用户名: 密码: 验证码:
柔性航天器在轨振动主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采取多种展开形式的大型航天器往往具有较强的柔性,对其在空间工作时产生的振动需要进行抑制以满足航天器任务的需求。本文针对柔性航天器进行了动力学建模、模型修正、非线性姿态与振动控制、鲁棒振动控制及振动控制实现策略等方面的研究,旨在为柔性航天器振动控制的实际工程应用提供理论依据和技术支持。主要研究内容如下:
     1.根据混合坐标法和拉格朗日方程推导了柔性航天器的动力学模型,并提出一种附加质量法分析薄板在空气场中的非线性振动问题。针对航天器柔性结构在地面实验中的非线性振动问题,引入Green-Lagrange应变修正非线性薄板的一阶剪切变形,采用虚功原理建立薄板有限元模型,再通过速度势函数和格林函数计算空气场加载在薄壳上的压力获得附加质量,利用附加质量对原结构进行修正。将所获得的柔性结构地面非线性动力学分析结果用于修正柔性航天器模型,从而获得相对精确的在轨工作时的动力学模型。
     2.基于压电智能材料和模态控制方法构造了三轴稳定柔性航天器的姿态控制和振动控制系统。利用频带隔离思想,设计了柔性结构的正位置反馈(PositivePosition Feedback,PPF)振动主动控制器。建立了压电智能板的有限元模型,并导出压电作动器的模态控制力以及结构的模态位移。考虑到姿态确定系统、姿态控制执行器及PPF控制器,建立了三轴稳定柔性航天器姿态控制与振动控制的全数字仿真模型,通过算例验证了模型以及控制方法的有效性。
     3.设计了抗干扰能力较强的基于状态相关Ricatti方程(State-DependentRiccati Equation,SDRE)的姿态控制器,并利用自适应方法增强了一阶PPF控制器的鲁棒性。根据航天器姿态角与姿态角速度两类变量变化速度的不同,将姿态动力学、运动学分解为内、外两个控制回路,再将非线性动力学伪线性化,每个回路设计相应的积分型SDRE控制器。同时,研究了一阶PPF控制器特性,利用自适应思想设计了柔性结构的自适应PPF振动控制器,增强了控制系统的鲁棒性,并且较好地解决了控制器性能和精度之间的矛盾。通过算例验证了所提出的姿态与振动控制器的有效性。
     4.基于线性矩阵不等式(Linear Matrix Inequality,LMI)提出了一种非线性系统的鲁棒控制方法,并利用所得方法和结论设计了鲁棒二阶PPF控制器。针对基于模糊T-S模型的输入受限非线性系统,导出控制性能指标的上界,再通过李雅普诺夫方程给出优化的充分条件,证明闭环系统的稳定性。将稳定性约束和控制输入约束变换成易求解的LMIs形式。利用这一结论,将LMI方法引入到PPF控制器设计中。在带有PPF控制器的闭环系统中,考虑到柔性结构动力学中不确定项和作动器能力的限制,将问题转化为具有LMI约束的特征值问题进行求解,从而得到优化后的PPF控制律,增强了振动控制的鲁棒性。通过算例验证了所设计的鲁棒PPF控制器的有效性。
     5.面向工程应用,设计了基于多重主动调谐质量阻尼器(Multiple ActiveTuned Mass Dampers,MATMD)的柔性结构振动主动控制实现策略,以增强控制系统的可靠性。针对某柔性航天器结构,设计了以板簧和惯性质量块组成的多重调谐质量阻尼器(Multiple Tuned Mass Dampers,MTMD)。利用位移放大系数优化选择了惯性元件、弹性元件和阻尼元件参数。将压电作动器引入板簧的主动控制中,结合PPF控制方法,推导出基于压电作动器的模态控制方程。通过实例对比,证明了所设计的MATMD振动控制策略的优越性和可靠性。
Since large spacecrafts extensively deployed exhibit strong flexibility, the vibrationgenerated during space work must be depressed to satisfy the task demands. Dynamicmodeling, model updating, nonlinear attitude control and vibration control, robustvibration control and vibration control implementation strategies for flexible spacecraftsare studied in this research and the results can find theoretical and technicalfundamentals for the engineering application of the vibration control for flexiblespacecrafts. The main contributions are described as follows:
     1. The dynamic model of a flexible spacecraft is derived by a hybrid coordinatemethod and Lagrange equation, and an added mass method is presented to analyze thevibration in the air. With regard to non-linear vibration of a spacecraft flexible structurein ground testing, Green-Lagrange strain is introduced to correct first-order shearingdeformation of its non-linear sheet. Then a finite element model is built by virtual workprinciple. Added mass is gained by calculating the pressure with velocity potentialfunction and Green equation. On this basis, the original structure is modified withadditional mass. The method of updating flexible spacecraft model is proposed usinganalysis result of flexible structure ground vibration. A relatively refined dynamic modelof the in-orbit spacecraft is obtained.
     2. Based on the piezoelectric smart materials and modal controls method, attitudecontrol and vibration control systems for the three-axis-stabilized flexible spacecraftsare established. Based on a bandwidth insulation method, a positive position feedback(PPF) active vibration controller for the flexible structure is designed. The finiteelement model of piezo-intelligent plate is built, and mode control force and modedisplacement are deduced. Taking account of the attitude determination system andattitude control actuators, a full digital simulation model of the three-axis stabilizedflexible spacecraft is built. Simulation results verify the validity of the proposed modeland control methods.
     3. In order to improve anti-interference ability of the attitude control system, anovel state-dependent Riccati equation (SDRE)-based attitude controller is designed.The robustness of the control system is enhanced by introducing the idea ofself-adaptation. Since the rate of change of the angular velocity variable and the rate ofchange of angular displacement variable are different, attitude dynamics and kinematicmodel are decomposed into the inside and outside control loops. Nonlinear dynamics is pseudo-linearized, and hence the corresponding integral SDRE controller is designedfor each loop. The characteristics of first-order PPF controller are studied, By means ofan adaptive PPF controller, not only the robustness of the control system is enhanced,but also the tradeoff between control precision and control performance could be solved.Numerical example shows the effectiveness and feasibility of the proposed methods.
     4. Based on Linear Matrix Inequalities (LMI), a robust control method for nonlinearsystem is proposed, furthermore, a robust second-order PPF controller is designed. Forthe nonlinear systems based on a fuzzy T-S model with control input constraints, theupper bound of the quadratic performance index is derived. Stability constraints andcontrol input constraints are further formulated into LMIs which are easily obtained. AnLMI method is introduced into PPF controller design. In the closed-loop systems withthe PPF controller, by considering the uncertainty of the flexible structure dynamic andthe actuators’ capacity limit, the control problem is transformed into solving theeigenvalue problem with LMI constraints. Therefore, an optimal PPF controller isobtained, and robustness of vibration control is enhanced. The simulation results showthe effectivity of the robust PPF controller.
