用户名: 密码: 验证码:
钢筋混凝土框架加固结构中粘弹性消能支撑的刚度效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
消能减震加固技术是一种新兴技术。与传统的加固技术相比,它具有很多的优势并因此而具有美好的应用前景。
     本文主要研究粘弹性消能支撑加固的某钢筋混凝土框架结构中阻尼器及其支撑的刚度对该加固结构的抗震性能和荷载效应的影响。在研究中建立了此加固结构的三维模型并使用SAP2000程序中的快速非线性分析(FNA)法对其进行分析。本论文对FNA法进行了详细的阐述。
     为了进行研究,本论文提出了两个比率,一个是设置于第i楼层的粘弹性阻尼器的支撑构件的总水平刚度与原结构相应楼层的层间剪切刚度的比率,假定其它各楼层的相应比率与此比率相等,则将此比率称为支撑构件-结构刚度比,并用α来表示;另一个是设置于第i楼层的粘弹性阻尼器的总水平刚度与原结构相应楼层的层间剪切刚度的比率,同样假定其它各楼层的相应比率与此比率相等,并将此比率称为阻尼器一结构刚度比,并用β来表示。本论文分析了由α=0.30而β取12个不同值而得到的算例的12个工况。
     在12个工况的数值分析结果的基础上,总结出了粘弹性消能支撑的支撑构件-结构刚度比α=0.30时结构的动力特性和荷载效应等随阻尼器-结构刚度比β变化的规律。随后,得到了使加固结构在设防烈度地震荷载作用下能够正常使用的阻尼器-结构刚度比β的最佳值以及与此最佳值相对应的算例结构的最佳加固方案之一。本论文的研究表明,相比于传统抗震加固技术,粘弹性消能支撑加固技术具有巨大的优越性。
     除上述结论之外,本论文还进一步得到了算例结构中粘弹性消能支撑的支撑构件-结构刚度比α与阻尼器-结构刚度比β的比值δ的理想取值范围。在其它加固结构中可参考使用此结论。
     在研究中还发现,由于增设粘弹性消能支撑后输入结构的地震能量主要由消能支撑来消耗,因此在粘弹性消能支撑所在区域附近存在应力集中现象,与消能支撑相连接的部分构件的内力(如柱的轴力)将出现显著变化,甚至于利用改变粘弹性消能支撑的刚度等途径也无法使其满足承载力的要求,因此,在确定加固方案时,需要对这些构件予以重点关注并采取恰当的加固措施使其具备足够的承载力。
Seismic retrofit using supplemental energy dissipation devices is a new seismic retrofit approach, which has many advantages over conventional retrofit approaches and will be of more application in the future.
    In this investigation, the focus is put on the effect of viscoelastic dampers and braces' stiffness on the seismic performance and responses to excitation of a RC frame building,which is retrofitted with viscoelastic(VE) dampers and their braces,modelld 3-dimensionally and analysed with the fast nonlinear analysis(FNA) method in the program SAP2000 that has been expatiated on in the thesis.
    Two ratios are developed in order to make the investigation.One of the two ratios is the one of the global horizontal stiffness of the braces to the shear stiffness of the undamped RC frame building at floor level i,which is assumed to be equal to the ones at all other floor levels,called the braces-stucture's ratio of stiffness and represented by the symbol a .The other of the two ratios is the one of the global horizontal stiffness of the VE dampers to the shear stiffness of the undamped RC frame building at floor level i,which is also assumed to be equal to the ones at all other floor levels, called the VE dampers-stucture's ratio of stiffness and represented by the symbol.In this research,combinations ofa =0.30 and 12 s are considered which form 12 cases of the RC frame building retrofit.
    On the basis of numerical analysis results of 12 cases of the model,rules on how the seismic performance and responses to excitation of the example change with the ratio is concluded. Subsequently,an optimal and one of many optimal retrofit schemes are attained.The optimal ratio means that the RC frame building will performed well under earthquake of seismic fortification intensity when it is retrofitted with VE dampers of the optimal ratio and braces of a =0.30, the VE dampers and their braces are placed as the thesis has described and some . columns of the RC frame building are strengthened.The optimal retrofit scheme is associated with the optimal ratio.In this investigation,the retrofit approach
    
