用户名: 密码: 验证码:
不确定时滞非线性系统的最优滑模控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了不确定性时滞非线性系统的最优控制问题、最优滑模设计问题以及全局鲁棒最优滑模控制问题。
     滑模变结构控制(SMC)的突出优点是滑动模态对于匹配的参数不确定性以及外界扰动具有完全的鲁棒性,并且滑动模态的动态品质是可以预先设计的。同时设计方法简单,易于实现。这些特点使其在处理不确定非线性和时滞问题上显示出强大的优越性。滑动模态的优化设计具有重要意义。线性二次型性能指标能够综合地反映系统对性能的要求,而且线性二次型最优控制器设计方法是最优控制的核心内容之一。但是它的设计是基于精确数学模型的,因此在研究最优控制的同时,必须考虑系统的鲁棒性。另外,时滞非线性系统基于二次型性能指标的最优控制问题的求解也是一个难题。
     鉴于以上问题,本论文的研究思路是,首先研究时滞非线性系统最优控制律的一种近似解法,然后将其与滑模变结构控制理论相结合,达到以下目的:(1)将最优控制理论用于滑动模态的设计,以优化滑动运动;(2)将滑模变结构控制理论用于最优调节器的设计,使最优控制系统具有滑动模态的鲁棒性。这是一个非常有意义的研究课题,对于不确定时滞非线性系统,这方面的研究成果非常少见。现将本文的主要研究工作概括如下:
     1.综述了滑模变结构控制理论的发展和研究现状,对国内外最优滑模控制的研究方法及最新成果进行了总结和分析,提出了存在的问题及研究方向。
     2.分别针对一类时滞线性以及时滞非线性系统,研究了其二次型最优控制问题。将由最优控制的必要条件导出的既含时滞项又含超前项的线性或非线性两点边值(TPBV)问题,采用灵敏度法将其转化成一族不含时滞项和超前项的线性两点边值问题;通过递推求解线性两点边值问题族,得到最优控制律的近似解。提出并证明了近似最优控制律作用下闭环系统渐近稳定的充分条件。该部分的研究为后续研究打下理论基础。
     3.研究了一类不确定时滞线性系统的最优滑模设计问题。将时滞系统的最优控制原理用于滑模面的构造,优化了滑动运动,并分析了最优滑动模态的稳定性。仿真结果验证了其有效性。
     4.研究了一类不确定非线性系统的最优滑模设计问题。针对非线性系统滑动模态难以构造问题,首先通过微分同胚变换将非线性系统转换成标准型,然后把某些变量看作虚拟控制,从而将非线性滑模设计问题转化成非线性系统的最优控制问题。进而运用非线性系统的最优控制原理设计滑模面,使得滑动模态满足给出的最优二次型性能指标的要求,同时滑动模态对于已知上界的不确定性具有完全地鲁棒性。理论分析和仿真结果验证了其有效性。
     5.分别针对不确定时滞线性系统和时滞非线性系统,研究了全局鲁棒最优滑模控制器的设计问题。受积分滑模控制可以实现全程滑动模态的思想的启发,提出了一种使最优控制器鲁棒化的设计策略:首先针对具有精确模型的标称系统设计最优控制律,然后考虑系统的不确定性,采用积分滑模控制,设计不连续补偿控制律(鲁棒化补偿控制律),使得系统对于不确定性具有积分滑模控制的全局鲁棒性,同时保持标称系统的最优控制性能。仿真将所提出的方案与最优控制进行了比较,结果充分显示了该方法的有效性以及在保持鲁棒最优性能方面的优越性。
     6.总结论文的主要工作,并指出今后的研究方向。
For uncertain time-delay nonlinear systems, the problems of optimal control, optimal sliding mode design and global robust optimal sliding mode control are considered in this dissertation.
     One of the most distinguished features of the sliding mode control (SMC) is that after reaching the sliding mode, the system has robustness to matched parameter uncertainties and external disturbances. The system dynamics performance on sliding mode can be pre-designed. And the control algorithm is simple and easy to be realized. All these features of SMC show a great superiority on controlling uncertain time-delay and nonlinear systems. Obviously, the optimization of sliding mode is a significant problem for a SMC system. Linear quadratic (LQ) performance index can synthetically express the requirement of the system performance, and the optimal LQ Regular theory is one of the most important contents of optimal control theory. Nevertheless, the design of optimal controllers is based on exact known models. Therefore it is necessary to take the robustness into account in the study of optimal controller design. In addition, the solution of the optimal control law for time-delay nonlinear systems is difficult to obtain.
