用户名: 密码: 验证码:
多重扰动下大电网低频振荡预警体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统规模和复杂程度的不断增加,特别是近年来我国特高压跨区域大电网的逐步发展,新的电压等级的出现,迫切需要对系统稳定性以及一系列新的问题进行深入研究。由于电网的规模一直在扩大,电网有着越来越多的不确定因素,通过前期研究以及对国内外低频振荡事故的分析发现,低频振荡事故并非单一扰动引起,而是由多个扰动引起的。多个扰动事件在时间、空间、类型上组合而引起系统运行状况连续改变导致系统阻尼不断恶化的多重扰动现象,逐渐成为影响系统稳定运行的重要因素。因此对多重扰动下大电网低频振荡的预警研究具有理论价值和实际应用意义。
     本论文结合参与的实际科研课题,对多重扰动下大电网低频振荡的预警进行了系统深入的研究。论文的主要研究内容如下:
     论文对多重扰动下大电网低频振荡的分析方法进行了归纳、总结并进行了进一步研究。基于能量函数的低频振荡的分析,建立了可用于断面潮流分析模型,通过观测断面的选择,对全网的分析转化为对每个观测断面的分析,从而实现全网的分散解耦分析。在该模型的基础上,简化了基于惯性中心的传统能量函数,对传统的稳定裕度指标进行了改进,提出了能量函数稳定裕度指标、支路势能稳定度指标、主导模式最弱阻尼比指标、区间断面功率振荡首摆峰值指标,上述指标均建立于系统联络线观测断面的基础上,仿真实验表明不仅计算简单方便,既可应用于低频振荡的预警,也可判断扰动的严重性。
     论文提出了适用于互联大电网低频振荡概率稳定性分析方法及指标,并对实际互联大电网进行了概率分析。在已知电网各种不确定因素的概率分布条件下,基于小扰动计算方法,利用两点估计法计算出相关不确定因素引起系统低频振荡概率大小。基于风险评估理论对多重扰动可能引起的系统低频振荡失稳情况进行了分析,给出了电网的控制代价与低频振荡风险。通过对小扰动和大扰动综合概率分析,得到了电网公司在承担风险与提高输电能力时的对比方法,可供电网运行人员在权衡经济型与安全性时参考以及作为长期预警的一个重要指标。
     论文根据能量函数稳定裕度等4种指标并结合应用于工程实践的动态阻尼比与峰峰值2种指标,构建了多时间尺度综合预警指标体系,建立了相应的等级划分标准,综合评价了电网的安全状态。并结合多重扰动算例和已建立的离线数据库,根据电网故障信息与断面潮流在线匹配和计算,以获取电网当前状态与可能故障下的状态变化从而进行低频振荡预警。
     在已经建立的预警指标体系基础上开发了相关的预警软件,随着特高压同步电网的建设,电网曾出现了0.1Hz以下的超低频振荡,因此以10s数据接收长度为单位,在线滚动计算能量函数稳定裕度、支路势能稳定度、主导模式阻尼比、区间断面功率振荡首摆峰值、峰峰值、动态阻尼比6种指标,以设定的电网安全评价等级为依据,根据短板效应,当任意一指标进入预警范围时即对电网发出预警。
     本文研究和分析了多重扰动下大电网低频振荡现象,建立了较为有效而完善的预警指标体系,开发了相关的预警软件,并进行了实际电网的在线应用。为以后低频振荡方面的预警研究奠定了理论基础和工程应川的依据。
With the development of power system and the increase of its conplexity, especially with the progressive development of UHV regional large-scale power grid in recent years, new voltage levels occurred, and the stability of the system and a series of new problems needed to be studied and solved. The expanding of grid scale also meant the increasing of uncertain factors. Multiple disturbances with the system damping worsening were led by continuous changes of system's operation status caused by a number of disturbance events in time, space and types, which couldn't be neglected in the stable operation of the system. Therefore, early warning study of multiple perturbations in low-frequency oscillation in power system was of a strong practical value and engineering significance.
     The paper was based on the actual research project. A comprehensive study on multiple perturbations in the early warning of low-frequency oscillation in power system was studied from the aspects of theory analysis and application. The main work and research results could be summarized as follows:
     The practical exploration and research were made on the analysis method of multiple perturbations low-frequency oscillation in power system. The energy function was applied to the analysis and study on low-frequency oscillation. The cross section flow analysis model that can be used in actual analysis was established. By selecting the observation section, the analysis of whole network could be transformed into the analysis of each observation section so that distributed decoupling network analysis could be achieved. On the basis of this model, the conventional energy function based on inertia center was simplified and the traditional stability index was improved. The energy margin index, branch potential energy stability index, the dominant mode damping ratio index, interval power oscillation section first swing index were put forward. These indicators were based on tie line observation section. Its calculation was simple and convenient. It could be used to the warning of the low frequency oscillation and the judge of the severity of the disturbance.