     5. Aiming at achieving higher reliability in engineering application, the strategy ofactive vibration control for the flexible structure is presented using multiple active tunedmass dampers (MATMD). For a flexible spacecraft structure, multiple tuned massdampers (MTMD) consisting leaf springs and inertial masses are designed. By using ofdisplacement amplification factor, the parameters of mass, springiness element anddamping element are optimally chosen. The piezoelectric actuators are introduced intoactive control. Combined with the PPF method, a modal control equation withpiezoelectric actuators is deduced. The simulation results with three cases are compared,showing the advantage and reliability of the MATMD.
引文
[1] Armaghan S. Micropolar continuum modeling of large space structures withflexible joints and thermal effects: Theory and Experiment. Virginia: VirginiaPolytechnic Institute and State University, Doctor of Philosophy In MechanicalEngineering.2008.
    [2]世界航天运载器大全编委会.世界航天运载器大全.北京:宇航出版社,1996.
    [3] Mark S G, David P C. Inflatable solar arrays: revolutionary technology. AIAA,1999-01-2551.
    [4] John D J, Brian D R, Joe B, et al. Development of sunshield structures for largespace telescope. Proceedings of the2002SPIE Astronomical Telescopes andInstrumentation Meeting, Kona, HI, August2002.
    [5] Veldman S L, Vermeeren C A J R. Inflatable structures in aerospace engineering–an overview. Proceedings of the European Conference on SpacecraftStructures, Materials and Mechanical Testing, Noordwijk, The Netherlands,29November–1December2000.
    [6]苗常青,李学涛,马浩.空间充气展开天线支撑结构的模态分析.哈尔滨工业大学学报,2005,37(11):1589-1591.
    [7] Uher J, Grenier C, Lefebvre G. RADARSAT-2SAR antenna. Canadian Journalof Remote Sensing,2004,30(3):287-294.
    [8]胡庆雷.挠性航天器姿态机动的主动振动控制.哈尔滨:哈尔滨工业大学博士学位论文,2006.
    [9] Derrick A E, William B. H, Mark T T. Thermally induced vbrations of theHubble space telescope's solar array3in a test simulatedspace environment.Proceedings4thInternational Symposium on Environmental Testing for SpaceProgrammes, Liege; Belgium,12-14Jun.2001.
    [10] Bowers E J Jr, Williams C E. Optimization of RAE satellite boom deploymenttiming. Journal of Spacecraft and Rockets,1970,7(9):1057-1062.
    [11] Ijar M. da Fonseca, Peter M. Bainum, Adenilson R. da Silva. Structural controlinteraction for an LSS attitude control system using thrusters and reactionwheels. Acta Astronautica,2007,60(10-11):865-872.
    [12]屠善澄.卫星姿态动力学与控制.北京:宇航出版社,2001.
    [13]王治易,顾珏华,董毅,等.铰链副对展开太阳电池翼结构特性的影响分析.苏州大学学报(工学版).2010,30(3):22-25.
    [14]张雷.航天器分步展开太阳翼设计与研究.上海:上海交通大学硕士学位论文,2012.
    [15] Parashar S. RADARSAT Program. International Geoscience and RemoteSensing Symposium: Surface and Atmospheric Remote Sensing: Technologies,Data Analysis and Interpretation, California Institute of Technology, Pasadena,California, Aug.8-12,1994.
    [16] Gralewski M R, Adams L, Hedgepeth J M. Deployable extendable supportstructure for the RADARSAT synthetic aperture radar antenna. IAF,43rdInternational Astronautical Congress, Washington, Aug.28-Sept.5,1992.
    [17] Guest S D, Pellegrino S. A new concept for solid surface deployable antennas.Acta Astronautica,1996,38(2):103-113.
    [18]杨东武.星载大型可展开索网天线结构设计与型面调整.西安:西安电子科技大学博士学位论文,2010.
    [19]罗鹰,段宝岩.星载可展开天线结构现状与发展.电子机械工程.2005,21(5):30-34.
    [20] Gunnar T. Deployable tensegrity structures for space applications. Stockholm:Royal Institute of Technology Department of Mechanics,2002.
    [21] Richard C G. Potential future applications for the Tracking and Data RelaySatellite II (TDRS II) system. Acta Astronautica,1995,35(8):537-545.
    [22] Hanayama E, Kuroda S, Takano T, et al. Characteristics of the large deployableantenna on HALCA Satellite in orbit. IEEE Transactions on Antennas andPropagation,2004,52(7):1777-1782.
    [23]狄杰建.索网式可展开天线结构的反射面精度优化调整技术.西安:西安电子科技大学博士学位论文,2005.
    [24] Belvin W K. Quasistatic shape adjustment of a15-meter-diameter spaceantenna. Journal of Spacecraft and Rockets,1989,26(3):129-136.
    [25] Mark W. Thomson. Astromesh deployable reflectors for Ku-and Ka-bandcommercial satellites.20th AIAA International Communication Satellite SystemConference and Exhibit, Montreal, Quebec, Canada,12-15May,2002.
    [26] Meguro A, Harada S, Watanabe M. Key technologies for high-accuracy largemesh antenna reflectors. Acta Astronautica,2003,53(1):899-908.
    [27]刘明治,高桂芳.空间可展开天线结构研究进展.宇航学报.2003,24(1):82-87.
    [28] Akira M, Kyoji S, Motofumi U, et al. In-orbit deployment characteristics oflarge deployable antenna reflector onboard Engineering Test Satellite VIII. ActaAstronautica,2009,65(9-10):1306-1316.
    [29] Miyasaka A, Hommat M, Tsujigata A. Design and ground verification of largedeployable reflector.42th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference and Exhibit, Seattle, WA, United States,2001:2222-2227.
    [30] Yonezawa K, Homma M. Attitude control on ETS-VIII mobile communicationsatellite with large deployable antenna. The21th AIAA InternationalCommunications Satellite Systems Conference and Exhibit, Yokohama, Japan,Apr.15-19,2003.
    [31] Akira M, Akio T, Naokazu H, et al. Technology status of13m aperturedeployment antenna reflectors for Engineering Test Satellite VIII. ActaAstronautica,2000,47(2-9):147-152.
    [32] Satoru O, Kyoji S, Akio T.30m class lightweight large deployable reflector.5th European Conference on Antennas and Propagation(EUCAP), Rome, Italy,Apr.11-15,2011.