     Considering the problems above, the basic idea of this study is to find an approximate solution method for time-delay nonlinear systems first, and then to combine it with SMC theory to achieve the following objectives. Firstly, the sliding motion is optimized by applying optimal control technique to designing sliding mode. Secondly, SMC theory is introduced to optimal controller design to put the robustness of sliding mode into conventional optimal systems. This is a very significant subject. About uncertain time-delay nonlinear systems, such research has hardly been found in the literature. The study addresses the following topics:
     1. The history of the development in sliding mode control theory is reviewed. The main methods and the latest research tendency are also summarized. The existing problems and research objective is presented.
     2. The optimal control problem for a class of time-delay linear systems and time-delay nonlinear systems with quadratic performance indexes is considered, respectively. According to the necessary optimality conditions, the linear and nonlinear two-point boundary value (TPBV) problems with both time-delay and time-advance terms are induced, respectively. A sensitivity approach is adopted to convert the original TPBV problems into that of solving a series of linear TPBV iterative formulas without time-delay and time-advance variable terms. By the finite-step iteration, approximate solutions for the optimal control are obtained. Sufficient asymptotic stability conditions of the closed-loop systems are derived both for linear and nonlinear systems with time-delay. This part provides the foundation for the later study.
     3. The problem of designing optimal sliding manifolds with a quadratic performance index for a class of uncertain systems with state time-delay is considered. The optimal control technique is employed to construct sliding manifold, so the sliding motion is optimized. The stability of the optimal sliding motion is analyzed. Simulation results demonstrate the efficiency of the proposed method.
     4. The problem of designing nonlinear sliding manifolds with a quadratic performance index for a class of nonlinear systems is considered. As we know, it is difficult to choose an appropriate nonlinear sliding manifold on which the sliding motion has desired performance. To solve this problem, firstly, a nonsingular diffeomorphism transformation is used to convert the nonlinear system into a regular form. Then by viewing the some state variables as virtual control, the problem of optimal sliding mode design is transformed into optimal control problem for nonlinear systems. Furthermore, the optimal control theory is adopted to construct nonlinear sliding manifold. The dynamics of sliding motion could minimize the given quadratic performance index and is robust to uncertainties with known upper bounds.
     5. For a class of uncertain linear systems and nonlinear systems with time delays, the problem of designing global robust optimal sliding mode controllers (GROSMC) is discussed. Inspired by the concept of integral sliding mode(ISM), which can ensure the global sliding mode during the entire response of the system, a design strategy which can robustify the optimal controllers is presented. First, the optimal controller is obtained for the nominal system ignoring uncertainties using optimal theory. Then based on ISM, a discontinuous compensation control law (also called robustification control law) is designed to suppress the uncertainties from the initial time moment. As a result, not only the optimal performance can be obtained but the global robustness is guaranteed also. Simulations are given to compare the proposed GROSMC with the conventional optimal control. Results show the effectiveness and superiority in robustness of the proposed method.
     6. The conclusions and the directions for the future research work are given in the end of the paper.
引文
[1] J. P. Richard. Time-delay systems: An overview of some recent advances and open problems. Automatica, 2003, 39: 1667-1694.
    [2] H. K. Khalil. Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ, Third Edition, 2002.
    [3]曹建福,韩崇昭,方洋旺.非线性系统理论及应用.第2版.西安:西安交通大学出版社,2006.
    [4] J. J. Slotine, S. S. Sastry. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators. International Journal of Control, 1983, 38(2): 465-492.
    [5] H. H. Yeh, E. Nelson, A. Sparks. Nonlinear tracking control for satellite formations. Journal of Guidance, Control, and Dynamics, 2002, 25(2): 376-386.
    [6] C. T. Chen, S. T. Peng. Design of a sliding mode control system for chemical processes. Journal of Process Control, 2005, 15: 515-530.
    [7]高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996.