     Indicators and methods of low frequency probable stability analysis applied to interconnected grid were put forward, and probability analysis was made in actual interconnection grid. In the condition of known grid uncertain probability distribution, two-point estimate was used to calculate the size of the system low frequency oscillation probability caused by these uncertainties based on the small perturbation method. Then the risk assessment theory was used to analysis the system low frequency instability caused by multiple disturbances. The control costs of the grid and the risk of low frequency were provided. The compare ways of undertaking risks and improving the transmission capacity for the grid corporation were given by means of the comparison of small disturbance and large disturbance probability analysis, which could be used as a reference available for grid operation personnel weighing the economic and security as well as an important indicator in the long-term warning.
     According to the energy function stability margin and other three indicators combined with dynamic damping and peak to peak indicators which were used in the engineering practice, a multi-time scale warning indicator system and the grading standard were built. The safety status of the power grid was comprehensively evaluated. To warn the low frequency oscillation, the changes in current status or in the fault state were got by online matching and calculation of the power grid fault information and power flow, combined with multiple disturbance cases and the established offline database.
     The relevant early warning software was developed according to the established early warning indicator system. Because of the construction of ultra-high voltage grid, the oscillation, lower than0.1Hz, was appeared in the power grid. In that case,10s was set as the unit for length of received data. Six indexes, including the stability margin of energy function, branch potential stability, dominant mode damping ratio, peak value of the power oscillation in transmission section, peak-to-peak value and dynamic damping ratio, were on-line calculated. The warning was issued when any index was in the warning range based on the setting safe grade evaluation of power grid and cask effect.
     The phenomenon of power grid's low frequency oscillation with multiple disturbances was studied and analyzed in this paper. An effective early warning indicator system was established base on the actual engineering projects. The relevant early warning software was developed and the online application of the actual power grid was done. The basis of theoretical study and industrial application for the later analysis in early warning of low frequency oscillation were established.
引文
[1]电力工业发展及产业结构调整[J].中国电力,2002,35(1):1-7.
    [2]吕伟业.全国大区电网互联格局和联网规模研究[R].中国电力科学研究院技术报告,2001年3月.
    [3]曾德文.全国联网安全稳定及其相互影响研究[J].中国电力,2001,34(11):28-33.
    [4]全国联网规划深化研究工作组.西电东送规模及区域电网之间电力流向研究[R].全国联网规划深化研究报告:第二卷,2003年.
    [5]吴敬儒,徐永喜.中国互联电网的发展[J].电网技术,2005,29(3):1-4.
    [6]白建华.破解缺电:加快实施“一特四大”战略[J].中国电力企业管理,2011,(11):16-17.
    [7]印永华.特高压大电网发展规划研究[J].电网与清洁能源,2009,25(10):1-3.
    [8]国家电网公司科技部.大电网安全及控制关键技术研究框架[R].国家电网公司技术报告,2006年11月.
    [9]Demello F. Concepts of Synchronous Machine Stability as Affected by Excitation Control [J]. IEEE Trans, on Power Apparatus and Systems,1969,88(4):316-329.
    [10]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响[J].电机工程学报,2005,25(11):6-11.
    [11]曾德文.全国电力系统联网的基本格局及其分析[J].中国电力,1999,32(10):29-33.
    [12]G.Rogers. Power System Oscillations. Kluwer Academic Publishers, USA.2000.
    [13]王梅义,吴竞昌,蒙定中.大电网系统技术.北京:中国电力出版社,1995,4(3):72-79.
    [14]陈建业,王仲鸣.1996年夏季美国西部电力系统停电事故[J].国际电力,1998,2(2):52-56.
    [15]何大愚.对于美国西部电力系统1996年7月2日大停电事故的初步认识[J].电网技术,1996,20(9):35-39.
    [16]何大愚.对于美国西部电力系统1996年两次大事故的后续认识(分层分析)[J].电网技术,1998,22(5):37-43.
    [17]赵红光,刘增煌,朱方,等.华中-川渝联网稳定计算用发电机励磁和调速系统的数学模型及参数[J].电网技术,2007,31(5):50-57.
    [18]华中电网技术研究中心.华中电网有限公司技术中心与俄罗斯伊尔库茨克能源系统所技术交流报告[R].武汉:华中电网技术研究中心,2006.
    [19]王梅义.大电网事故分析与技术应用.北京:中国电力出版社,2008,2(9):68-74.
    [20]李丹,苏为民,张晶.“9.1”内蒙古西部电网振荡的仿真研究[J].电网技术,2006,30(6):41-46.
    [21]秦文萍,徐红利.“9.1”蒙西电网机组低频振荡现象分析[J].太原理工大学学报,2007,38(1):51-55.
    [22]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007,1(3):5-8.