    
    
    using VE dampers and their braces has proved its prominent advantages over conventional retrofit approaches.
    Ulteriorly,an ideal range of the ratio, of the braces-stucture's ratio of stiffness,a, to the VE dampers-stucture's ratio of stiffness, is obtained,which may be used as a reference in other retrofits.
    In this investigation,a phenomenon is found that additional axial forces,which are in excess of members' carrying capability, are introduced into some columns which are connected to the VE dampers and their braces because of stress concentration. These columns should be an important consideration in the retrofit of existing frame buildings and specially strengthened adequately because it is impossible to make them meet their carrying capability by changing the stiffness of VE dampers and their braces.
引文
[1] 周福霖.工程结构减振控制.地震出版社.1997
    [2] 戴国莹,李德虎.建筑结构抗震鉴定及加固的若干问题.第五届全国地震工程会议论文集.1998 10
    [3] E Bayo and E L Wilson. Use of Ritz Vectors in WavePropagation and Foundation Response. Earthquake Engineering andStructural Dynamics. Vol12 pp499-505. 1984
    [4] E L Wilson, M Yuan and J Dickens. Dynamic Analysis by Direct Superposition of Ritz Vectors. Earthquake Engineering and Structural Dynamics, Vo110, pp813-823. 1982
    [5] 邹向阳.粘弹性与拟粘滞摩擦耗能减震结构试验、分析与应用研究.哈尔滨建筑大学.博士论文.2000年5月
    [6] 宋智斌.粘滞消能减震技术在结构抗震加固中的研究与应用.中国建筑科学研究院.硕十学位论文.2001年
    [7] 吴波,李惠.东北某政府大楼采用摩擦阻尼器进行抗震加固的研究.建筑结构学报,Vol19,No5.1998年
    [8] 程文瀼等.宿迁市交通大厦采用粘弹性阻尼器的减震设计与研究.建筑结构学报,21卷3期.2000年6月
    [9] M Miyazaki and Y Mitsusaka. Design of a Building with 20% or Greater Damping. Proc IOWCEE, Madrid, Spaind. 1992
    [10] R H Zhang, T T Soong. Seismic design of viscoelastic dampers for structural applications.(J) Struct Eng118(5): 1375-92. 1992
    [11] C S Tsai, H H Lee. Applications of viscoelastic dampers to highrise buildings. (J) Struct Eng 119(4): 1222-33. 1993
    [12] N Gluck, A M Reinhorn, J Gluck, R Levy. Design of supplemental dampers for control of structures. (J)Struct Eng 122(12): 1394-9. 1996
    [13] Y Fu, K Kasai. Comparative study of frames using viscoelastic and viscous
    
    dampers. (J)Struct Eng 124(5): 513-52. 1998
    [14] K Kasai, Y Fu, A Watanabe. Two types of passive control systems for seismic damage mitigation. (J) Struct Eng 124(5): 501-12. 1998
    [15] J N Yang, S Lin, J H Kim, A K Agrawal. Optimal design of passive energy dissipation systems based on H infinity and H-2 performances. Earthquake Eng Struct Dyn31(4): 921-36. 2002
    [16] M P Singh, L M Moreschi. Optimal placement of dampers for passive response control. Earthquake Eng Struct Dyn 31(4): 955-76. 2002
    [17] Y L Xu, J Teng. Optimum design of active/passive control devices for tall buildings under earthquake excitation. Struct Des Tall Buil 11(2): 109-27. 2002
    [18] Federal Emergency Management Agency-ASCE. FEMA 273, NEHRP guidelines for the seismic rehabilitation of buildings. Washington, DC: Federal Emergency Management Agency-ASCE. 1997
    [19] F Sadeck, B Mohraz, M A Riley. Linear procedures for structures with velocity-dependent dampers. (J) Struct Eng 126(8): 887-95. 2002
    [20] P Uriz, A S Whittaker. Retrofit of pre-Northridge steel momentresisting frames using fluid viscous dampers. Struct Des Tall Buil 10(5): 371-90. 2001
    [21] Federal Emergency Management Agency-ASCE. FEMA 274, NEHRP commentary on the NEHRP guidelines for the seismic rehabilitation of buildings. Washington, DC: Federal Emergency Management Agency-ASCE,1997
    [22] Edward L Wilson. Three-Dimensional Static and Dynamic Analysis of Structure. Computers and Structures, Inc. Berkeley, California, USA. 2002
    [23] Chih-Ping Pan. Seismic analysis, behavior, and retrofit of nonductile reinforced concrete frame buildings with viscoelastic dampers(The microform edition). A dissertation presented to Lehigh University. UMI. 1998
    [24] M Martinez-Rodrigo, M L Romero. An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications. Engineering Structures, Vol 25, 913-925. 2003
    [25] 张熙光,王骏孙 刘惠珊编.建筑抗震鉴定加固手册.中国建筑工业出版
    