    [8]胡寿松,王执铨,胡维礼.最优控制理论与系统.第2版.北京:科学出版社, 2005.
    [9] G. Y. Tang. Suboptimal control for nonlinear systems: A successive approximation approach. Systems and Control Letters, 2005, 54: 429-434.
    [10] K. D. Yang,ü. ?zgüner. Sliding-mode design for robust linear optimal control. Automatica, 1997, 33(7): 1313-1323.
    [11] G. R. Yu, M. H. Tseng, Y. K. Lin. Optimal positioning control of a DC servo motor using sliding mode. Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei, Taiwan, September, 2004, (2-4): 272-277.
    [12] M. Basin, J. Rodriguez-Gonzaleza, L. Fridman. Optimal and robust control for linear state-delay systems. Journal of the Franklin Institute, in press. doi: 10. 1016/j. jfranklin. 2006.10. 002.
    [13] S. Laghrouche, F. Plestan, A. Glumineau. Higher order sliding mode control based on integral sliding mode. Automatica, 2007, 43: 531-537.
    [14]胡跃明.变结构控制理论与应用.北京:科学出版社,2003.
    [15]姚琼荟,黄继起,吴汉松.变结构控制系统.重庆:重庆大学出版社,1997.
    [16] R. A. Decarlo, S. H. Zak, G. P. Mathews. Variable structure control of nonlinear multivariable systems: A tutorial. Proceedings of the IEEE, 1988, 76(3): 212-232.
    [17] S. V. Emelyanov. Variable structure control systems. Moscow, Nauka, (in Russian), 1967.
    [18] S. V. Emelyanov, A. I. Fedotova. Producing astaticism in servo systems with a variable structure. Automatic Remote Control, 1962, 23(10): 1223-1235.
    [19] S. V. Emelyanov, N. E. Kostyleva. Design of variable structure control systems with discontinuous switching function. Engineering Cybernetics, 1964, 2(1): 156-160.
    [20] V. I. Utkin. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 1977, 22(2): 212-220.
    [21] U. Itkis. Control Systems of Variable Structure. New York, Wiley, 1976.
    [22] V. I. Utkin. Variable structure systems: present and future. Automatic Remote Control, 1983, 44(9): 1105-1120.
    [23] V. I. Utkin. Sliding Modes in Control and Optimization. New York, Springer, 1992.
    [24] K. D. Young, V. I. Utkin, U. Ozguner. A control engineer’s guide to sliding mode control. IEEE Transactions on Control Systems Technology, 1999, 7(3): 328-342.
    [25] R. El-khazali. Output feedback variable structure control design, Automatica, 1995, 31: 805-816.
    [26] A. Isidori. Nonlinear Control Systems. 3rd edition, London: Springer-Verlag, 1995.
    [27] G. Monsees, J. M. A. Scherpen. Adaptive switching gain for a discrete-time sliding mode controller. International Journal of Control, 2002, 75(4): 242-251.
    [28] O. Boubaker, J. P. Babary. On SISO and MIMO variable structure control of nonlinear distributed parameter systems: Application to fixed bed reactors. Journal of Process Control, 2003, 13(8): 729-737.
    [29] K. K. Shyu,W. J. Liu, K. C. Hsu. Design of large-scale time-delayed systems with dead-zone input via variable structure control. Automatica, 2005, 41: 1239-1246.
    [30] Y. Xia, Y. Jia. Robust sliding-mode control for uncertain time-delay systems: An LMI approach. IEEE Transactions on Automatic Control, 2003, 48(6): 1086-1092.
    [31] G. Bartolini, E. Punta, T. Zolezzi. Simplex methods for nonlinear uncertain sliding-mode control. IEEE Transactions on Automatic Control, 2004, 49(6): 922-933.
    [32] J. Cabrera-Vázquez, A. G. Loukianov et al. Robust controller for synchronous generator with local load via VSC. Electrical Power and Energy Systems, 2007, 29: 348-359.
    [33] V. I. Utkin, K. D. Young. Methods for constructing discontinuity planes in multidimensional variable structure systems. Autom. Rem. Control, 1978, 39: 1466-1470.
    [34] C. M. Dorling, A. S. I. Zinober. Robust hyperplane design in multivariable variable structure control. Int. J. Control, 1988, 48: 2043-2053.