    [23]Schleif, F.R. Damping for the Northwest-Southwest tieline oscillations-an analog study[J]. IEEE Trans on Power apparatus and systems.,1966,85(12).
    [24]张丽.华中区域电网低频振荡分析及控制的研究[D].武汉:武汉大学硕士学位论文,2004,4(5):93-97.
    [25]陈佳佳,邰能灵.低频振荡研究现状与展望[J].南方电网技术,2009,3(6):2-3.
    [26]P.Kundur. Power System Stability and Control[M]. McGraw Hill Inc,1993.2(3):24-28.
    [27]王锡凡,方万良,杜正春.现代电力系统分析[M].科学出版社,2004,2(5):37-46.
    [28]Xiaoyu Wen, Student Member, IEEE, and Venkataramana Ajjarapu. IEEE Transactions On Power Systems[J].2006.2(21):817-819.
    [29]Nelson Mart ins. Efficient Eigenvalue And Frequency Response Methods Appliedot Power System Small-Signal Stability Studies. IEEE Transactions on Power Systems[J], 1986.PWRS-1(1):217-220.
    [30]PaserbaJ.Analysisandcontrolofpower system oscillation[R].Paris:CIGRE,1999Perez-Arriaga I J.Verghese G C,Schweppe F C.Selectivemodal analysis with applications to electric powersysterns.I.Heuristic introduction[J]. IEEE Transon Power Apparatus and Systems, 1982,101 (9):3117-3125.
    [31]Byerly R T, Sherman D E. Eigenvalue analysis of synchronizing power flow oscillations in large electric power systems[J]. IEEE Trans on Power Apparatus andSystems,1982,101(1): 235-243.
    [32]Perez-Arriaga I J, Verghese G C, Schweppe F C. Selective modal analysis with applications to electric power systems.I.Heuristic introduction[J]. IEEE Trans on Power Apparatus and Systems,1982,101 (9):3117-3125.
    [33]Wang L.Semlyen A.Application of sparse eigenvaluetechniques to the small signal stability analysis of largepower systems [J]. IEEE Trans on Power Systems,1990,5(2):635-642.
    [34]励刚,苏寅生,陈陈.面向对象的多谱变换隐式重启动Arnoldi算法[J].电力系统自动化,2001,25(8):24-27.
    [35]Uchida N, Nagao T. A new eigen-ana lysis method of steady-state stability studies for large power systems:Smatrix method[J].IEEE Trans on Power Systems,1988,3(2):706-714.
    [36]中国电力科学研究院系统所PSD-SSAP电力系统小干扰稳定性分析程序用户手册[R].北京:中国电力科学研究院,2009.
    [37]韩松,徐政,何利铨.互联电网区间振荡动态特性分析方法述评[J].电力系统及其自动化学报,2011,23(4):8-11.
    [38]黄莹,徐政,潘武略.基于PSS/E的华东电网低频振荡分析方法[J].电网技术,2005,29(23):11-17.
    [39]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004,4(5):97-106.
    [40]邓集祥,华瑶,张芳.振荡模式非线性相关作用的研究[J].电力系统自动化,2003,27(16):35-39.
    [41]夏成军,周良松,彭波等.基于正规形理论的电力系统振荡稳定分析[J].继电器,2001,29(8):13-16.
    [42]邓集祥,张芳.电力系统在一种极限运行状态下的稳定性分析[J].电力系统自动化,2002,26(24):18-21.
    [43]邓集祥,刘洪波.多机电力系统非线性振荡的研究[J].中国电机工程学报,2002,22(10):67-70.
    [44]Pariz N,Shanechi H M, Vaahedi E. Explaining and validating stressed power systems behavior using modal series [J]. IEEE Trans on Power Systems,2003,18(2):778-785.
    [45]Messina A.Inter-area Oscillations in Power Systems:ANonlinear and Nonstationary Perspective [M].New York:Springer,2009.
    [46]李天云,高磊,赵妍.基于HHT的电力系统低频振荡分析[J].中国电机工程学报,2006, 26(14):24-30.
    [47]韩松,何利铨,孙斌等.基于希尔伯特-黄变换的电力系统低频振荡的非线性非平稳分析及其应用[J].电网技术,2008,32(4):56-60.
    [48]Messina A R,Vittal V. Nonlinear, non-stationary analysis of interarea oscillations via Hilbert spectral analysis[J]. IEEE Transactions on Power Systems,2006,21 (3):1234-1241.
    [49]李天云,谢家安,张方彦等.HHT在电力系统低频振荡模态参数提取中的应用[J].中国电机工程学报,2007,27(28):79-83.
    [50]Laila D S,Messina A R,Pal B C.A refined Hilbert-Huang transform with applications to interarea oscillationmonitoring[J].IEEE Transactions on Power Systems,2009,24(2):610-620.
    [51]吴方劫.互联电力系统低频振荡分析与控制方法研究[D].武汉:武汉大学博士论文,2009,2(3):43-51.
