tumefaciens of the strawberry cultivar Chandler[J], Plant Cell Tissue Organ Cult. 54 (1998), pp. 29–36.
    [5] J. Passey, K.J. Barrett and D.J. James, Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria×ananassa Duch) using a range of explant types[J], Plant Cell Rep. 21 (2003), pp. 397–401.
    [6] Y. Zhao, Q.Z. Liu and R.E. Davis, Transgene expression in strawberries driven by a heterologous phloem-specific promoter[J], Plant Cell Rep. 23 (2004), pp. 224–230.
    [7] F. Naoya, K.Y. Mitsuko, U. Masami, T. Kenji and S. Sadanori, Effects of light quality, intensity and duration from different artificial light sources on the growth of petunia [J], J. Jpn. Soc. Horticult. Sci. 71 (2002), pp. 509–516.
    [8] G. Patil Grete, R. Oi, A. Gissinger and R. Moe, Plant morphology is affected by light quality selective plastic films and alternating day and night temperature[J], Gartenbauwissenschaft 66 (2001), pp. 53–60.
    [9] T. Murashige and F. Skoog, A revised medium for rapid growth and bioassays with tobacco tissue culture[J], Plant Physiol. 15 (1962), pp. 473–497.
    [10] P.B. Sweetser and D.G. Swartzfager, Indole-3-acetic acid levels of plant tissue as determined by a new high performance liquid chromatographic method[J], Plant Physiol. 61 (1978), pp. 254–258.
    [11] S.L. Zhang, K.S. Chen, Q.F. Ye, D.M. Chen and C.R. Liu, Change of endogenous IAA, ABA and ZT in pollinated, non-pollinated and parthenocarpic ovary (fruitlet) of citrus[J], Acta Horticult. Sin. 21 (1994), pp. 117–123.
    [12] C.N. Giannopolitis and S.K. Ries, Superoxide dismutase I occurrence in higher plants[J], Plant Physiol. 59 (1977), pp. 309–314.
    [13] Cakmak and H. Marschner, Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase and glutathione reductase in bean leaves[J], Plant Physiol. 98 (1992), pp. 1222–1227.
    [14] P.L. Popham and A. Novacky, Use of dimethyl sulfoxide to detect hydroxyl radical during bacteria-induced hypersensitive reaction[J], Plant Physiol. 96 (1991), pp. 1157–1160.
    [15] D.L. Arnon, Copper enzymer in isolated chloroplast polyphenol oxidase in beta vulgaris[J], Plant Physiol. 24 (1949), pp. 1–15.
    [16] J.C. Thomas and F.R. Katterman, Cytokinin activity induced by thidiazuron[J], Plant Physiol. 81 (1986), pp. 681–683.
    [17] S.C. Capelle, D.W.S. Mok and S.C. Kirchner, Effect of thidiazuron on Cytokinin autonomy and the metabolism of N6-(□2-isopentenyl)[8-14C]adenosine in callus tissues of Phaseolus lunatus L. [J], Plant Physiol. 73 (1983), pp. 796–802.
    [18] J.C. Suttle, Effect of the defoliant thidiazuron on ethylene evolution from mung bean hypocotyls segments[J], Plant Physiol. 75 (1984), pp. 902–907.
    [19] W. Wernicke and B. Richard, Somatic embryogenesis from sorghum bicolor leaves[J], Nature 287 (1980), pp. 138–139.
    [20] H. Anni and G. Akoyunoglou, The effect of blue and red light on the development of the photosynthetic unit during greening of etiolated bean leaves, Akoyunoglou Ged. Photosynthesis V. [J], Balaban International Science Services, Philadelphia (1981) pp. 885–894.
    [21] C. Buschmann, D. Meier, H.K. Kleudgen and H.K. Lichtenthaler, Regulation of chloroplast development by red and blue light[J], Photochem. Photobiol. 27 (1978), pp. 195–198.
    [22] Q.S. Dai and V.P. Pengm, Coronel Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation[J], Environ. Exp. Bot. 34 (1994), pp. 433–442.
    [23] H. Willekens and D. Inze, Catalyses in plants[J], Mol. Breed. 1 (1995), pp. 207–228.
    [24] W.V. Camp, D. Inza and M.V. Montagu, The regulation and function of tobacco superoxide dismutase free radical[J], Biol. Med. 23 (1997), pp. 515–520.
    [25] C. Cui, The relationship between plant growth regulators and differentiation along with morphogenesis, Chin. J. Cell Biol. 5 (1983), pp. 1–6.