    [33]沈自才.充气展开式结构在航天器中的应用.航天器环境工程.2008,25(4):323-329.
    [34]马小飞,宋燕平,韦娟芳等,充气式空间可展开天线结构概述.空间电子技术.2006,3:10-15.
    [35] Freeland R E, Bilyeu G D. In-step inflatable antenna experiment. ActaAstronautica,1993,30:29-40.
    [36] Freeland R E, Bilyeu G D. Veal G R, et al. Large inflatable deploymentantenna flight experiment result. Acta Astronautica,1997,41(4-10):267-277.
    [37] Freeland R E, Bilyeu G D. Veal G R. Development of flight hardware for alarge inflatable-deployable antenna experiment. Acta Astronautica,1996,38(4-8):251-260.
    [38] Christopher H M J. Gossamer Spacecraft: Membrane and Inflatable StructuresTechnology, Reston, VA, USA: American Institute of Aeronautics&Astronautics,2001.
    [39] Huang J, Lou M, Feria A, et al. An inflatable L-band microstrip SAR array.IEEE Antennas and Propagation Society International Symposium, Atlanta, GA,USA.1998:2100-2103.
    [40] Edelstein W, Kim Y, Freeman A, et al. Next generation SAR demonstration onspace station. Space technology and applications international forum,Albuquerque, New Mexico, USA,1999:352-357.
    [41] Huang J. The development of inflatable array antennas. Antennas andPropagation Magazine, IEEE,43(4):44-50.
    [42] Patrick K M, Geoffrey T W. Lightweight inflatable solar array. Journal ofPropulsion and Power,1996,12(5).
    [43] David L, Gordon V, Richard H, et al. Inflatable rigidizable solar array for smallsatellites. AIAA-2003-1898:1-7.
    [44] Peypoudat V, Defoort B, Lacour D, et al. Development of a3.2m-longinflatable and rigidizable solar array breadboard. AIAA-2005-1881.
    [45] Frederick H R, David L. Power-scalable inflation-deployed solar arrays.AIAA-2004-1572.
    [46] Derbes W, Guidanean K. Inflatable torus solar array technology program,Phase I. DARPA F29601-90-C-006,1991.
    [47]王伟志.太阳帆技术综述.航天返回与遥感.2007,28(2):1-4.
    [48] David M M, Brian D M, James L G. Demonstration of a10-m solar sail system,AIAA-2004-1576.
    [49] Troy M, Vaughn B, David S. Ground Testing a20-meter Inflation DeployedSolar Sail, AIAA-2006-1707.
    [50] Adams M L, Culver H L, Kaufman D M, et al. Design and flight testing of aninflatable sunshield for the next generation space telescope (NGST).AIAA-2000-1797.
    [51] Sebastien L, John J. Analysis and ground testing for validation of the inflatablesunshield in space (ISIS) experiment. AIAA-2000-1638.
    [52] Waldie D D, Gilman L N. Technology development for large deployablesunshield to achieve cryogenic environment. AIAA-2004-5987.
    [53] Charles R S. Next generation space telescope-inflatable sunshield development.Aerospace Conference Proceedings,2000IEEE. Big Sky, MT, USA,18-25March2000:505-519.
    [54] David P C, Mark S G. Deployment control mechanisms for inflatable spacestructures.33rd Aerospace Mechanisms Conference, May1999.
    [55]戈冬明,陈务军,付功义等.铰接盘绕式空间伸展臂屈曲分析理论研究.工程力学.2008,25(6):176-180.
    [56] Alred J, Mikatarian R, Koontz S. Impact of solar array position on ISS vehiclecharging.44th AIAA Aerospace Sciences Meeting and Exihibit, Reno, Nevada,USA,9-12January2006.
    [57] Chen W J, Luo Y Z, Fu G Y, et al. A study on space masts based on octahedraltruss family. International Journal of Space Structures.2001,16(1):75-82.
    [58]李瑞祥,王治易,肖杰等.空间实验室大面积太阳电池阵技术研究.上海航天.2003,4:10-14.
    [59]张伟,于潇.盘绕式伸展臂初步设计与分析.载人航天.2012,18(2):45-48.
    [60] Rimrott, F P J, Fritsche, G. Fundamentals of STEM mechanics. IUTAM-IASSSymposium on Deployable Structures: Theory and Applications SolidMechanics and Its Applications2000,80:321-333.
    [61] Jones P A, Spence B R. Spacecraft solar array technology trends. AerospaceConference,1998IEEE. vol.1:141-152.
    [62] Pellegrino S. Large retractable appendages in spacecraft. Journal of Spacecraftand Rockets1995,32(6):1006–1014.
    [63]房光强,彭福军.航天器可展开支撑杆的研制及其收拢展开特性研究.材料工程.2009, S2:157-160.
    [64]马兴瑞,苟兴宇,李铁寿,王本利.航天动力学发展概况.宇航学报,2000,21(3):1-5.
    [65]缪炳祺,曲广吉,程道生.柔性航天器的动力学建模问题.中国空间科学技术.1999,(5):35-40.
    [66] Bensoussan A, Da Prato G, Delfour M C, et al. Representation and control ofinfinite dimensional systems, Volumes1and2, Bost on: Birkh user,1992.
    [67]陈翰馥,郭雷.现代控制理论的若干进展及展望.科学通报.1998,43(1):1-6.
    [68]陈士橹,祝小平,唐硕,徐建国.挠性航天器动力学的几个研究方向.世界科技研究与发展,1998,20(6):43-47.
    [69] Likins P W. Dynamics and control of flexible space vehicles. JPL, TR32-1329,1970.
    [70] Likins P W, Gale A H. The analysis of interaction between attitude controlsystems and flexible appendages. Proceedings of the19th InternationalAstronautical Congress, Pergamon Press,1970:67-90.
    [71] Likins P W. Finite element appendage equations for hybrid coordinate dynamicanalysis. International Journal of Solids and Structures.1972,8:709-731.
    [72] Likins P W. Dynamic analysis of a system of hinge-connected rigid bodieswith nonrigid appendages. International Journal of Solids and Structures.1973,9(12):1473-1487.
    [73] Likins P W. Spacecraft attitude dynamic and control–a personal perspectiveon early developments. Journal of Guidance, Control, and Dynamics.1986,9(2):129-134.
    [74] Modi V J. Attitude dynamics of satellite with flexible appendages–a briefreview. Journal of Spacecraft and Rockets.1974,11(11):743-751.
    [75] Hooker W W. A set of dynamical attitude equations for an arbitrary n-bodysatellite having rotational degrees of freedom. AIAA Journal,1970:1205-1207.