    [52]Jonsson M,Begovic M,Daalder J.A new method suitable for real-time generator coherency determination[J].IEEE Trans on Power Systems,2004,19(3):1473-1482.
    [53]Jonsson M.Daalder J,Begovic M.A system protection scheme concept to counter interarea oscillations[J].IEEE Trans on Power Delivery,2004,19(4):1602-1611.
    [54]Saitoh H,Toyoda J,Kobayashi Y. A new index extracted from line flow fluctuation to evaluate power system damping[J]. IEEE Trans on Power Systems,1991,6(4):1473-1479.
    [55]Poon K K-P,Lee K-C. Analysis of transient stability swings in large interconnected power systems by Fourier transformation[J].IEEE Trans on Power Systems,1988,3(4):1573-1581.
    [56]苏和,常鲜戎,万江.广域测量系统在内蒙古电网的应用[J].内蒙古电力技术,2010,28(3):6-8.
    [57]侯王宾,刘天琪,李兴源.基于自适应神经模糊滤波的低频振荡Prony分析[J].电网技术,2010,34(6):53-58.
    [58]竺炜,唐颖杰,周有庆等.基于改进Prony算法的电力系统低频振荡模式识别[J].电网技术,2009,33(5):44-47,53.
    [59]马燕峰,赵书强,刘森等.基于改进多信号Prony算法的低频振荡在线辨识[J].电网技术,2007,31(15):44-49.
    [60]田立峰,李成鑫,刘俊勇.电网低频振荡在线可视化监视的理论和实现[J].电力自动化设备,2010,30(5):28-33.
    [61]吴超,陆超,韩英铎等.基于类噪声信号和ARMA-P方法的振荡模态辨识[J].电力系统自动化,2010,34(6):1-6.
    [62]吴超,陆超,韩英铎等.计及模型定阶的低频振荡模式类噪声信号辨识[J].电力系统自动化,2009,33(21):1-6.
    [63]赵礼节.基于EMD的Prony算法在低频振荡模态参数辨识中的应用[J].电力系统保护与控制,2009,37(23):9-14.
    [64]鞠平,谢欢,孟远景等.基于广域测量信息在线辨识低频振荡[J].中国电机工程学报,2005,25(22):56-60.
    [65]张凯莉.TCSC低频振荡阻尼控制研究[D].北京:华北电力大学硕士论文,2007,3(4):54-59.
    [66]叶华.大规模电力系统低频振荡分析与广域自适应控制研究[D].济南:山东大学博士论文,2009,2(3):32-36.
    [67]吴复霞.电力系统低频振荡的分析和控制[D].杭州:浙江大学博士论文,2007,2(2): 20-24.
    [68]赵辉.电力系统低频振荡阻尼机理及控制策略研究[D].天津:天津大学博士论文,2006,2(3):17-19.
    [69]宋墩文,杨学涛,丁巧林等.大规模互联电网低频振荡分析与控制方法综述[J].电网技术,2011,35(10):22-28.
    [70]Ali Feliachi,Xiaqing Yang.Identification of Power system stabilizers locations[C]. Proceedings of the 28th Conference on Decision and control,1989,Tampa, Florida.
    [71]Nelson L,Limba Leonardo TG.Determination of suitable locations for power system stabilizers and static VAR compensators for damping electromechanical oscillations in large scale power systems[J]. IEEE Trans on Power Systems,1990,5(4):1445-63.
    [72]Yan Zhuang, Ali Febiachi. Identification of optimal location for power system stabilizers. Proceedings of the 20th Southeastern Symposium on System Theory[C].1988,Page(s): 236-238.
    [73]Venkataramana Ajjarapu. Reducibility and eigenvalue sensitivity for identifying critical generators in multimachine power systems[J]. IEEE Transactions on Power Systems,5(3): 712-719.
    [74]K.W.Wang, C.Y.Chung, C.T. Tsc, K.M. Tsang. Probabilistic eigenvalue sensitivity indices for robust PSS site selection[C]. IEE Proceedings on Generation, Transmission and Distribution,2001,148(6):603-609.
    [75]F.P.de Mello, P.J.Nolan, T.F.Laskowski, J.M.Undrill. Coordinated application of stabilizers in multimachine power systems[J]. IEEE Transactions on Power Apparatus and Systems. 1980,99(3):892-901.
    [76]Y. Y. Hsu, C.L. CHEN. Identification of optimum location for stabilizer applications Using participation factors[J]. IEE Proceedings on Generation, Transmission and Distribution,1987, 134(3):238-244.
    [77]C.L.Chen and Y.Y.Hsu. An efficient algorithm for design of decentralized output feedback power system stabilizer[J]. IEEE Trans on Power Systems,1988,3(3):999-1004.
    [78]马大强.电力系统机电暂态过程[M].北京:水利电力出版社,1988.