    [26] J.P. Roustan, A. Latche and J. Fallot, Inhibition of ethylene product and stimulation of carrot somatic embryogenesis by salicylic acid[J], Biol. Plant. 32 (1990), pp. 273–276.
    [27]富士原和宏バイオインダストリー,23(3),10-17(2006)
    [28] M.Kojima and Corporation, Method of Cultivating Sprout[J],PCT Int.Appl.,WO 2007037023(2007)
    [29]王永志,于海业,山口智治.異なる光質による君子蘭の形態形成[C].日本农业施设学会大会, 2008:177-178.
    [30] H. Smith and G.C. Whitelam , The shade avoidance syndrome: multiple responses mediated by G. Morelli and I. Ruberti , Shade avoidance responses. Driving auxin along lateral routes[J]. Plant Physiol. 122 (2000), pp. 621–626.
    [31]稻田胜美光と植物生育养闲堂1984年P85-89
    [32] M.M. Neff et al., Light: an indicator of time and place[J]. Genes Dev. 14 (2000), pp. 257–271.
    [33]渡辺博之,LEDを用いた野菜工場実用化の現場、LEDの農林水産分野への応用,稲田ほうか著,農業電化協会,pp.65-74(2006)
    [34] P.H. Quail , Phytochrome photosensory signalling networks[J]. Nature Rev. 3 (2002), pp. 85–93.
    [35] M.Kojima,Effect of LED irradiation on Biosynthesis of Polyphenols in Buckwheat Sprouts,XXIst IUPAC Symposium on Photochemistry(Kyoto) [C],Abstracts SO39,p.89(2006)
    [36] K. Ljung et al., Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth[J]. Plant J. 28 (2001), pp. 465–474.
    [37]照明协会光バイオインダストリーオーム社1992年P113-1129
    [38] T. Berleth and T. Sachs , Plant morphogenesis: long-distance coordination and local patterning. Curr. Opin. Plant Biol. 4 (2001), pp. 57–62.
    [39]アグリフォトニクスシーエムシー 2008年P10-25
    [40] Duong Tan Nhut,Takamuru,T.,Tanaka,M.,Protocols for Micropropagation of Woody Trees and Fruits(s.M.Jain and H.Haggman(eds)),Springer,52541(2007)
    [41] T.J. Guilfoyle , Auxin-regulated genes and promoters. In: P.J.J. Hooykaas et al.Biochemistry and Molecular Biology of Plant Hormones[J], Elsevier (1999), pp. 423–459.
    [42]曹仪植主编,植物分子生物学[M],北京:高等教育出版社,2002: 267-279
    [43]杨其长,张成波;植物工厂系列谈植物工厂光照和温度调控农村实用工程技术.温室管理,2005 (11): 35
    [44]沈允钢,李德跃等,改进干重法测定光合作用的应用研究.[Ml,植物生理学通讯,1980, (2):3724
    [45] J. Ross and D. Neill, New interactions between classical plant hormones. Trends Plant Sci. 6 (2001), pp.2-4.
    [46] Ruberti et al., A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J. 10 (1991), pp. 1787–1791.
    [47] M. Schena and R.W. Davis , HD-Zip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc. Natl. Acad. Sci. U. S. A. 89 (1992), pp. 3894–3898.
    [48] M. Carabelli et al., The Arabidopsis ATHB-2 and -4 genes are strongly induced by far-red-rich light. Plant J. 4 (1993), pp. 469–479.
    [49]加藤荣,宫地重远,村田吉男编,光合作用研究方法[M],侯光良译,北京:能源出版社,1985
    [50] T. Aoyama et al., Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Plant Cell 7 (1995), pp. 1773–1785.
    [51] C. Steindler et al., Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene expression. Development 126 (1999), pp. 4235–4245.
    [52] G. Morelli et al., Homeodomain-leucine zipper proteins in the control of plant growth and development. In: R. Last et al.Cellular Integration of Signaling Pathways in Plant Development, Springer-Verlag (1998), pp. 251–262.
    [53] M. Carabelli et al., Twilight-zone and canopy shade induction of the ATHB-2 homeobox gene in green plants. Proc. Natl. Acad. Sci. U. S. A. 93 (1996), pp. 3530–3535.
    [54] M. Ohgishi et al., Negative autoregulation of the Arabidopsis homeobox gene ATHB-2. Plant J. 25 (2001), pp. 389–398.
    [55] G.K. Muday and A. DeLong , Polar auxin transport: controlling where and how much. Trends Plant Sci. 6 (2001), pp. 535–542.