    [76] Kane T R, Levinson D A. Formulation of equations of motion for complexspacecraft. Journal of Guidance, Control, and Dynamics.1980,3(2):99-112.
    [77] Turic D A, Mirlha A. Dynamic analysis of elastic mechanism system, Part I:Applications. ASME J. Dynamic Systems, Measurement and Control,1981,106:243-248.
    [78]和兴锁,邓峰岩,张烈霞等.大型空间刚柔耦合组合体的动力学建模.2004,23(5):543-545.
    [79] Giovagnoni M A. A numerical and experimental analysis of a chain of flexiblebodies. ASME J. Dynamic Systems, Measurement and Control,1994,116:73-80.
    [80] Nurre G S. Dynamics and control of large space structures. Journal ofGuidance, Control, and Dynamics,1984,7(5):514-526.
    [81] Bainum P M. A review of modeling techniques for the open and closed loopdynamics of large space structures. Large Space Structures: Dynamics andControl,1998:165-177.
    [82] Rao S S. Modeling, control, and design of flexible structure: a survey. Appl.Mech. Rev.,1990,43(5).
    [83] Atluri S N, Iura M. Nonlinearities in the dynamics and control of spacestructures: some issues for computational mechanics. Large Space Structures:Dynamics and Control,1988:33-70.
    [84]曲广吉.航天器动力学工程.北京:中国科学技术出版社,2000.
    [85] Qu G J. Dynamics analysis of flexible spacecraft. The41st Congress of theIAF,1990.
    [86] Qu G J. The development of large flexible spacecraft dynamics. ESA SP, China,1991.
    [87]曲广吉,程道生.空间站复合体柔性动力学分析研究.空间站技术学术会议,1997,中国.
    [88]曲广吉,程道生.复合柔性结构航天器动力学建模研究.中国工程科学.1999,1(2):52-56.
    [89]缪炳祺,曲广吉.柔性航天器动力学模型的模态综合——混合坐标法建模研究.航天器工程.1998,(7)1:29-35.
    [90]洪嘉振,潘振宽.柔性多体航天器动力学.宇航学报.1992,4:59-68.
    [91]史纪鑫,曲广吉.可变构型复合柔性结构航天器动力学建模研究.宇航学报.2007,28(1):130-135.
    [92] Meirovitch L, Nelson H D. High spin motion of a satellite containing elasticparts. Journal of Spacecraft and Rockets.1966,13:1597-1602.
    [93] Meirovitch L, Stemple T. Hybrid equations of motion for flexible multibodysystems using quasicoordinates. Journal of Guidance, Control, and Dynamics.1995,18(4):678-688.
    [94] Suleman A. Structrural modeling issues in flexible systems. AIAA Journal,1995,32(4).
    [95] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached toa moving base. Journal of Guidance, Control, and Dynamics.1987,10(2):139-151.
    [96] Ho J Y L, Herber D R. Development of dynamics and control simulation oflarge flexible space systems. Journal of Guidance, Control, and Dynamics.1985,8(3):374-383.
    [97] Ho J Y L. Direct path method for flexible multibody spacecraft dynamics.Journal of Spacecraft and Rocket,1977,14(2):102-110.
    [98] Spanos J T, Truha W. Selection of component modes for the simulation offlxible multibody spacecraft. J. Guidance, Control and Dynamics,1991,14(2):278-286.
    [99] Hughes P C, Skelton R E. Modal truncateion for flexible spacecraft. J.Guidance and Control,1981,4(3):291-297.
    [100] Lee A Y, Tsuha W S. Model reduction methodology for articulated,multi-flexible body structures. J. Guidance, Control and Dynamics,1994,17(1):69-75.
    [101] Gregory C Z. Reduction of large flexible spacecraft models using internalbalancing theory. J. Guidance, Control and Dynamics,1984,7:725-732.
    [102]杨琼梁,郭其威,唐国安.半刚性太阳电池阵地面振动时的空气效应分析.水动力学研究与进展.2009,24(3):381-386.
    [103]李淑娟,王皓,黄涛,唐国安.太阳帆板振动诱导空气流场分析及其附加质量计算.复旦学报(自然科学版).2000,39(4):441-445.
    [104]李淑娟,苏里,唐国安.太阳能电池阵在空气介质中展开的动力学仿真.振动与冲击.2002,21(4):106-107.
    [105] Amabili M. Non-linear vibrations of doubly curved shallow shells.International Journal of Non-Linear Mechanics,2005,40(5):683-710.
    [106] Taazount M, Zinai A, Bouazzouni A. Large free vibration of thin plates:hierarchic finite element and asymptotic linearization. European Journal ofMechanics, A/Solids,2009,28(1):155-165.
    [107] Toorani M H, Lakis A A. Large amplitude vibrations of anisotropiccylindrical shells. Computers&Structures,2004,82(23-26):2012-2025.
    [108] Panda S K, Singh B N. Nonlinear free vibration of spherical shell panel usinghigher order shear deformation theory–A finite element approach. InternationalJournal of Pressure Vessels and Piping,2009,86(6):373-383.
    [109] Singha M K, Daripa R. Nonlinear vibration of symmetrically laminatedcomposite skew plates by finite element method. International Journal ofNon-Linear Mechanics,2007,42(9):1144-1152.
    [110] Naidu N V S, Sinha P K. Nonlinear free vibration analysis of laminatedcomposite shells in hygrothermal environments. Composite Structures,2007,77(4):475-483.
    [111] Naidu N V S, Sinha P K. Nonlinear finite element analysis of laminatedcomposite shells in hygrothermal environments. Composite Structures,2005,69(4):387-395.
    [112]周军.航天器控制原理.西安:西北工业大学出版社,2001.
    [113] Gale A H, Likins P W. Influence of flexible appendages on dual-spinspacecraft dynamics and control. Journal of Spacecraft and Rockets,1970,7(9):1049-1056.
    [114] Likins P W. Attitude stability criteria for dual spin spacecraft. Journal ofSpacecraft and Rockets,1967,4(4):1638-1643.
    [115] Hablanix H B. Constrained and unconstrained modes: some modeling aspectsof flexible spacecraft. Journal of Guidance and Control,1982,5(2):164-173.
    [116] Meirovitch L. Hybrid state equations of motion for flexible bodies in terms ofquasi-coordinates. Journal of Guidance, Control, and Dynamics,1991,14(5):1008-1013.
    [117] Meirovitch L. State equations for maneuvering and control of flexible bodiesusing quasimomenta. Journal of Guidance, Control, and Dynamics,1993,16(5):882-891.