    [79]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [80]Khaldi M R, Sarkar A K, Lee K Y, et al. The modal performance measure for parameter optimization of power system stabilizers. IEEE Transactions on Energy Conversion,1993, 8(4):660-666.
    [81]朱振青,王新.复杂电力系统中电力系统稳定器的参数优化.西安交通大学学报,1989,23(S1):71-77.
    [82]Abido M A. Simulated annealing based approach to PSS and FACTS based stabilizer tuning. International Journal of Electrical Power & Energy Systems,2000,22(4):247-258.
    [83]Abido M A. A novel approach to conventional power system stabilizer design using tab search. International Journal of Electrical Power & Energy Systems,2000,22(4):247-258.
    [84]Abido M A. Parameter optimization of multimachine power system stabilizers using genetic local search. International Journal of Electrical Power & Energy Systems,2001,23(8): 785-794.
    [85]Al-Awami A T, Abdel-Magid Y L, Abido M A. Aparticle-swarm-based approach of power system stability enhancement with unified power flow controller. International Journal of Electrical Power & Energy Systems,2007,29(3):251-259.
    [86]牛振勇,杜正春,方万良,等.基于进化策略的多机系统PSS参数优化.中国电机工程学报,2004,24(2):22-27.
    [87]Xu Dong-jie, He Ren-mu, Xu Tao. ANN based multiple power system stabilizers adaptive and coordinated control, Power System Technology,2002. Proceedings Power Con 2002. International Conference on Volume 1,13-17 Oct.2002 Page(s):361-364 vol.1.
    [88]D.K.Chaturvedi, O.P.Malik, P.K.Kalra, Generalised neuron-based adaptive power system stabilizer, Generation, Transmission and Distribution, IEE Proceedings-Volume 151, Issue 2, 2 March 2004 Page(s):213-218.
    [89]K.A.Folly. Multimachine power system stabilizer design based on a simplified version of genetic algorithms combined with learning. Intelligent Systems Application to Power Systems,2005. Proceedings of the 13th International Conference on 6-10 Nov.2005 Page(s):7.
    [90]E.V. Larsen, J.J. Sanchez-Gasca, J.H. Chow. Concept for design of FACTS controllers to damp power swings[J]. IEEE Transactions on Power Systems,1995,10(2):948-956.
    [91]王海风,李乃湖,陈珩.近似模态控制分析法及其在选择灵活交流输电稳定器安装地点与反馈信号中的应用[J].中国电机工程学报,1999,19(6):60-64.
    [92]吴国红,贺家李,余贻鑫,横山明彦,陈礼义.FACTS装置最佳设置点的选择指标[J].电力系统自动化,1988,22(9):57-60.
    [93]H.F. Wang. Selection of robust installing locations and feedback signals of FACTS-based stabilizers in multi-machine power systems[J]. IEEE Transactions on Power Systems,1999, 14(2):569-574.
    [94]M.M. Farsangi, Y.H. Song, Kwang Y.Lee. Choice of FACTS device control inputs for damping interarea oscillations[J]. IEEE Transactions on Power Systems,2004,19(2): 1135-1143.
    [95]D.Povh. Modeling of FACTS in power system studies[J]. Power Engineering Society Winter Meeting,2000, Vol.2:1435-1439.
    [96]U.P. Mhaskar, A.M. Kulkarni. Power oscillation damping using FACTS devices:modal controllability, observability in local signals, and location of transfer function zeros[J]. IEEE Transactions on Power Systems,2006,21(1):285-294.
    [97]Jianhong Chen, Tjing T.Lie, D.M. Vilathgamuwa. Damping of power system oscillations using SSSC in real-time implementation[J]. Electrical Power and Energy Systems,2004, 26(5):357-364.
    [98]Qun Gu, Anupama Pandey, Shelli K. Starret. Fuzzy logic control schemes for static VAR compensator to control system damping using global signal[J]. Electrical Power and Energy Systems,2003, Vol.67:115-122.
    [99]杨晓东,房大中,刘长胜,宋文南.阻尼联络线低频振荡的SVC自适应模糊控制器研究[J].中国电机工程学报,2003,23(1):55-59.
    [100]马幼捷,周雪松,相伟.SVC综合非线性控制器在交直流混合系统中的应用[J].中国电机工程学报,2004,24(9):19-23.
    [101]常勇,徐政.SVC广域辅助控制阻尼区域间低频振荡[J].电工技术学报,2006,21(12):40-46.
    [102]Ling Fan, Ali Feliachi. Robust TCSC control design for damping inter-area oscillations[C]. Proceedings of the IEEE Power Engineering Society Summer Meeting,2001, Vol.2:15-19.
    [103]D.Del Rosso, A.Canizares, M.Dona. A study of TCSC controller design for power system stability improvement[J]. IEEE Transactions on Power Systems,2003,18(4):1487-1496.