    [56] C.P. Romano et al., Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol. Biol. 27 (1995), pp. 1071–1083.
    [57] W.M. Gray et al., High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 95 (1998), pp. 7197–7202.
    [58] Friml et al., Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415 (2002), pp. 806–809.
    [59]廖祥儒,张蕾,徐景等.光在植物生长发育中的作用[J].河北大学学报,2001,21(3):341一346
    [60] H. Smith , Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46 (1995), pp. 289–315.
    [61] H. Smith and G.C. Whitelam , The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant. Cell Environ. 20 (1997), pp. 840–844.
    [62]王炳忠编著.太阳辐射能的测量与标准.[Ml.北京:科学出版社,1988.
    [63] M.J. Yanovsky et al., Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis: weak de-etiolation of the phyA mutant under dense canopies[J]. Plant Cell Environ. 18 (1995), pp. 788–794.
    [64]廖耀发编著.建筑物理[M].武汉:武汉大学出版社,2003.4.
    [65] P.F. Devlin et al., Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 10 (1998), pp. 1479–1487.
    [66]徐景智,李同锴温室大棚作物生长发育对光色选择性吸收的研究进展[J]河北大学学报:自然科学版,2002 ,22 (2) :2022207
    [67] G. Morelli and I. Ruberti , Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol. 122 (2000), pp. 621–626.
    [68] H. Smith , Phytochromes and light signal perception by plants– an emerging synthesis. Nature 407 (2000), pp. 585–591.
    [69]刘宏波,陈兰峰一种新型的用于医疗保健的模拟太阳光的装置[J].光学精密工程,6,1997.
    [70] M.M. Neff et al., Light: an indicator of time and place. Genes Dev. 14 (2000), pp. 257–271.
    [71] M.J. Aukerman et al., A deletion of the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing[J]. Plant Cell 9 (1997), pp. 1317–1326.
    [72] P.F. Devlin et al., Phytochrome D acts in the shade avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol. 119 (1999), pp. 909–915.
    [73] P.H. Quail , Phytochrome photosensory signalling networks. Nature Rev. 3 (2002), pp. 85–93.
    [74] M. Ni et al., PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix–loop–helix protein. Cell 95 (1998), pp. 657–667.
    [75] C.D. Fairchild et al., HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev. 14 (2000), pp. 2377–2391.
    [76] Ljung et al., Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth[J]. Plant J. 28 (2001), pp. 465–474.
    [77] T. Berleth and T. Sachs , Plant morphogenesis: long-distance coordination and local patterning. Curr. Opin. Plant Biol. 4 (2001), pp. 57–62.
    [78] Grebe et al., Cell axiality and polarity in plants: adding pieces to the puzzle. Curr. Opin. Plant Biol. 4 (2001), pp. 520–526.
    [79] P.J. Jensen et al., Auxin transport is required for hypocotyls elongation in light-grown but not dark-grown Arabidopsis[J]. Plant Physiol. 166 (1998), pp. 455–462.
    [80] T.J. Guilfoyle , Auxin-regulated genes and promoters. In: P.J.J. Hooykaas et al.Biochemistry and Molecular Biology of Plant Hormones, Elsevier (1999), pp. 423–459.
    [81] J.W. Reed , Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci. 6 (2001), pp. 420–425.
    [82] T.J. Guilfoyle et al., The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell. Mol. Life Sci. 54 (1998), pp. 619–627.
    [83] T. Ulmasov et al., Activation and repression of transcription by auxin-response factor. Proc. Natl. Acad. Sci. U. S. A. 96 (1999), pp. 5844–5849.
    [84] B.C. Kim et al., Photomorphogenic development of the Arabidopsis shy2-1D mutation and its interaction with phytochrome in darkness. Plant J. 15 (1998), pp. 61–68.
    [85] J.W. Reed et al., Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyls elongation. Genetics 148 (1998), pp. 1295–1310.
    [86] P. Nagpal et al., XR2 encodes a member of the Aux/IAA protein family[J]. Plant Physiol. 123 (2000), pp. 563–574.
    [87] E.L. Stowe-Evans et al., NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol. 118 (1998), pp. 1265–1275.
    [88] R.H. Harper et al., The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12 (2000), pp. 757–770.
    [89] H-L. Hsieh , FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14 (2000), pp. 1958–1970.
    [90] Nakazawa et al., DFL1I, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J. 25 (2001), pp. 213–221.
    [91] Y. Zhao et al., A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 29 (2001), pp. 306–309.
    [92] S.D. Clouse and J.M. Sasse , Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 (1998), pp. 427–451.