    [118] Shabana A A. Dynamics of flexible bodies using generalized Newton-Eulerequations. ASME Journal of Dynamics Systems, Measurements, and Control,1989,11(2):496-503.
    [119]王平,李铁寿,吴宏鑫.磁控小卫星周期时变的比例微分控制设计方法.中国空间科学技术,1999.10(5):14-19.
    [120]刘新建,雷勇军,唐乾刚.大挠性太阳能帆板航天器的姿态控制.国防科技大学学报,2003,25(5):6-8.
    [121] Li X, Arthur J T, Jefery B B. Stability analysis on earth observing systemAM-1spacecraft earth acquisition. Journal of Guidance, Control and Dynamics,1996,19(3):512-519.
    [122]陈立群,刘延柱.控制一类磁性刚体航天器的混沌姿态运动.力学季刊,2001,22(3):295-299.
    [123] Modi V J, Ng A C, Karray F. Slewing dynamics and control of the spacestation-based mobile servicing system. Acta Astronautica,1995,35(2-3):119-125.
    [124] Tafazoli S, Khorasani K. Nonlinear control and stability analysis of spacecraftattitude recovery. IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):825-844.
    [125]宋斌,马广富,李传江等.基于H∞鲁棒控制的挠性卫星姿态控制.系统仿真学报.2005,17(4):968-970.
    [126] Balas M J. Active control of flexible systems. Journal of Optimization Theoryand Application,1978,25(3):415-436.
    [127] Yossi C, Clark J R. Control of flexible structure with spillover using anaugmented observer. Journal of Guidance, Control, and Dynamics,1989,12(2):155-161.
    [128] Brent A, Robert H. A high performance robust attitude controller for flexiblespacecraft. AIAA-94-3560-CP.
    [129] Charng S W, Bor S C. Unified design for H2, H∞and mixed control ofspacecraft. Journal of Guidance, Control, and Dynamics,2000,22(6):1302-1310.
    [130]李勇,吴宏鑫.一类挠性航天器的变结构控制.宇航学报,1998,19(1):13-20.
    [131] Hu Q L. Sliding mode maneuvering control and active vibration damping ofthree-axis stabilized flexible spacecraft with actuator dynamics. NonlinearDynamics,2008,52(3):227-248.
    [132]王庆超,岑小锋,马兴瑞.挠性航天器旋转机动的输入成形变结构控制.系统工程与电子技术,2006,28(5):727-730.
    [133] Nalin A, Chaturvedi D S, Bernstein F, et al. Globally convergent adaptivetracking of angular velocity and ineartia identification for a3-DOF rigid body.IEEE Transactions on Control Systems Technology,2006,14(5):841-852.
    [134]王景,刘良栋.小卫星的自适应姿态控制.中国空间科学技术,2002,22(1):17-23.
    [135]张洪华,张国峰.带有挠性附件卫星的自适应内模控制.中国空间科学技术,2002,22(1):4-9.
    [136]孙多青,吴宏鑫.多变量线性时变系统的特征模型及自适应模糊控制方法.宇航学报.2005,26(6):677-681.
    [137] Byun K W, Wie B. Robust H∞control design for the spacecraft station withstructured parameter uncertainty. Journal of Guidance, Control, and Dynamics,1991,14(6):1115-1122.
    [138] Wie B, Liu Q, Byun K W. Robust H∞control synthesis method and itsapplication to benchmark problems. Journal of Guidance, Control, andDynamics,1992,15(5):1140-1148.
    [139] Wie B, Liu Q, Sunkel J. Robust stabilization of the space station in thepresence of inertia matrix uncertainty. Journal of Guidance, Control, andDynamics,1995,18(3):611-617.
    [140] Wie B, Gonzalez M. Control synthesis for flexible space structures excited bypersistent disturbances. Journal of Guidance, Control, and Dynamics,1992,15(1):73-80.
    [141] Appleby B, Hughes R. A high performance robust attitude controller forflexible spacecraft. AIAA-94-3560.
    [142]兰维瑶,陈亚陵.新型卫星姿态运动的鲁棒控制器设计.厦门大学学报(自然科学版),1999.38(2):193-198.
    [143] Grocott S, How J, Miller D, et al. Robust control design and implementationon the middeck active control experiment. Journal of Guidance, Control, andDynamics,1994,17(6):1163-1170.
    [144] Kida T, Yamaguchi I, Chida Y, et al. On-orbit robust control experiment offlexible spacecraft ETS-VI. Journal of Guidance, Control, and Dynamics,1997,20(5):865-872.
    [145] Ballois S, Duc G. H∞Control of an earth observation satellite. Journal ofGuidance, Control, and Dynamics,1996,19(3):628-635.
    [146]胡跃明.变结构控制理论与应用.北京:科学出版社,2003.
    [147]胡庆雷,马广富.带有输入非线性的挠性航天器姿态机动变结构控制.宇航学报,2006,27(4):630-634.
    [148]胡庆雷,马广富.改进型自适应变结构的挠性卫星姿态机动控制.哈尔滨工业大学学报,2008,40(1):1-5.
    [149] Abdulhamitbilal E, Jafarov E M. Performances comparison of linear andsliding mode attitude controllers for flexible spacecraft with reaction wheels.Proceedings of the2006International Workshop on Variable Structure Systems.Alghero, Sardinia,5-7June,2006.
    [150] Morteza S, Mansour K, Aria A. Adaptive robust attitude control of a flexiblespacecraft. International Journal of Robust and Nonlinear Control,2006.16(6):287-302.
    [151] Hu Q L, Ma G F. Robust adaptive variable structure control of flexiblespacecraft containing input nonlinearity/dead-zone. Transactions of the JapanSociety for Aeronautical and Space Sciences,2006,49(165):187-165.
    [152] Hu Q L, Ma G F, Xie L H. Robust and adaptive variable structure outputfeedback control of uncertain systems with input nonlinearity. Automatica,2008,44(2):552-559.
    [153]胡庆雷,耿博,马广富等.输入有界的挠性航天器姿态跟踪滑模控制.哈尔滨工业大学学报.2010,42(7):6-10.
    [154]唐超颖,沈春林,李丽荣.航天器姿态滑模变结构控制系统的设计.南京航空航天大学学报,2003.35(4):361-365.
    [155]王晓磊,吴宏鑫,李智斌.挠性航天器非线性滑动模态控制和实验研究.宇航学报,2001.22(6):50-56.
    [156]周连文,周军.挠性航天器大角度机动的变结构控制.航天控制,2003(3):48-52.