    社.2001
    [26] 龚思礼主编.建筑抗震设计手册(第二版).中国建筑工业出版社.2002
    [27] AH尼尔逊著.过镇海,方鄂华,庄崖屏等译校.混凝土结构设计(第12版).中国建筑工业出版社.2003
    [28] 刘季,陈月明.装有粘弹性阻尼材料建筑结构的地震反应分析.哈尔滨建筑大学学报,31(6),P1-5.1998
    [29] 刘季,陈月明.粘弹性阻尼器对建筑结构风振的控制分析.中国结构控制新进展——第一届全国结构控制会议论文集(河北承德),P255-261.1999
    [30] 陈月明.建筑结构的粘弹阻尼振动控制.哈尔滨建筑大学博士学位论文.1998
    [31] 刘季,陈月明.粘弹性阻尼器结构的减振研究.哈尔滨建筑大学学报,31(5), P1-7.1998
    [32] 陈月明,刘季.杠杆粘弹阻尼器(LVES)及其受控结构的试验研究.中国结构控制新进展——第一届全国结构控制会议论文集(河北承德),P277-281.1999
    [33] 欧进萍,吴斌,龙旭.耗能减振结构的抗震设计方法.地震工程与工程振动,18(2),P98-107.1998
    [34] 欧进萍,吴斌,龙旭.结构被动耗能减振效果的参数影响.地震工程与工程振动,18(1),P60-70.1998
    [35] 吴波,郭安薪.粘弹性阻尼器的性能研究.地震工程与工程振动,18(2),P108-116.1998
    [36] 吴波,郭安薪.设有粘弹性阻尼器的结构体系的受力分析.14(3),P6-14.1998
    [37] 邹向阳,欧进萍.粘弹性耗能器的性能试验研究.中国结构控制新进展——第一届全国结构控制会议论文集(河北承德),P262-271.1999
    [38] 吴波,李惠.建筑结构被动控制的理论与应用.哈尔滨工业大学出版社.1997
    [39] 扬荣,王肇民.粘弹性阻尼器控制高层建筑地震响应的研究.同济大学学报,26(6),P613-614.1998
    [40] 瞿伟廉,程懋堃,毛增达,张学俭等.设置粘弹性阻尼器钢结构高层建筑
    
    抗震抗风设计的实用方法.建筑结构学报,19(3),P42-50.1998
    [41]瞿伟廉.控制高层钢结构建筑地震反应的粘弹性阻尼器设计方法.工程力学增刊,P247-251.1998
    [42]刘雯彦.粘弹性阻尼器对高层建筑结构的地震反应的控制.武汉工业大学硕士学位论文.1996
    [43]S AAshour and R D Hanson. Elastic Seismic Response of Buildings with Supplemental Damping. Report No.UMCE87-1, Department of Civil Engineering, The university of Michigan. 1987
    [44]R H Zhang and T T Soong. Seismic Design of Viscoelastic Dampers for Structural Application. Journal of Structural Engineering,ASCE,118(5),1375-1392. 1992
    [45]Bo Wu, Jin-Ping Ou, T T Soong. Optimal placement of energy dissipation devices for three-dimensional structures. Engineering Structures, Vol 19,P113-125. 1997
    [46]R T Haftka and H M Adelman Selection of actuator locations for static shape control of large space structures by heuristic integer programming. Computers and Structures, 20(1-3), 578-582. 1985
    [47]A K Agrawal and J N Yang. Optimal Placement of Passive dampers on Seismic and Wind-excited Building Using Combinatorial Optimization. Journal of intelligent material systems and structures, vol 10, 997-1014. 1999
    [48]滕军.结构振动控制系统优化理论与方法.哈尔滨建筑工程学院博士学位论文.1992
    [49]下乡太郎.随机振动最优控制理论及应用.宇航出版社.1984
    [50]S W Park. Analytical modeling of viscoelastic dampers for structural and vibration control. International Journal of Solids and Structures, Vol 38,8065-8092. 2001
    [51]建筑抗震设计规范(GB50011-2001).中国建筑工业出版社.2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700