    [35] H. G. Kwatny, H. Kim. Variable structure control of partially linearizable dynamics. Proceedings of the American Control conf., Pittsburgh, PA, 1989. 1148-1153.
    [36] H. Sira-Ramirez. Nonlinear variable structure systems in sliding mode: A general case. IEEE Trans. Autom. Control, 1989, 34: 1186-1188.
    [37] C. Edwards, S. Spurgeon. Sliding mode control: Theory and Applications, London: Taylor & Francis, 1998.
    [38] W. C. Su, S. V. Drakunov, . . Constructing discontinuity surface for variable structure systems: A Lyapunov approach. Automatica, 1996, 32(6): 925-928. U Ozguner
    [39] K. D. Young, . . Frequency shaping compensator design for sliding mode. International Journal of Control, 1993, 57(5): 1005-1019. U Ozguner
    [40] T. Acarman, . . Relation of dynamic sliding surface design and high order sliding mode controllers. Proceedings of the 40th Conference on Decision and Control. December, 2001. 934-939. U Ozguner
    [41] H. Choi. A new method for variable structure control system design: A linear matrix inequality approach. Automatica, 1997, 33: 2089-2092.
    [42] H. Choi. On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties. Automatica, 1999, 37: 1707-1715.
    [43] C. Edwards. A practical method for the design of sliding mode controllers using linear matrix inequalities. Automatica, 2004, 40: 1761-1769.
    [44] J. J. E. Slotine, W. Li. Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [45] T. A. W. Dwyer, H. Sira-Ramirez. Variable structure control of spacecraft attitude maneuvers. AIAA J. of Guidance, Control and Dynamics, 1988, 11(3): 267-270.
    [46] A. Davari, Z. Zhang, Three-segment variable structure systems. International Journal of Robust and Nonlinear Control, 1996, 6(3): 249-255.
    [47] J. H. Lee, J. S. Ko et al. Continuous variable structure controller for BLDDSM position control with prescribed tracking performance. IEEE Trans. Industrial Electronics, 1994, 41(5): 483-491.
    [48] V. I. Utkin, J. Shi. Integral sliding mode in systems operating under uncertainty. In: Proceedings of the IEEE conference on decision and control CDC’96, Kobe, Japan, 1996.
    [49] Y. Niu, D. W.C. Ho, J. Lam. Robust integral sliding mode control for uncertain stochastic systems with time-varying delay. Automatica, 2005, 41: 873- 880.
    [50] C. H. Chou, C. C. Cheng. Design of adaptive variable structure controllers for perturbed time-varying state delay systems. Journal of the Franklin Institute, 2001, 338: 35-46.
    [51] W. J. Cao, J. X. Xu, Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Transactions on Automatic Control, 2004, 49(8): 1355-1360.
    [52] S. B. Choi, C. C. Cheong, D. W. Park. Moving switch surfaces for robust control of second-order variable structure systems. Int. J. Control, 1993, 58(1): 229-245.
    [53] S. B. Choi, D. W. Park, S. Jayasuriya. A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems. Automatica, 1994, 30(5): 899-904.
    [54] D. W. Park, S. B. Choi. Moving sliding surfaces for high-order variable structure systems. Int. J. Control, 1999, 72(11): 960-970.
    [55] Q. P. Ha, D. C. Rye et al. Fuzzy moving sliding mode control with application to robotic manipulators. Automatica, 1999, 35: 607-616.
    [56] J. J. E. Slotine. Sliding controller design for nonlinear systems. Int. J. Control, 1984, 40: 421-434.
    [57]高为炳,程勉.变结构控制的品质控制.控制与决策, 1989, 4(4): 1-5.
    [58] J. Y. Huang, W. B. Gao, J. C. Huang. Variable Structure Control: A Survey. IEEE Trans. Ind. Electron, 1993, 40: 1-9.
    [59] H. Lee, E. Kim. A new sliding-mode control with fuzzy boundary layer. Fuzzy Sets and Systems, 2001, 120: 135-143.
    [60] S. P. Chan, W. B. Gao, Approach algorithm for smooth tracking with variable structure controller. Proceedings of American Control Conference, Newyork, 1989. 78-88.