    [157]周连文,周军,李卫华.挠性航天器大角度机动的滑模变结构控制.飞行力学,2004.22(1):71-73.
    [158]王炳全,崔祜涛,杨涤.轻型高精度卫星的变结构姿态控制器.航空学报,2000.21(5):417-420.
    [159] Guan P, Liu X J, Liu J Z. Adaptive fuzzy sliding mode control for flexiblesatellite. Engineering Applications of Artificial Intelligence,2005,18(4):451-459.
    [160]管萍,陈家斌.挠性卫星的自适应模糊滑模控制.航天控制,2004.22(4):62-67.
    [161]管萍,陈家斌,刘晓河.基于滑模控制的挠性卫星的自学习模糊控制.北京理工大学学报,2005.25(2):127-130.
    [162] Huang X Y, Wang Q, Dong C Y. Adaptive second-order sliding mode attitudecontrol of flexible spacecraft. Proceedings of SPIE-The International Society forOptical Engineering, Beijing, China.2008:1185-1196.
    [163]刘天雄,柴洪友,冯纪生.资源一号卫星CCD相机扰动响应分析.航天器工程,2005,14(1):33-38.
    [164] Izzo D, Pettazzi L. Command shaping for a flexible satellite platformcontrolled by advanced fly-wheels systems. Acta Astronautica,2007,60(10-11):820-827.
    [165]徐庆善.隔振技术的进展与动态.机械强度.1994,16(1):37-42.
    [166]杨庆俊,王晓雷,郑钢铁.单轴柔性体气气弹簧主动隔振研究.2006,7:37-38.
    [167]刘天雄,林益明,王明宇等.航天器振动控制技术进展.宇航学报.2008,29(1):1-12.
    [168] Anandakrishnan S M, Connor C T, Lee S, et al. Hubble space telescope solararray damper for improving control system stability. Aerospace ConferenceProceedings, Big Sky, MT,18-25, May,2000,4:261-276.
    [169]陈阳.基于粘弹性材料的柔性卫星隔振技术研究.哈尔滨:哈尔滨工业大学,2010.
    [170] Ferri.A A. Friction damping and isolation system. Journal of DynamicsSystems, Measurement and Control,1995,117(2):196-206.
    [171] Ungar E E. Vibration isolation in noise and vibration control engineering:principles and applications. Leo L Beranek and Istvant L Ver John Wiley&Sons,Inc,1992:429-450.
    [172]刘耀宗,郁殿龙,赵宏刚等.被动式动力吸振技术研究进展.机械工程学报.2007,43(3):14-21.
    [173] Ormondroyd J, Den Hartog J P. The theory of dynamic vibration absorber.ASME Journal of Applid Mechanics,1928,50:9-22.
    [174] Brock J E. A note on the damped vibration absorber. ASME Journal ofApplied Mechanics,1946,68: A-284.
    [175]张阿舟,诸德超,姚起航等,实用振动工程——振动控制与设计.北京:航空工业出版社,1997.
    [176]欧进萍.结构振动控制-主动、半主动和智能控制.北京:科学出版社,2003.
    [177]吴崇健,骆东平,杨叔子等.离散分布式动力吸振器的设计及在船舶工程中的应用.振动工程学报,1999,12(4):24-30.
    [178] Snowdon J C. Vibration and shock in damped mechanical systems. New York:John Wiley&Sons.1968.
    [179] Iwanami K, Seto K. Optimum design of dual tuned mass dampers and theireffectiveness. Proceedings of the JSME,1984,50(449):44-52.
    [180] Jacquot R G, Foster J E. Optimal cantilever dynamic vibration absorber.ASME Journal of Engineering for Industry,1977,99:138-141.
    [181] Snowdon J C, Wolfe A A, Kerlin R L. The cruciform dynamic absorber.Journal of the Acoustical Society of America,1984,75:1792-1799.
    [182] Dahlbe T. On optimal use of the mass of a dynamic vibration absorber.Journal of Sound and Vibration,1989,132:518-522.
    [183] Arnold F R. Steady-state behavior of system provided with non-lineardynamic vibration absorbers. ASME Journal of Applied Mechanics,1955,22:487-492.
    [184] Roberson R E. Synthesis of a non-linear dynamic vibration absorber. Journalof the Franklin Insitute,1962,254:205-220.
    [185] Hunt J B, Nissen J C. The broad band dynamic vibration absorber. Journal ofSound and Vibration,1982,83(4):573-578.
    [186] Elliott S J, Benassi L, Brennan M J, et al. Mobility analysis of active isolationsystems. Journal of Sound and Vibration,2004,271:297-321.
    [187]张洪田,刘志钢,张天元等,有源控制吸振器减振性能实验分析.噪声与振动控制.1995,4:14-15.
    [188]欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究.高技术通讯.2002,(10):85-90.
    [189] Liu D, Yang D M, Zhang W P. On optimal control strategy of maneuver ofsatellites with flexible appendages. Proceedings of PISSTA, Beijing,1987:530-539.
    [190] Liu D, Yang D M, Xi J, et al. An optimal maneuver control method for thespacecraft with flexible appendage. AIAA-88-4255-CP:294-300.
    [191]刘暾.分力合成主动振动抑制方法.哈尔滨工业大学学术研究报告.1991年6月.
    [192]刘暾,常亚武,杨大明.柔性空间飞行器的振动抑制控制.航天控制.1992,(2):25-33.
    [193]陕晋军.挠性空间飞行器的分力合成主动振动抑制方法研究.哈尔滨工业大学博士学位论文,哈尔滨,2002.
    [194] Smith O J M. Feedback control systems. New York: McGraw-Hill BookCompany, Inc.1958:331-345.
    [195] Singer N, Seering W. Preshaping command input to reduce system vibration.Transactions of the ASME Journal of Dynamic Systems, Measurement andControl,1990,112(1):76-82.
    [196] Tuttle T D, Seering W P. Vibration reduction in0-g using input shaping on theMIT middeck active control experiment. American Control Conf. Seattle, WA,21-23June,1995:919-923.
    [197] Tuttle T D, Seering W P. Vibration reduction in flexible space structures usinginput shapng on MACE: mission results. IFAC World Congress, San Francisco,CA,1996:55-60.
    [198] Banerjee A K. Dynamics and control of the WISP shuttle-antennae system.Journal of Astronautical Sciences,1993,41(1):73-90.
    [199] Banerjee A K, Pedreiro N, Singhose W. Vibration reduction for flexiblespacecraft following momentum dumping with/without slewing. Journal ofGuidance, Control, and Dynamics.2001,24(3):417-427.