    [104]郭春林,童陆园.多机系统中可控串补(TCSC)抑制功率振荡的研究[J].中国电机工程学报,2004,24(6):1-6.
    [105]林宇锋,徐政,黄莹.TCSC功率振荡阻尼控制器的设计[J].电网技术,2005,29(22):35-39.
    [106]Lingling Fan, A.Feliachi. Damping enhancement by TCSC in the Western US Power System[C]. Power Engineering Society Winter Meeting,2002,1(1):550-555.
    [107]C.Liu,M.lshimaru,R.Yokoyama,K.Y.Lee.Allocation of TCSCs for mitigating low-frequency oscillation on a tie-line in an interconnected power systerns[C].2003 IEEE Bologna Power Tech Conference, June 23-26, Bologna, Italy.
    [108]田方,周孝信.利用留数进行可控串补控制装置参数的配置[J].电网技术,1999,(2):1-5.
    [109]刘赘,吕厚余,侯世英.利用统一潮流控制器抑制电力系统低频振荡[J].重庆大学学报,2003,26(7):74-77.
    [110]J.A. Momoh, X.W.Ma. Overview and Literature Survey of Fuzzy Set Theory in Power Systems. IEEE Transaction on Power Systems,2005,20(3):1676-1690.
    [111]T.K.Mok,Yixin Ni,Felix F.Wu. Design of Fuzzy Damping Controller of UPFC through Genetic Algorithm. IEEE Transaction on Power Systems,2004,19(4):1889-1994.
    [112]E.V.Larsen, J.J. Sanchez-Gasca, J.H. Chow. Concept for design of FACTS controllers to damp power swings[J]. IEEE Transactions on Power Systems,1995,10(2):948-956.
    [113]荆勇,洪潮,杨晋柏, 王远游.直流调制南方电网局域功率震荡的研究[J].电网 技术,2005,29(20):53-56.
    [114]韩英铎,王仲鸿,陈淮金.电力系统最优分散协调控制[M].北京:清华大学出版社,1997:79-84.
    [115]Pal B,Chaudhuri B. Robust control in power systems. New York:Springer,2005.
    [116]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制[M].北京:清华大学出版社,2007:45-56.
    [117]Liu W,Venayagamoorthy G K,Wunsch Ⅱ D C. Adaptive neural network based power system stabilizer design. International Joint Conference on Neural Networks,2003,4:2970-2975.
    [118]黄振宇,刁勤华,孙岩等UPFC的模糊调制控制研究[J].电力系统自动化,2000,2000(2):36-41.
    [119]房大中,杨晓东,宋文南.提高交直流电力系统稳定性的HVDC模糊逻辑控制器[J].电力系统自动化,2002,26(2):23-27.
    [120]徐光虎,孙衢,陈陈.HVDC模糊协调阻尼控制器设计[J].电力系统自动化,2004,28(12):18-22.
    [121]Hui Ni, G.T. Heydt, L.Mili. Power system stability agents using robust wide area control[J]. IEEE Transactions on Power Systems,2002,17(4):1123-1131.
    [122]H.F. Wang. Selection of robust installing locations and feedback signals of FACTS-based stabilizers in multi-machine power systems[J]. IEEE Transactions on Power Systems,1999, 14(2):569-574.
    [123]M.Zribi, M.S. Mahmoud, M.Karkoub, T.T.Lie. H??-controllers for linearized time-delay power systems[C]. IEE Proceedings-Generation, Transmission and Distribution,2000, 147(6):401-408.
    [124]Wu Hong-xia, Ni hui, G.T. Heydt. The impact of time delay on robust control design in power systems[C]. Proceedings of IEEE Power Engineering Society Winter Meeting,2002, New York, Vol.2:1511-1516.
    [125]江全元,白碧蓉,邹振宇,曹一家.设计广域测量系统时滞影响的TCSC控制器设计[J].电力系统自动化,2006,28(20):21-25.
    [126]EJEBE G C. On-line dynamic security assessment in an EMS[J].IEEE Computer Application in Power,1998,11(1):43-47.
    [127]TAYLOR C W. The future in on-line security assessment andwide-area stability control [C]//IEEE Power Engineering Society Winter Meeting. Singapore:[s.n.],2000:78-83.
    [128]向农.跨区电网低频振荡的机理与控制研究[D].武汉:武汉大学博士论文,2009:47-48.
    [129]Kakimoto N, Sugumi M, Makino T, et al. Monitoring of interarea oscillation mode by synchronized phasor measurement[J]. IEEE Trans. on Power Systems,2006,21(1): 260-268.
    [130]Korba P. Real-time monitoring of electromechanical oscillations in power systems:first findings[J].IET Generation Transmission & Distribution,2007,1(1):80-88.
    [131]Zhang S, Xie X, Wu J. WAMS-based detection and early-warning of low-frequency oscillations in large-scale power systems[J]. Electric Power Systems Research,2008,78: 897-906.