    [61] V. I. Utkin, H. Lee. The Chattering Analysis. Proceedings of 12th International Power Electronics and Motion Control Conference. Portoroz, Slovenia. 2006. 2014-2019.
    [62] N. Luo, M. De la Sen. State feedback sliding mode control of a class of uncertain time-delay systems. IEE Proceedings-Control Theory and Applications. 1993, 140(4): 261-274.
    [63] R. El-Khazaly. Variable structure robust control of uncertain time-delay systems. Automatica, 1998, 34(3): 327-332.
    [64] F. Gouaisbaut, M. Dambrine, J. P. Richard. Robust control of systems with variable delay:A sliding mode control design via LMIs. System and Control Letters, 2002, 46(4): 219-230.
    [65] K. K. Shyu, J. J. Yan. Robust stability of uncertain time-delay systems and its stabilization by variable structure control. International Journal of Control, 1993, 57: 237-246.
    [66] C. Bonnet, J. R Partington, M. Sorine. Robust control and tracking of a delay system with discontinuous nonlinearity in the feedback. International Journal of Control, 1999, 72(15): 1354-1364.
    [67] F. Zheng, M. Cheng, W. B. Gao. Variable structure control of TDS with a simulation study on stabilizing combustion in liquid propellant rocket motors. Automatica, 1995, 31(7): 1031-1037.
    [68] F. Gouaisbaut, W. Perruquetti, J. P. Richard. A sliding-mode control for linear systems with input and state delays. Proceedings of 38th IEEE Conference on Decision and Control, Phoenix, AZ, 1999. 4234-4239.
    [69] Y. Niu, J. Lam, X. Wang, D. W. C. Ho. Sliding mode control for nonlinear state-delayed systems using neural network approximation. IEE Proceedings-Control Theory and Applications, 2003, 150: 233-239.
    [70] X. Li, S. Yurkovich. Sliding mode control of delayed systems with application to engine idle speed control. IEEE Transactions on Control Systems Technology, 2001, 9(6): 802-810.
    [71] F. Yin, G. M. Dimirovski, Y. Jing. Robust stabilization of uncertain input delay for internet congestion control. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA, June, 2006, 14-16: 5576-5580.
    [72] F. Da. Sliding mode predictive control for long delay time systems. Physics Letters A, 2006, 348: 228-232.
    [73] R. A. DeCarlo, S. H. G. P. Zak, Matthews, Variable structure control of nonlinear multivariable systems: a tutorial. Proceedings of the IEEE, 1988, 76(3): 212-232.
    [74] M. Krothapally, J. C. Cockburn, S. Palanki. Sliding mode control of I/O linearizable systems with uncertainty. Proceeding of the American Control Conference, Albuquerque, New Mexico, 1997. 3485-3489.
    [75] J. Wang, Y. Zheng, X. P. Lu. Robust output tracking of constrained nonlinear systems. 14th Triennial World Congress, Beijing, China, 1999. 37-40.
    [76] A. Arisoy, M. Gokasan, O. S. Bogosyan. Sliding mode based position control of a flexible-link arm. Proceedings of 12th International Power Electronics and Motion Control Conference, Portoroz, Slovenia, 2006. 402-407.
    [77] F. Chen, M. W. Dunnigan. Feedback linearization sliding-mode torque control of an induction machine. International Conference on Power Electronics, Machines and Drives, Edinburgh, UK, 2002. 110-115.
    [78] P. V. Kokotovic. The joy of feedback: nonlinear and adaptive. IEEE Control Systems Magazine, 1992, 12: 2-17.
    [79]胡跃明.非线性控制系统理论与应用.北京:国防工业出版社, 2002.
    [80] A. J. Koshkouei, A. S. I. Zinober. Adaptive sliding stepping of parametric semi-structure feedback systems with unmatched uncertainty. Proc 6th IEEE Int Workshop on Variable Structure Systems, Golden Coast, 2000. 393-402.
    [81] L. Ma, K. Schilling, C. Schmid. Adaptive backstepping sliding mode control withGaussian networks for a class of nonlinear systems with mismatched uncertainties. 44th IEEE Conference on CDC-ECC’05, 2005. 5504-5509.