    [200] Song G B, Aqrawal B N. Spacecraft vibration reduction using Pulse-WidthPulse-Frequency modulated input shaper. Journal of Guidance, Control, andDynamics.1999,22(3):433-440.
    [201]陕晋军,刘暾.挠性结构的输入成形与分力合成主动振动抑制方法研究.中国机械工程.2002,13(5):25-29.
    [202] Baz A, Poh S. Performance of an active control system with piezoelectricactuator. Journal of Sound and Vibration,1988,126(2):327-343.
    [203] Bailey T, Hubbard J E. Distributed piezoelectric-polymer active vibrationcontrol of a cantilever beam. Journal of Guidance Control,1985,8(5):605-611.
    [204]尹林,王晓明,沈亚鹏.用压电元件实现复合材料层合板振动控制的数值分析.振动工程学报,1996,9(2):107-115.
    [205] Park K S, Koh H M, Seo C W. Independent modal space fuzzy control ofearthquake-excited structures. Engineering Structures,2004,26(2):279-289.
    [206] Sinha A, Kao C K. Independent modal sliding mode control of vibration inflexible structures. Journal of Sound and Vibration,1991,147(2):352-358.
    [207] Resta F, Ripamonti F, Cazzulani G. Independent modal control for nonlinearflexible structures: An experimental test rig. Journal of Sound and Vibration,2010,329(8):961-972.
    [208] Baz A, Poh S, Fedor J. Independent modal space control with positiveposition feedback. Journal of Dynamic Systems, Measurement and Control.March1992,114:96-104.
    [209] Papadopoulos M, Garcia E. Closed-loop pole design for vibration suppression.Journal of Guidance, Control, and Dynamics,1997,20(2):333-337.
    [210] Abdel-Rohman M, Leipholz H H. Structural control by pole-assignmentmethod. Journal of the Engineering Mechanics Division.1978,104(5):1159-1175.
    [211] Song G, Kotejoshyer B. Vibration reduction of flexible structures during slewoperations. International Journal of Acoustics and Vibration,2002,7(2):105-109.
    [212] Caughey T K, Goh C J. Analysis and control of quasi-distributed parametersystems. California Institute of Technology, Pasadena, CA, Dynamics LabReport,1982.
    [213] Baz A, Hong J T. Adaptive control of flexible structures using modal positiveposition feedback. International Journal of Adaptive Control and SignalProcessing,1997,11:231-253.
    [214] Song G B, Agrawal B N. Vibration suppression of flexible spacecraft duringattitude control. Acta Astronautica.2001,49(2):73-83.
    [215] Song G B, Schmidt S P, Agawal B N. Experimental robustness study ofpositive position feedback control for active vibration suppression, Journal ofGuidance, Control and Dynamics,2002,25(1):179-182.
    [216] Fanson J L, Caughey T K. Positive position feedback control for large spacestructures. In: Proceedings of the28th Structural Dynamics Conference,Monterey, CA,9-10, April.1987:588-598.
    [217] Fanson J L, Caughey T K. Positive position feedback control for large spacestructures. AIAA Journal,1990,28(4):717-724.
    [218] Shan J J, Liu H T, Sun D. Slewing and vibration control of a single-linkflexible manipulator by positive position feedback(PPF). Mechatronics,2005,15:487-503.
    [219] Hu Q L, Ma G F. Spacecraft vibration suppression using variable structureoutput feedback control and smart materials. Journal of Vibration and Acoustics,2006,128(2):221-230.
    [220] Kodiyalam S, Kao P J, Wang G. Analysis and test correlation of spacecraftstructures using dynamic parameter sensitivities. AIAA–9424025,1994.
    [221] Mottershead J E, Friswell M I. Model updating in structural dynamics: asurvey. Journal of Sound and Vibration.1993,167(2):347-375.
    [222]丁继锋,韩增尧,马兴瑞.大型复杂航天器结构有限元模型的验证策略研究.宇航学报.2010,31(2):547-555.
    [223]朱安文,曲广吉,高耀南.结构动力模型修正技术的发展.力学进展.2002,32(3):337-348.
    [224] Rajasekaran S, Murry D. W. Incremental finite element matrices, ASCE JStruct Div,1973,99(ST12):2423-2438.
    [225] Tsai S W, Hahn H T. Introduction to composite materials. Technomic Pub.1980.
    [226] Cook R D. Concepts and applications of finite element analysis. New York:John Wiley&Sons;1989.
    [227]吴连元.板壳理论.上海:上海交通大学出版社.1989.
    [228] Friswell M I, Inman D J. The relationship between positive position feedbackand output feedback controllers. Smart Materials and Structures.1999,8:285-291.
    [229] Kwak M K, Heo S. Active vibration control of smart grid structure bymultiinput and multioutput positive position feedback controller. Journal ofSound and Vibration.2007,304(1-2):230-245.
    [230]陈新龙,杨涤,翟坤.某挠性卫星姿态控制系统设计.哈尔滨工业大学学报.2008,40(5):678-682.
    [231] Shuster M D. A survey of attitude representations. The Journal of theAstronautical Sciences.1993,41(4):439-517.
    [232]刘暾.空间飞行器动力学.哈尔滨.哈尔滨工业大学出版社,2003.
    [233] Farrenkopf R L. Analytic steedy-state accuracy solutions for two commonspacecraft attitude estimators. Journal of Guidance and Control.1978,1(4):282-284.
    [234] Crassidis J L. Sigma-point Kalman filtering for integrated GPS and inertialnavigation. AIAA Guidance, Navigation, and Control Conference, San Francisco,CA, Aug,2005, AIAA-2005-6052.
    [235] Meirovitch L, Baruh H, Oz H. A comparison of control techniques for largeflexible systems. Journal of Guidance and Control,1983,6(4):302-310.
    [236] Meirovitch L, Oz H. Modal-space control of distributed gyroscopic systems.Journal of Guidance and Control,1980,3(2):140-150.
    [237] Meirovitch L, Van Landinghan H, Oz H. Control of spring flexible spacecraftby modal systhesis. Acta Astronautical,1977;4:985-1010.
    [238]顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社,1997.
    [239] Rew K H, Han J H, Lee I. Adaptive multi-modal vibration control ofwing-like composite structure using adaptive positive position feedback.AIAA-2000-1422.
    [240] Lee C K. Piezoelectric laminates: theory and experiment for distributedsensors and actuators. intelligent structural systems. Klumer Academic Publisher,1992,75-168.
    [241] Chandrashekhara K, Aganwal A N. Active vibration control of laminatedcomposite plates using piezoelectric device: a finite element approach. J. ofIntelligent Materials Systems and Atructures.1993,4:496-508.