    [132]Peng J C-H, Nair N-K C. Adaptive sampling scheme for monitoring oscillations using Prony analysis[J]. IET Generation Transmission & Distribution,2009,3(12):1052-1060.
    [133]Kerin U, Lerch E, Bizjak G. Monitoring and reporting of security of power system low-frequency oscillations[J]. Electric Power Components and Systems,2010,38: 1047-1060.
    [134]Korba P, Uhlen K. Wide-area monitoring of electromechanical oscillations in the Nordic power system:practical experience[J]. IET Generation Transmission & Distribution,2010, 4(10):1116-1126.
    [135]Yan J, Liu C C, Vaidya U. PMU-based monitoring of rotor angle dynamics[J]. IEEE Trans, on Power Systems,2011,26(4):2125-2133.
    [136]蔡斌,王诗明,吴文传,张伯明,张长林,周栋梁.电网在线安全稳定分析和预警系统.[J].电网技术,2007,31(2):36-40.
    [137]王凯.云南电网低频振荡预警及辅助决策系统构建方案[J].云南电力技术,2009,37(2):20-22.
    [138]石立宝,周华锋,Peter T. C. Tam,常乃超,兰洲,倪以信,徐政.电力系统实时动态安全评估及预警仿真系统的实现[J].系统仿真学报,2006,23(19):5401-5405.
    [139]Kakimoto N, Ohsawa Y, Hayashi M. Transient Stability Analysis of Electric Power System via Lure'Type Lyapunov Function (Parts Ⅰ & Ⅱ). Trans IEE of Japan,1978, 98(5);1978,98(6)
    [140]Athay T, Sherkey VR, Podmore Ret al. Transient Energy Stability Analysis. In:Publication No. CONF—790704—PL1980. U.S. Department of Energy,1980.
    [141]Mansor Y, Vaahedi Eet al. B.C.Hydro's On-Line Transient Stability Assessment (TSA) Model Development, Analysis, and Post-Processing. IEEE Trans on Power Systems,1995, 10(l):241-253.
    [142]傅书逖.势能界面法(PEBS)暂态稳定分析的综述及展望[J].电力系统自动化,1998,22(9):16-17.
    [143]Chinag.H.D, Wu.FE, Veraiya.P.P. Foundation of Dieret Mehtods for Power System Trnasient Stbailiyt Analysis[J]. IEEE Trnas. On Circuits and System.1987 CAS-34(2):16-0173,712-728.
    [144]阮青松.基于能量函数的电力系统暂态稳定性分析[D].西南交通大学硕士论文,2006:30-33.
    [145]鞠平,李东辉,许卫东等.电力系统暂态稳定概率计算[J].河海大学学报,1994,22(1):77-78.
    [146]廖清芬.多重扰动下特高压跨区电网低频振荡的研究[D].武汉:武汉大学博士论文,2008,3(2):7-40.
    [147]P.M.安德逊,A.A.佛阿德.电力系统的控制与稳定[M].北京:水利电力出版社,1979:79-85.
    [148]刘笙,汪静.电力系统暂态稳定的能量函数分析[M].上海:上海交通大学出版社,1996,(2):57-63
    [149]PRABHA K. Power system stability and control[M]. New York,USA:McGraw-Hill Inc.1994.
    [150]昆德.电力系统稳定与控制[M].北京:中国电力出版社,2002:762-782.
    [151]朱方,赵红光,刘增煌等.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,27(1):1-7.
    [152]董明齐,杨东俊,黄涌等.华中电网WAMS实测区域低频振荡仿真[J].电网技术,2009,33(13):64-69.
    [153]党杰,李勇,徐友平等.基于WAMS和奇异熵矩阵花束方法的电网低频振荡仿真分析[J].电力系统自动化,2010,34(15):14-18.
    [154]Wenyuan Li[加拿大]原著,周家启,卢继平,胡小正,颜伟,谢开贵译.电力系统风险评估模型、方法和应用[M].北京:科学出版社,2006.
    [155]MING Ni, MCCALLEY J D,VITTAL Vet al. Online risk-based security assessment. IEEE Trans on Power Systems,2003,18(1):258-265.
    [156]陆波,唐l国庆.基于风险的安全评估方法在电力系统中的应用[J].电力系统自动化,2000,25(11):61-64.
    [157]陈为化,江全元,曹一家等.基于风险理论的复杂电力系统脆弱性评估[J].电网技术,2005,29(4):12-17.
    [158]陈为化,江全元,曹一家等.电力系统电压崩溃的风险评估[J].电网技术,2005,29(19):6-11.
    [159]白晓民,张伯明.大型互联电网在线运行可靠性评估、预警和决策支持系统[M].清华大学出版社,2010:58-65.
    [160]丁道奇.复杂大电网安全性分析[M].北京:中国电力出版社,2010,8(2):234-255.