    [93] K. Shumacher and J. Chory , Brassinosteroid signal transduction: still casting the actors. Curr. Opin. Plant Biol. 3 (2000), pp. 79–84.
    [94] G.T. Kim et al., The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells[J]. Genes Dev. 12 (1998), pp. 2381–2391.
    [95] J-G. Kang et al., Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105 (2001), pp. 625–628.
    [96] Y. Nagano et al., Location of light-repressible, small GTP-binding protein of the YPT/rab family in the growing zone of etiolated pea stems. Proc. Natl. Acad. Sci. U. S. A. 92 (1995), pp. 6314–6318.
    [97] M.M. Neff et al., BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 96 (1999), pp. 15316–15323.
    [98] L.G. Luccioni et al., Brassinosteroid mutants uncover fine tuning of phytochrome signaling. Plant Physiol. 128 (2002), pp. 173–181.
    [99] D. Friedrichsen and J. Chory , Steroid signaling in plants: from the cell surface to the nucleus. BioEssays 23 (2001), pp. 1028–1036.
    [100] P. Gil et al., BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev. 15 (2001), pp. 1985–1997.
    [101] N.A. Eckardt , Foolish seedlings and DELLA regulators: the functions of rice SLR1 and Arabidopsis RGL1 in GA signal transduction. Plant Cell 14 (2002), pp. 1–5.
    [102] Y. Kamiya and J.L. Garcia-Martinez , Regulation of gibberellin biosynthesis by light. Curr. Opin. Plant Biol. 2 (1999), pp. 398–403.
    [103] J.J. Ross et al., Evidence that auxin promotes gibberellin A1 biosynthesis in pea[J]. Plant J. 21 (2000), pp. 547–552.
    [104] Ruegger et al., Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxintransport and diverse morphological defects[J]. Plant Cell 9 (1997), pp. 745–757.
    [105] T. Steinmann et al., Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF[J]. Science 286 (1999), pp. 316–318.
    [106] T. Ulmasov et al., Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements[J]. Plant Cell 9 (1997), pp. 1963–1971.
    [107] Casimiro et al., Auxin transport promotes Arabidopsis lateral root initiation[J]. Plant Cell 13 (2001), pp. 843–852.
    [108] J.H. Kim, R.E. Glick and A. Melis, Dynamics of photosystem stoichiometry adjustment by light quality in chloroplasts[J], Plant Physiol. 102 (1993), pp. 181–190.
    [109] L.X. Liu, S.Y. Tang, S.M. Xu, F. Sun and Y.Q. Cao, Effects of different light qualities on structure of chloroplasts and photosynthetic physiological properties in Panax ginseng[J], Acta Bot. Sin. 35 (1993), pp. 588–592.
    [110] W.S. Chow, A. Melis and J.M. Anderson, Adjustments of photosystem stoichiometry in chloroplasts improves the quantum efficiency of photosynthesis[J], Proc. Natl. Acad. Sci. U.S.A. 87 (1990), pp. 7502–7506.
    [111] M. Tian, Q. Gu and M.Y. Zhu, The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus[J], Plant Sci. 165 (2003), pp. 701–707.
    [112] S.J. Zheng, B. Henken, E. Sofiari, P. Keizer, E. Jacobsen, C. Kik and F. Krens, Effect of cytokinins and lines on plant regeneration fromlong-term callus and suspension cultures of Alilum cepa L. [J], Euphytica 108 (1999), pp. 83–90.
    [113]刘洪波,太阳模拟技术明.光学精密工程[J],加01,vo19,NoZ:177-180.
    [114] K.R. Cui, G.M. Xing, X.M. Liu and Y.F. Wang, Effect of hydrogen peroxide on somatic embryogenesis of Lysium barbarum L. [J], Plant Sci. 146 (1999), pp. 9–16.
    [115] K.S.C. Dare, T.D. Oberley and K.E. Mouse, Expression of manganese superoxide dismutase promote cellular differentiation[J], Free Radic. Biol. Med. 16 (1994), pp. 275–282.
    [116]吕文华,莫月琴,杨云.太阳模拟器在辐射仪器检测中的应用[J].应用气象学报,2001,vol12,No.2:196-200.
    [117] M.K. Alsheikh, H.P. Suso, M. Robson, N.H. Battey and A. Wetten, Appropriate choice of antibiotic and Agrobacterium strain improves transformation of anti biotic-sensitive Fragaria vesca and F.v. semperflorens, [J] Plant Cell Rep. 20 (2002), pp. 1173–1180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700