    [242]陶宝祺.智能材料结构.北京:国防工业出版社.1997.
    [243] Sirohi J, Chopra I. Fundamental behavior of piezoceramic sheet actuators.Journal of Intelligent Materials and Structures.2000,11(2):47-61.
    [244] Kamjanovic D, Newnham R E. Electrostrictive and piezoelectric materials foractuator application. Journal of Intelligent Material Systems and Structures.992,3(2):190-208.
    [245] Li B, Li Y G. Maximal modal force rule for optimal placement of pointpiezoelectric actuators for plates. Journal of Intelligent Material System andStructures.2000,11:512-515.
    [246]吴麒.自动控制原理.北京:清华大学出版社,1992.
    [247] Xin M, Balakrishnan S N. A new method for suboptimal control of a class ofnon-linear systems. Optimal Control Applications and Methods.2005,26(2):55-83.
    [248] Erdem E B, Alleyne A G. Design of a class of nonlinear controllers via statedependent Riccati equations. IEEE Transaction on Control Systems Technology.2004,12(1):133-137.
    [249] James R C. State-dependent Riccati equation techniques: an overview.American Control Conference, Albuquerque, New Mexico, June,1997.
    [250] Hammett K D, Hall C D, Ridgely D B. Controllability issues in nonlinearstate-dependent Riccati equation control. Journal of Guidance Control andDynamics.1998,21(5):767-773.
    [251] Xin M, Balakrishnan S N. Missile longitudinal autopilot design using a newsuboptimal nonlinear control method. Control Theory and Applications, IEEPreceedings.2003,150(6):557-584.
    [252]张军,徐世杰.基于SDRE方法的挠性航天器姿态控制.宇航学报.2008,29(1):138-144.
    [253] Vaddi S S, Menon P K, Ohlmeyer E J. Numerical state-dependent Riccatiequation approach for missile integrated guidance control. Journal of GuidanceControl and Dynamics.2009,32(2):699-703.
    [254]张军,毕贞法,邵晓巍.一种高超声速飞行器的非线性再入姿态控制方法.空间控制技术与应用.2008,34(4):51-54.
    [255] Bogdanov A, Wan E. State-dependent Riccati equation control for smallautonomous helicopters. Journal of Guidance Control and Dynamics.2007,30(1):47-60.
    [256] Bogdanov A, Carlsson M, Harvey G, et al. State-dependent Riccati equationcontrol of a small unmanned helicopter. AIAA Guidance, Navigation, andControl Conference and Exhibit. Austin, Texas. Aug.2003.
    [257]吴爱国,方星,郭润夏.基于SDRE的无人直升机姿态控制.地下空间与工程学报.2012,8(S1):1491-1495.
    [258]张军,张尚强,刘志林.多星发射上面级的姿态解耦控制.电机与控制学报.2009,13(S1):169-177.
    [259] Xin M, Balakrishnan S N. Nonlinear missile longitudinal autopilot designwith Θ-D method. American Control Conference, Denver, Colorado,4-6, June,2003.
    [260] Ewins D J, Modal testing: Theory and Practice. Research Studies Press,Letchworth,1984.
    [261] Kothare V, Morari M. Robust constrained model predictive control usinglinear matrix inequalities. Automatic,1996,32(10):1361-1379.
    [262] Garcia G, Bernussou J, Arzelier D. Robust stabilization of discrete-time linearsystems with norm-bounded time-varying uncertainty. Systems Control Lett,1994,22(4):327-339.
    [263]俞立,徐建明.具有控制约束的不确定离散系统最优保性能控制.系统工程与电子技术,2004,26(10):1453-1456.
    [264] Cao Y Y, Lin Z L. Robust stability analysis and fuzzy-scheduling control fornonlinear systems subject to actuator saturation. IEEE transactions on FuzzySystems,2003,11(1):57-67.
    [265] Mayne D Q, Rawlings J B, Rao C V. Constrained model predictive control:Stability and optimality. Automatica.2000,36(6):789-814.
    [266]陈建军,李姣枫,王小兵,陈龙.基于LMI的压电智能板的H∞振动控制.振动、测试与诊断.2008,28(3):201-205.
    [267]张家凡,郑晓,胡志刚.参数不确定振动系统的一种鲁棒主动控制器设计.噪声与振动控制.2002,5:28-30.
    [268] Yang J N, Lin S L, Jabbari F. Linear multiobjective control strategies forwind-excited buildings. Journal of Engineering Mechanics,2004,130(4):471-477.
    [269]周星德,郜中文.含饱和作动器的基准建筑物混合控制研究.应用力学学报,2007,24(1):62-65.
    [270] Schur I. Potenzreihn in inner des heitskreises. J. Reine. Angew. Math.149(1917):205-232.
    [271] Tomchiro Takagi, Michio Sugeno. Fuzzy identification of systems and itsapplications to modeling and control. IEEE Trans. Systems, Man andCybernetics,15, Feb.1985:116-132.
    [272]丁永生,应浩,邵世煌.模糊系统逼近理论:现状与展望.信息与控制.2000,29(2):157-163.
    [273] Amato F, Mattei M, Pironti A. A robust stability problem for discrete-timesystems subject to an uncertain parameter. Automatica.1998,34(4):521-523.
    [274] Zhao J, Goreg R, Wertz V. Synthesis of fuzzy control systems with desiredperformance.Proceedings of the1996IEEE International, Dearbon,1996:115-120.
    [275] Kiriaidis K. Nonlinear control system design via fuzzy modeling and LMIs.International Journal of Control.1999,72(7):676-685.
    [276]李春祥.地震作用下高层钢结构的最优MTMD控制策略及设计.计算力学学报,2002,19(1):83-87.
    [277]涂文戈,邹银生. MTMD对建筑结构多模态控制的减震分析.地震工程与工程振动.2003,23(5):174-179.
    [278]李春祥.地震作用下高层建筑TMD控制研究与设计.上海交通大学学报.1999,33(6):746-749.
    [279]孙树民.土木工程结构振动控制技术的发展.噪声与振动控制.2001,1:22-27.
    [280]滕军.结构振动控制的理论、技术和方法.北京:科学出版社,2009.
    [281] Kim J H, Jabbari F. Actuator saturation and control design for buildings underseismic excitation. Journal of Engineering Mechanics,128(4):403–412.
    [282] Suhardjo J, Spencer B F Jr, Kareem A. Active control of wind excitedbuildings: A frequency domain based design approach. Journal of WindEngineering and Industrial Aerodynamics,1992,43(1-3):1985–1996.
    [283]樊长龙. MTMD对地震作用下高层结构扭转振动的控制.上海:上海交通大学学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700