    [82] Y. M. Hu, W. Huo. Robust and adaptive control of nonholonomic mechanical systems with applications to mobile robots. Advanced Topics in Nonlinear Control Systems, Singapore: World Scientific, 2001, 5: 163-192.
    [83] M. Smaoui, X. Brun, D. Thomasset. Systematic control of an electro pneumatic system: integrator backstepping and sliding mode control. IEEE Transactions on Control Systems Technology, 2006, 14(1): 905-913.
    [84] G. Bartolini, A. Ferrara, L. Giacomini, A. Usai. Properties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(7): 1334-1341.
    [85] A. Filipescu, L. Dugard, J. M. Dion. Adaptive gain sliding observer based sliding controller for uncertain parameters nonlinear systems. Application to flexible joint robots. Proceedings of 42nd IEEE Conference on Decision and Contro, Galat, Romania 2003, 4: 3537-3542.
    [86]林岩,毛剑琴,操云甫.鲁棒低增益变结构模型参考自适应控制.自动化学报, 2001. 27(5): 665-671.
    [87]刘粉林,刘媛,张嗣瀛.含时变不确定线性系统的自适应鲁棒跟踪控制.控制与决策, 2001,16(3): 322-325.
    [88] S. B. Choi, J. S. Kim. A fuzzy-sliding mode controller for robust tracking of robotic manipulator. Mechatronics, 1997, 7: 199-216.
    [89]刘殿通等.一类非线性系统的自适应滑模控制.自动化学报, 2004, 30(1): 143-149.
    [90] D. W. Park, S. B. Choi. Moving sliding surfaces for high-order variable structure systems. Int. J. Control, 1999, 72(11): 960-970.
    [91] S. Y. Chen, F. M. Yu, H. Y. Chung. Decoupled fuzzy controller design with single-input fuzzy logic. Fuzzy Sets and Systems, 2002, 129: 335-342.
    [92] T. H. S. Li, M. Y. Shieh. Switching-type fuzzy sliding mode control of a cart-pole system. Mechatronics, 2000, 10: 91-109.
    [93] M. A. Hussain, P. Y. Ho. Adaptive sliding mode control with neural network based hybrid models. Journal of Process Control, 2004, 14: 157-176.
    [94] C. T. Chen, S. T. Peng. A nonlinear control scheme. Journal of Process Control, 2004, 14: 501-515.
    [95]方洋旺.随机系统最优控制.北京:清华大学出版社, 2005.
    [96] G. Y. Tang, L. Sun. Optimal control for nonlinear interconnected large-scale systems: a successive approximation approach. Acta Automatica Sinica, 2005, 31(2): 248-254.
    [97]唐功友,孙亮.非线性相似组合大系统最优控制的逐次逼近过程.控制与决策,2005, 20(1): 82-86, 90.
    [98]唐功友,王芳.具有小时滞的线性大系统的次优控制.控制理论与应用,2003,20(1): 121-124.
    [99] M. V. Basin, J. Rodriguez-Gonzalez. A closed-form optimal control for linear systems with equal state and input delays, Automatica, 2005, 41: 915-921.
    [100] G. Herrmann, S. Spureon, C. Edwards. A robust sliding mode output tracking control for a class of relative degree zero and non-minimum phase plants: A chemical process application. International Journal of Control, 2001, 72: 1194-1209.
    [101] J. H. Lee. Highly robust position control of BLDDSM using an improved integral variable structure system. Automatica, 2006, 42: 929-935.
    [102] M. Basin, J. Rodriguez-Gonzalez. Robust integral sliding mode regulator for linear systems with multiple time delays in control input. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, December, 2003. 4056-4061.
    [103] M. Basin, J. Rodriguez-Gonzalez, L. Fridman, P. Acosta. Integral sliding mode controller design for stochastic time-delay systems. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, December, 2005. 1953-1958.
    [104] W. S. Newman. Robust near time-optimal control. IEEE Trans. Automatic Control, 1990, 35(7): 841-844.
    [105]冯勇,陈梦,李涛,安澄全.基于时间最优的变结构控制设计方法.黑龙江自动化技术与应用, 1997, 16(4): 1-4.
    [106] S. C. Tsay, I. L. Wu, T. T. Long. Optimal control of linear time-delay systems via general orthogonal polynomials. International Journal of Systems Science, 1988, 19 (2): 365-376.