    [161]黄凯.交直流混合电力系统概率稳定性研究[D].安徽:合肥工业大学硕士论文2002,2(3): 52-55.
    [162]栾某德.电力系统低频振荡的分析与滑模励磁控制研究[D].湖北:武汉大学硕士论文,2012,2(2):24-24.
    [163]Me Calley J D,Vittal V,Abi-Samra N.An overview of risk based security assessment[C] //Proceedings of IEEE Power Engineering Society Summer Meeting.Edmonton, Canada: IEEE,1999:173-178.
    [164]Li W Y.Risk assessment of power system:model,methods,and applications[M].New York,N Y,USA:John Wiley& Sons,2005:15-40.
    [165]Mc Calley J D,Fouad A A,Vittal Vet al.A risk-based security index for determining operating limits in stability-limited electric power system[J].IEEE Trans on Power Systems,1997,12(3):1210-1219.
    [166]Vittal V,McCalley J D,Van Acker Vet al.Transient instability riskassessmentfC] //Proceedings of IEEE Power Engineering SocietySummer Meeting. Edmonton, Canada: 1EEE,1999:206-211.
    [167]易海琼,程时杰,侯云鹤等.基于点估计的电力系统小扰动稳定概率分析[J].电力系统自动化,2007,31(23):1-4.
    [168]杨慧敏,易海琼,文劲宇等.一种实用的大电网低频振荡概率稳定性分析方法[J].电工技术学报,2010,25(3):124-129.
    [169]伍红,赵霞,周家启.电力系统小扰动概率稳定性的蒙特卡罗仿真[J].电力系统自动化,2009,33(]1):8-]2.
    [170]李文沅,卢继平.暂态稳定概率评估的蒙特卡罗方法[J].中国电机工程学报,2005,25(10):18-23.
    [171]赵珊珊,周子冠,张东霞等.大区互联电网动态稳定风险评估指标及应用[J].电网技术,2009,33(2):68-72.
    [172]云雷,刘涤尘,张琳等.负荷特性对跨区大电网低频振荡的影响研究[J].电力自动化设备,2009,29(8):41-45.
    [173]何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社,2002:13-14.
    [174]潘学萍,敖雄,张丽钦.电力系统主导振荡断面的快速判断[J].电力自动化设备,2009,29(12):10-14.
    [175]邓集祥,涂进,陈武晖.大干扰下主导低频振荡模式的鉴别[J].电网技术,2007,31(7):36-41.
    [176]陈中.电力系统小干扰稳定实时控制[J].电力自动化设备,2012,32(3):42-46.
    [177]蔡国伟,穆钢,KwehanZ,卢芳.基于网络信息的暂态稳定性定量分析—支路势能法[J].电机工程学报,2004,24(5):2-6.
    [178]Bergen A R,Hill D J.A Structure Preserving Model For Power System Stability Anaiysis[J].IEETrans.onPAS,1981,100(1):25-35.
    [179]吴超,陆超,韩英铎等Prony方法和ARMA法在低频振荡模式辨识中的适用性比较[J].电力自动化设备,2010,83(3):30-34.
    [180]Wies R W.Pierre J W,Trudnowski D J.Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems[J].IEEE Transactions on Power Systems,2003,18(1):167-182.
    [181]王宇静,于继来.电力系统振荡模态的矩阵束辨识法[J].中国电机工程学报,2007,27(19):12-17.
    [182]LIU Guo-ping,Quintero J,Venkatasubramanian V. Oscillation monitoring system based on wide area synchrophasors in power systems[C]//Bulk Power System Dynamics and Control-VII. Revitalizing Operational Reliability,2007 iREP Symposium,2007.
    [183]徐晓刚,徐冠雷,王孝通等.经验模式分解(EMD)及其应用[J].电子学报,2009,37(3):581-584.
    [184]王娜娜,刘涤尘,廖清芬,陈恩泽,黄涌,赵红生.基于EMD-TEO及信号能量分析 法的主导低频振荡模式识别[J].电工技术学报,20]2,27(6):198-200.
    [185]邓集祥,欧小高,姚天亮.基于小波能量系数的主导低频振荡模式检测[J].电工技术学报,2009,24(8):141-143.
    [186]罗光坤,张令弥.基于Morlet小波变换的模态参数识别研究[J].振动与冲击,2007,26(7):135-138.
    [187]张贤达.现代信号处理[M].北京:清华大学出版社,2002,3(2):57-59.
    [188]董璐璐.基于可持续发展的我国石油安全与评价研究[D].青岛:中国石油大学(华东)硕士论文,2009,2(4):10-15.
    [189]朱道立等.选择与判断---AHP[层次分析法]决策[M].上海:上海科学普及出版社1990,2(4):41-52.
    [190]孙宏才等.网络层次分析法与决策科学[M].北京:国防工业出版社,2011:18-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700