    [107] J. Zhou, R. Challoo. Singular perturbation methods for large-scale interconnected systems with time-delay and uncertain parameters. Modeling and Simulation, Proceedings of the Annual Pittsburgh Conference, Control, Robotics, Systems, Power and Mechanical, 1990, 21(5): 2123-2128.
    [108]唐功友,刘永清.大型动力系统的理论与应用:滞后,稳定与控制.广州:华南理工大学出版社, 1992.
    [109] G. Y. Tang, F. P.-L. A suboptimal control approach of linear time-delay systems. Bei Jing P. R. China: Proc. of 14" World Congress of IFAC, 1999. 99-104.
    [110]吕鹏飞,唐功友,贾晓波,陶冶.非线性时滞系统次优控制的逐次逼近法.控制与决策, 2004, 19(2): 230-234.
    [111]唐功友,刘毅敏.时滞离散系统最优输出跟踪控制的灵敏度法.控制与决策,2005,20(11): 1279-1282.
    [112] R. W. Beard, G. N. Saridis, J. T. Wen. Galerkin Approximation of the generalized Hamilton-Jacobi-Bellman equation. Automatica, 1997, 33(12): 2159-2177.
    [113] R. W. Beard, T. W. McLain. Successive Galerkin approximation algorithms for nonlinear optimal and robust control. International Journal of Control, 1998, 71(5): 717-743.
    [114] J. Markman, I. N. Katz. Convergence of an iterative algorithm for solving Hamilton-Jacobi type equations. Mathematics of computation, 2002, 237(71): 77-103.
    [115] A. P. Afanasev, S. M. Dzyuba, S. M. Lobanov, A. V. Tyutyunnik. Successive approximation and suboptimal control of the systems with separated linear part. Applied and Computational Mathematics, 2003, 2(1): 48-56.
    [116] V. Manousiouthakis, D. J. Chimielewski. On constrained infinite-time nonlinear optimal control. Chemical Engineering Science, 2002, 57: 105-114.
    [117] V. Costanza, C. E. Neuman. Flexible operation through optimal tracking in nonlinear processes. Chemical Engineering Science, 2000, 55(16): 3113-3122.
    [118] D. McCaffrey, S. P. Banks. Lagrangian manifolds and asymptotically optimal stabilizing feedback control. Systems and Control Letters, 2001, 43(3): 219-224.
    [119] C. P. Mracek, J. R. Cloutier. Control designs for the nonlinear bench mark problem via the state-dependent Riccati equation method. Inernat. J. Robust Nonlinear control, 1998, 8:401-433.
    [120] L. D. Clarkson, D. P. Goodall. Memoryless feedback controllers for imperfectly known nonlinear systems with time-varying delay. Systems Science, 1997, 23(4): 59-73.
    [121] R. T. Yanushevsky. Lyapunovs approach to analysis, synthesis and robustness of nonlinear systems with delays. Nonlinear Analysis, Theory, Methods and Applications, 1997, 30(3): 1469-1478.
    [122] F. Mazenc, P. A. Bliman. Backstepping design for time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(1): 149-154.
    [123] S. P. Banks. Nonlinear delay systems, Lie algebras and Lyapunov transformations. IMA Journal of Mathematical Control and Information, 2002, 19(1-2 SPEC.): 59-72.
    [124]李俊民,刑科义,万百五.离散时间非线性时滞系统最优控制的DISOPE算法.控制理论与应用, 2000, 17(4): 579-582.
    [125]唐功友,马慧.具有正弦扰动的时滞系统前馈-反馈次优控制:灵敏度法.自动化学报, 2006,32(5): 722-729.
    [126]唐功友,高洪伟,董瑞.带阶跃扰动的线性时滞系统最优无静差控制.控制与决策, 2006, 21(12): 1417-1420+1424.
    [127] Y. Wang, L. Xie, et al. Robust control of a class of uncertain nonlinear systems. System and Control Letters, 1992, 19: 139-149.
    [128] G. Feng, Y. A. Jiang, Variable structure based decentralized adaptive control, IEE Proc. Control Theory Appl. 1995, 142 (5): 439-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700